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Abstract: Glyphosate is a highly effective, low-toxicity, broad-spectrum herbicide, which is exten-
sively used in global agriculture to control weeds and vegetation. However, glyphosate has become a
potential threat to human and ecosystem because of its excessive usage and its bio-concentration in soil
and water. Herein, a novel turn-on fluorescent probe, N-n-butyl-4-(3-pyridin)ylmethylidenehydrazine-
1,8-naphthalimide (NPA), is proposed. It efficiently detected Cu2+ within the limit of detection (LOD)
of 0.21 µM and displayed a dramatic turn-off fluorescence response in CH3CN. NPA-Cu2+ complex
was employed to selectively and sensitively monitor glyphosate concentrations in real samples
accompanied by a fluorescence turn-on mode. A good linear relationship between NPA and Cu2+ of
glyphosate was found in the range of 10–100 µM with an LOD of 1.87 µM. Glyphosate exhibited a
stronger chelation with Cu2+ than NPA and the system released free NPA through competitive coor-
dination. The proposed method demonstrates great potential in quantitatively detecting glyphosate
in tap water, local water from Songhua River, soil, rice, millet, maize, soybean, mung bean, and milk
with mild conditions, and is a simple procedure with obvious consequences and no need for large
instruments or pretreatment.

Keywords: fluorescent sensor; NPA-Cu2+; glyphosate; coordination competition; off-on

1. Introduction

Glyphosate (N-(phosphonomethyl) glycine) is an efficient, low-toxicity, and nonselec-
tive herbicide against perennial weeds [1]. It is widely used in economic crops or trees such
as orchards, rice, maize, soybeans, wheat, and tea fields [2–4]. However, glyphosate has
become a risk to human health because of its improper treatment and its bioconcentration
in soil and water [5]. Glyphosate is a potential endocrine disruptor and exhibits adverse
effects on cell cycle regulation [6,7]. It is classified as a potential carcinogen and genotoxic
to humans by the International Agency for Research on Cancer (IARC) [8]. The U.S. Envi-
ronmental Protection Agency set a maximum concentration of 700 µg/L for glyphosate in
water [9]. Guidelines for Canadian Drinking Water Quality prescribe a limit of 280 µg/L
in drinking water [10]. Therefore, establishing a convenient and reliable method for the
accurate and rapid detection of glyphosate is necessary and of great urgency.

Several effective analytical strategies have been established for the detection of
glyphosate. Traditional methods depend on expensive large-scale equipment, such as
gas chromatography (GC), GC coupled with mass spectrometry (GC-MS), and high perfor-
mance liquid chromatography (HPLC) [11,12]. To overcome the limitations of expensive
instruments, tedious pretreatments, and derivatization procedures, several techniques have
been proposed, such as enzyme-linked immunosorbent assay (ELISA) [13], capillary elec-
trophoresis (CE) [14], amperometry [15], colorimetric assay [16], fluorescence spectrometry,
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and electrochemical sensing [17,18]. These analytical techniques overcome the disadvan-
tages of traditional methods to a certain extent; however, there are still some limitations.
For example, ELISA utilizes expensive antibodies that are sensitive to temperature and
pH, and electrochemical assays generally have short life cycles. Colorimetry is obvious;
however, lacks good accuracy. Hence, it is critical to develop a facile, rapid, sensitive, and
efficient method to detect glyphosate in environmental samples.

Recently, fluorescence detection for glyphosate has attracted much attention because
of its easy operation, rapid response, high sensitivity, etc. Fluorescence sensors such as
nanoclusters [19–21], quantum dots [22–24], and metal-organic frameworks have been
used to detect glyphosate [25]. Currently, copper ion complexes are widely used due to
their novelty, sensitivity, low toxicity, and membrane permeability [26–28]. A coumarin
derivative and Cu2+ complex system was developed that selectively detected glyphosate
with a good linear relationship of 0.02–1.50 µg/mL [29]. Inspired by the designs of copper
complexes and our continuous interest in pesticide identification [30–34], a new probe
for Cu2+, N-n-butyl-4-(3-pyridin)ylmethylidenehydrazine-1,8-naphthalimide (NPA), was
designed and synthesized (Scheme 1). NPA exhibited fluorescence quenching in the
presence of Cu2+. When glyphosate was added to the NPA-Cu2+ system, the fluorescence
was discovered with a color change from colorless to green. NPA-Cu2+ can be used for
ultra-sensitive detection of glyphosate in environmental samples with high sensitivity, fast
response, and obvious consequences.
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Scheme 1. Synthesis route to compound NPA.

2. Results

2.1. Spectral Characteristics of Probe NPA upon Coordination with Cu2+

The solvent effects of NPA were studied in solvents of CH3CN, CH3CH2OH, DMSO,
DMF, and CH3OH, and CH3CN was selected as the test solvent (Figure S4).

The responses of NPA were examined to evaluate the sensing properties with the
introduction of other different metal ions. The UV–vis absorption spectrum of free NPA
showed a maximum peak at 440 nm. The absorbance intensity of NPA decreased, accompa-
nied by the yellow solution of NPA changing to colorless after the addition of Cu2+, while
the UV–vis spectra of other metal ions basically did not change, which indicated that NPA
could serve as a highly selective “naked-eye” probe for Cu2+ (Figure 1a). The introduction
of Cu2+ into the solution of NPA also caused significant fluorescence quenching (Figure 1b).
Free NPA exhibited strong fluorescence with emission at 533 nm. The fluorescence intensity
decreased quickly and was quenched with Cu2+ added after 100 s, after which the system
color changed from green to colorless (Figure S5).

To further explore the characteristics of NPA for Cu2+, competition and reversibility
experiments were carried out. The fluorescence intensity of the NPA-Cu2+ system was
slightly enhanced after Al3+ was added, and the introduction of other interference metal
ions did not affect the detection of Cu2+ by NPA (Figure S6). Alternating additions of
Cu2+ and EDTA to the system caused variation in the fluorescence intensity (Figure S7).
Although a certain degree of decrease in the fluorescence intensity was found after several
cycles, NPA showed good reversibility. The results indicate that NPA could serve as a
specific, rapid, and reversible sensor for Cu2+ detection.
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Figure 1. UV–vis (a) and fluorescence (b) spectra of NPA toward various metal cations.

The fluorescence intensity of NPA was recorded at various concentrations of Cu2+

in CH3CN for quantitative analysis. The fluorescence intensity decreased gradually with
increasing the Cu2+ concentration from 0 to 1.9 eq. and remained stable after 1.9 eq. Cu2+

was added (Figure 2a). A desirable linear relationship was observed between the fluores-
cence intensity and Cu2+ concentration, represented by y = −21.20x + 376.29 (R2 = 0.99)
(Figure 2b). The binding constant (K11) was calculated to be 1.8 × 104 M−1 (Figure S8),
which was calculated with validated open-source software (BindFit) [35]. The limit of de-
tection (LOD) for Cu2+ was calculated to be 0.21 µM based on the equation of LOD = 3σ/k,
where σ is the blank standard deviation and k is the slope of the fluorescence intensity ratio
vs. analyte concentration plot [36]. Comparing with NPA and other Cu2+ sensors based
on Schiff’s base with different sensing mechanisms (Table S1), the LOD of NPA was low
enough to detect Cu2+.
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To determine the stoichiometric ratio of NPA binding to Cu2+, a Job’s plot was con-
structed (Figure 3). The maximum fluorescence change was observed at a mole fraction of
0.65, indicating a 2:1 binding mode of NPA and Cu2+.

The IR and NMR spectra of NPA-Cu2+ were employed to elucidate the sensing mech-
anism. The IR spectroscopic comparison is shown in Figures 4 and 5. These results further
confirm that NH participated in the complex leading to a reverse photoinduced electron
transfer (PET) process and resulted in fluorescence quenching (Scheme 2).
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To further explore the changes in NPA and Cu2+ before and after coordination, the
frontier orbital energy diagram of NPA and NPA-Cu2+ from the PBE was constructed
using DFT (Figure 6). Electrons of the fluorophore in NPA transferred from its HOMO to
the LUMO and then returned to its HOMO without passing through the HOMO of the
receptor in NPA, causing the free probe NPA to exhibit a fluorescence when on. When Cu2+

was added, the ∆E of the system decreased, and the electrons were transferred from the
1,8-naphthalimide moiety (HOMO-1) to the electrondeficient pyridine groups (HOMO-3).
These results demonstrate that the quenching response of NPA to Cu2+ ions could be
considered a reverse PET process [37–39].
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2.2. Sensing Assay for Glyphosate by NPA-Cu2+

The binding mode between glyphosate and Cu2+ has been confirmed by EXAFS
spectra [40,41]. Cu2+ ions lie at the center of a Jahn-Teller distorted octahedron with the
amine, carboxylate, and phosphonate groups of glyphosate chelating with Cu2+ to form
two five-membered chelate rings oriented in the equatorial plane. A sensing approach for
glyphosate was developed, inspired by the aforementioned mechanism via competitive
coordination between the NPA-Cu2+ complex and glyphosate, as shown in Scheme 3.
When glyphosate is present in the NPA-Cu2+ system, the functional groups of glyphosate,
such as carboxylate, amine, and phosphonate, chelated with Cu2+ to form the more stable
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complex, in order to release the NPA, and the fluorescence intensity of the system can
recover. Therefore, it is feasible in theory to regard the competitive coordination balance
between NPA-Cu2+ and glyphosate as a new method for the detection of glyphosate
residue.
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Scheme 3. Proposed sensing mechanism of NPA-Cu2+ and glyphosate.

The fluorescence intensity gradually increased with increasing glyphosate concentra-
tion in the NPA-Cu2+ system (Figure 7a). The fluorescence response versus the concentra-
tions of glyphosate showed a desirable linear relationship in the concentration range of
0 to 11 eq., as described by the linear equation y = 2.40x + 34.53, with a linear coefficient
of 0.99 (Figure 7b). The binding constant (K11) was calculated as K11 = 9.6 × 104 M−1,
according to Host-Guest interaction BindFit (Figure S9). The LOD was calculated to be
1.87 µM (0.32 µg/mL).
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To evaluate the specificity of the NPA-Cu2+ system to glyphosate, selective and inter-
ferential tests were conducted. Some typical organophosphorus pesticides were selected,
such as glufosinate, trichlorfon, phosethy-Al, trichlorfon, and fosthiazate. In addition, the
triketone herbicide mesotrione, the fluorine-containing pesticide oxyfluorfen, and common
everyday ligands (alanine and serine) were selected as negative interferences (Scheme 4).
As shown in Figure 8a, after introducing glyphosate to the NPA-Cu2+ system, the fluores-
cence intensity of the system increased significantly. When glufosinate, alanine, and serine
were added, the fluorescence intensity of the system slightly increased, while the other
pesticides did not affect the chelation (Figure 8b).
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Other pesticides did not interfere with NPA-Cu2+ system, and glyphosate was quickly
and specifically recognized within 300 s (Figure S10). All of these results indicate that NPA-
Cu2+ detects glyphosate specifically and quickly, and is valuable in monitoring glyphosate
in real time.

2.3. Applications in Real Samples

To explore the practicality of the NPA-Cu2+ system, tap water, local water from
Songhua River, soil collected from the Northeast Agricultural University campus (Harbin,
China), rice, millet, maize, soybean, mung bean, and milk directly purchased from local
supermarkets were used for comparison. Different concentrations (30, 60, and 90 µM)
of glyphosate standard solutions were added to these samples and detected through the
NPA-Cu2+ system. Satisfactory fortified recoveries of 98.8–116.7% were obtained, and the
relative standard deviations were all less than 2.5% (Table 1). Compared with previously
reported sensing systems for glyphosate (Table 2), this strategy is more sensitive than
others, and features no enzymatic mild conditions, has no need for large instruments or
pretreatment, but has a simple procedure with obvious consequences [42–45]. The results
indicate that the sensor system possesses significant potential for practical applications
related to the environmental monitoring of glyphosate.
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Table 1. Detection of glyphosate in water samples and soil samples using the proposed method.

Samples Added (µM) Found (n = 3)
(µM)

Recovery (n = 3)
(%) RSD (%)

Soil

-
30

0.0 ± 0.0
34.5 ± 0.1

-
115.0 ± 1.7

-
1.9

60 62.9 ± 0.2 104.8 ± 0.4 1.2
90 93.6 ± 0.1 104.0 ± 0.1 2.0
- 0.0 ± 0.0 - -

Songhua River
30 35.2 ± 0.3 116.7 ± 0.2 2.5
60 66.0 ± 0.1 110.3 ± 0.1 1.5
90 94.1 ± 0.6 104.4 ± 1.1 0.9
- 0.0 ± 0.0 - -

Tap Water
30 33.2 ± 0.2 109.6 ± 1.1 1.6
60 65.4 ± 0.4 105.6 ± 0.1 1.4
90 89.3 ± 0.5 98.8 ± 0.1 2.1
- 0.0 ± 0.0 - -

30 32.5 ± 0.1 108.3 ± 0.8 1.5
Rice 60 62.8 ± 0.3 104.6 ± 0.3 2.3

90 89.5 ± 0.5 99.4 ± 0.5 1.8
- 0.0 ± 0.0 - -

30 31.9 ± 0.3 106.3 ± 1.3 1.6
Milk 60 61.7 ± 0.5 102.8 ± 1.5 1.1

90 89.8 ± 0.6 99.7 ± 0.8 2.3
- 0.0 ± 0.0 - -

30 31.5 ± 0.9 105.0 ± 0.3 0.9
Millet 60 61.4 ± 0.7 102.5 ± 0.1 0.5

90 90.6 ± 0.9 100.7 ± 0.1 0.7
- 0.0 ± 0.0 - -

30 30.7 ± 0.3 102.3 ± 0.3 0.7
Maize 60 60.7 ± 0.2 101.2 ± 0.1 0.5

90 90.5 ± 0.3 105.5 ± 0.1 0.7
- 0.0 ± 0.0 - -

30 30.6 ± 0.2 102.3 ± 0.3 0.9
Soybean 60 60.8 ± 0.4 101.5 ± 0.5 1.0

90 90.2 ± 0.3 100.5 ± 0.6 1.8
- 0.0 ± 0.0 - -

30 29.0 ± 0.4 96.6 ± 0.1 0.4
Mung bean 60 59.2 ± 0.3 98.6 ± 0.6 0.5

90 89.4 ± 0.2 99.3 ± 0.3 0.3

Table 2. Comparison of different strategies to detect glyphosate.

Sensing System Range
(µg/mL) LOD (µg/mL) Application Reference

CDs–Fe3+ 0.1–16 8.75 Potatoes
Water
Serum

Soil
Water

[22]
Gold Electrode 50–300 2.0 [42]

LC-MS/MS 1–250 0.5 [43]
Electrochemical sensor 1.7–16.9 0.98 [44]

Capillary electrophoretic
methodologies 1.0–8.0 0.5 [45]

NPA-Cu2+ 0–18.6 0.32 Water
Soil This work

3. Discussion

3.1. Sensing Mechanism of Cu2+ by NPA

There was a sharp peak at around 3309 cm−1 in the IR spectra of NPA, which could
be assigned to the NH of the hydrazine group. This peak was replaced by a broad peak
at 3358 cm−1 in the complex (NPA-Cu2+) spectrum, indicating the involvement of NH
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in the complexation. To further investigate the binding site of NPA with Cu2+, 1H NMR
titrations were carried out. The obvious change was that the proton signal (site i) of the
NH gradually decreased with the addition of Cu2+, while the proton signal of the =CH−
group in the pyridine ring at 10.23 ppm (site h) gradually shifted to the lower field due to
the paramagnetic properties of Cu2+. When 3 eq. Cu2+ was added, the proton signal of
the NH almost disappeared and the proton signal of the =CH− group in the pyridine ring
moved to 10.85 ppm. These further confirm that NH participated in the complex leading
to a reverse photoinduced electron transfer (PET) process and resulted in fluorescence
quenching [46–48].

3.2. Sensing Mechanism of Glyphosate by NPA-Cu2+

The experimental result that the NPA-Cu2+ complex system can specifically recognize
glyphosate is attributed to the relative spatial proximity of the phosphonate amino and
carboxyl groups of glyphosate to each other, facilitating the formation of chelates with Cu2+.
Although glufosinate and glyphosate are similar in structure, the amino and phosphonate
groups are separated by three methylenes in glufosinate, which make it difficult to form a
steric chelation with Cu2+. Alanine and serine are structurally similar to glufosinate, and
cannot form a stable steric chelation with Cu2+. However, other similar pesticides lacking
coordination groups failed to form stable coordinations with Cu2+, and could not form
chelations in space.

4. Materials and Methods
4.1. Materials and Physical Instruments

All analytical reagent-grade chemicals and solvents employed for the experiment,
which were purchased from commercial providers, were used without further purifica-
tion. Glyphosate, glufosinate, trichlorfon, phosethy−Al, fosthiazate, mesotrione, and
oxyfluorfen were purchased from Altai Biological Technology Co., Ltd. (Hebei, China).

FT−IR spectra were measured on a Bruker ALPHA−T spectrometer, which used KBr
pellets with a range of 4000–600 cm−1 (Bruker Corp., Billerica, MA, USA). The 1H and 13C
NMR spectra were recorded on a Bruker AV400 NMR spectrometer by using DMSO-d6
as the solvent, and the chemical shifts are reported in ppm (Bruker Corp., Billerica, MA,
USA). The HRMS was obtained on an FTMS Ultral Apex MS spectrometer (Bruker Corp.,
Billerica, MA, USA). The absorption spectra were gained on a Shimadzu UV-2700 UV–vis
spectrometer at 25 ◦C (Shimadzu Corp., Kyoto, Japan). Fluorescence spectra were obtained
on a PerkinElmer LS55 fluorescence spectrometer (PerkinElmer Corp., Waltham, MA, USA)
with a xenon lamp and quartz carrier.

4.2. Synthesis of the Probe NPA

N-n-butyl-4-bromo-1,8-naphthalimide (1) and N-n-butyl-4-hydrazine hydrate-1,8
naphthalic anhydride (2) were synthesized according to previous research of our group [49–51].
Compound 2 (283.0 mg, 1 mmol) and β-nicotinaldehyde (40%, w/w, 3.0 mL) were added
to EtOH (20 mL). The mixture was refluxed for 2 h and then cooled to room temperature.
The precipitate was filtered and washed with EtOH to obtain an orange solid with a yield
of 66%. IR (KBr, ν, cm−1) 3309(N–H), 2957, 2858(C–H), 1635(C=O), 1126(C–N). 1H NMR
(400 MHz, DMSO-d6) δ 11.48 (s, 1H), 10.23 (s, 1H), 8.82 (d, J = 5.9 Hz, 1H), 8.49 (d, J = 7.3 Hz,
1H), 8.39 (d, J = 8.5 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.82–7.77 (m, 1H), 7.66 (d, J = 8.5 Hz,
1H), 7.26 (t, J = 7.7 Hz, 1H), 6.96–6.90 (m, 2H), 4.06–4.01 (m, 2H), 1.65–1.57 (m, 2H), 1.35 (m, J
= 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H).13C NMR (100 MHz, DMSO-d6) δ 164.02, 163.36, 149.94,
148.27, 146.53, 140.92, 134.01, 133.69, 131.31, 131.22, 129.45, 128.61, 125.50, 124.62, 122.46,
119.13, 112.00, 107.65, 40.02, 30.23, 20.31, 14.19. HRMS (ESI): calculated for C22H20N4O2 [M
+ H]+ 373.1658, obtained a value of 373.1659.

The original spectra of NPA are included in the electronic Supplementary Information
(Figures S1–S3).
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4.3. General Procedures for Spectrophotometric Studies

The solvent effects of NPA (10−5 M) were studied in the solvents of CH3CN, CH3CH2OH,
DMSO, DMF, and CH3OH, and then CH3CN was selected as the solvent to be tested. The
stock solutions of 10−2 M metal ions were provided from NaCl, KCl, CuCl, AgNO3, CuCl2,
MgCl2, NiCl2, ZnCl2, SnCl2, BaCl2, MnCl2, CaCl2, HgCl2, PbCl2, BaCl2, CoCl2, HgCl2,
PbCl2, FeCl2, AlCl3, and CrCl3 using ultrapure water. A Cu2+ solution (1 mL, 10−2 M) was
added to a 10 mL volumetric flask and diluted to 10−3 M in ultrapure water. NPA (10−5 M)
solutions of 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, and 1.0 mL were taken and transferred to
10.0 mL volumetric flasks. Cu2+ (10−3 M) solutions of 10, 20, 30, 40, 50, 60, 70, 80, and
90 µL were added to each NPA solution, so that the mole fractions of NPA became 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. Each bottle was diluted with CH3CN to
10 mL [52]. Ethylene diamine tetraacetic acid (EDTA) solution (10−2 M) for a reversible
experiment was obtained with ultrapure water.

4.4. Theoretical Calculation Methods

The quantum chemical calculations of the optimized structures were conducted by
applying density functional theory (DFT) in Material Studio. The structure was optimized
using the Perdew-Burke-Ernzerh (PBE) method of generalized gradient approximation
(GGA) in the Dmol3 module for NPA and a model NPA-Cu2+ complex.

4.5. Measurement of Glyphosate Using the NPA-Cu2+ System

An NPA solution (10.0 mL, 10−4 M) and a Cu2+ aqueous solution (200 µL, 10−2 M)
were added to a 100 mL volumetric flask, and then the volume was fixed with CH3CN to
configure the NPA-Cu2+ solution (10−5 M). Subsequently, the final mixture was incubated
for 5 min at 30 ◦C, and the fluorescence intensity at 533 nm was recorded with λex at 440 nm.
Interference (glyphosate, glufosinate, trichlorfon, phosethy-Al, fosthiazate, mesotrione,
oxyfluorfen, alanine, and serine) solutions (10−2 M) were prepared for interference and
selective experiments.

4.6. Applications in Real Samples

In order to verify the practical applications, tap water, local water from Songhua
River, and soil collected from the Northeast Agricultural University campus (Harbin,
China), rice, millet, maize, soybean, mung bean, and milk purchased directly from the local
supermarkets were selected as the real samples and were tested by the proposed sensor
through the standard addition method. Water from Songhua River was filtered through
a 0.22 µm membrane to remove large solids and most impurities. The rice, millet, maize,
soybean, and mung bean samples were ground into powders. Soil and rice millet, maize,
soybean, and mung bean samples (10 g) were dispersed in 100 mL deionized water under
ultrasonication for 15 min, centrifuged at 5000 rpm for 10 min, and then filtered through a
0.22 µm microporous membrane for subsequent analyses [40,53]. Additionally, different
concentrations (30, 60, and 90 µM) of glyphosate standard solutions were added to these
samples and detected through the NPA-Cu2+ system.

5. Conclusions

In summary, a highly selective and sensitive naphthalimide-based derivative sensor
NPA and a Cu2+ complex (NPA-Cu2+ system) for glyphosate detection were established.
NPA was synthesized as an indicator of Cu2+ with turn-off fluorescence through coordina-
tion, and the LOD for Cu2+ detection was found to be 0.21 µM. The phosphonate, amino,
and carboxyl groups of glyphosate are relatively close to each other, allowing a chelate to
form, and thus the space cyclization to chelate with Cu2+. When glyphosate was added
to the NPA-Cu2+ system, NPA was released within 300 s and the fluorescence showed a
turn-on pattern with a detection limit of 1.87 µM for glyphosate. Further study revealed
that glyphosate was successfully detected in water, soil, rice, millet, maize, soybean, mung
bean, and milk samples by the NPA-Cu2+ system. Considering the merits of the NPA-Cu2+
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system to detect glyphosate, namely it is rapid, sensitive mild, easy to operate, and does
not require large-scale equipment, it is expected to become a potential method for the
efficient detection of glyphosate.
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