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Abstract: The films of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)) are widely used in
piezoelectric tactile sensors, vibration energy harvesters, optical frequency conversion materials
and organic photo-voltaic devices because of high electroactive, good optical and nonlinear optical
properties, respectively. In this work, the multilayer structured ultrathin films were fabricated by the
Langmuir–Blodgett technique, and the thickness per layer can be controlled accurately. It was found
that as the collapse pressure of P(VDF-TrFE) (25:75) and the optimal dipping value are 60~70 mN/m
and 15 mN/m, respectively, a high-density film can be obtained due to the compression of molecules.
The surface topography and optical properties of the LB films were characterized by X-ray diffraction,
white light interferometer and variable-angle spectrum ellipsometer. It was observed that the films
are transparent in the visible region and IR-band, but show a high absorption in the UV band. Besides,
the transmittance of the films ranges from 50% to 85% in the visible region, and it linearly decreases
with the number of monolayers. The average thickness of per deposition layer is 2.447 nm, 2.688 nm
and 2.072 nm, respectively, under three measurement methods. The calculated refractive index
ranged from 1.443 to 1.598 (600~650 nm) by the Cauchy-model.

Keywords: PVDF nano films; Langmuir-Blodgett (LB); refractive index; optical constant

1. Introduction

Two-dimensional (2D) materials are the functional ultrathin crystalline films with
strong bonding in the plane and weak bonding between planes (van der Waals), which
exhibits plate-like shapes and includes graphene, MXenes, black phosphorous, diatomic
hexagonal boron nitride, Perovskites, Metal-Organic Frameworks (MOFs), Covalent-Organic
Frameworks (COFs), Polymers and Metals [1]. These 2D layers can be integrated into a
monolayer (lateral 2D structure) or a multilayer stack (vertical 2D structure), and possess a
number of unique chemical, mechanical, optical and electrical characteristics, which have
been intensively studied in the past few years and offer numerous novel applications in
the optoelectronic fields [2–9]. The recent progress on the fabrication, characterization and
applications of various 2D heterostructures are especially reviewed [10]. Many studies have
been focused on nanoscale electronic and optoelectronic devices based on two-dimensional
(2D) materials and ferroelectric materials, such as graphene, MoS2, WSe2 and aluminum
(Al)-doped hafnium oxide (HfO2) [2]. These studies demonstrate that the artificial 2D
materials may provide access to new properties beyond their component 2D atomic crystals
and hence, have been widely used in the MEMS devices for their excellent performances.

Among those two-dimensional (2D) materials, piezoelectric polymer films may be one
of the most prospective directions. Poly (vinylidene fluoride) (PVDF) and its copolymers
with trifluoroethylene P(VDF-TrFE) have been extensively researched for decades because
of its chemical resistance, excellent mechanical properties (flexible), electroactive responses,
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including piezoelectric, pyroelectric and ferroelectric effects [11–14]. This semicrystalline
polymer is the most typical ferroelectric (β phase) material with its zigzag trans confor-
mation [15–18]. The developed electroactive structures of PVDF have shown potential to
be used in a wide range of applications, such as the formation of sensors and actuators,
in biomedicine, energy generation and storage [14,19,20]. The state-of-the-art BTO/PVDF
composites interlayered by 2-layer BTO exhibit the highest energy storage density, which is
222.6% higher than that of pure PVDF [21]. There are also some studies conducted on the
optics properties of PVDF, PVDF-copolymers, PVDF-Blends and PVDF-nanocomposites,
for its quite large optical windows (200~1200 nm), good linear and non-linear optical (NLO)
properties. The well-known applications of PVDF-nanocomposites are used for optical
frequency conversion materials, memory and limiting devices [22–26], which are doped
with nanoparticles, such as ZnO [27], CuO [28], ZrO2 [29], HfO2 [30], reduced graphene
oxide (RGO) [31,32], Carbon Nanotubes [33,34], Carbon Quantum Dots [35], cellulose [36],
Li4Ti5O12 [37], and so on.

Compared with the traditional preparation methods, such as spin-coating, solution-
casting and electrospinning [13,14,19], the LB technology can obtain ultrathin films of PVDF
and its copolymers as thin as one monolayer (ML). Thus, this method can produce a highly
polar and non-centrosymmetric structure [38–47], and be regarded as 2D materials [47].
Until recently, many researchers focused on the ferroelectric properties [48–55], including
ferroelectric-paraelectric phase transitions by means of optical second harmonic generation
(SHG) effect [41,42]. The PVDF LB ultrathin films are fabricated with a thickness of
2.3~2.4 nm per monolayer, which have a complete β phase and show remarkable remanent
polarization [43,44]. The large-area PVDF LB films are prepared with a thickness of 1.9 nm
and RMS roughness of 0.3 nm by the hot-pressing method, which improved structure
uniformity [45].

Ferroelectric polymer is always polymorphous, containing amorphous material and
crystalline phases, and generally has a broad distribution [12,16,17]. So, those experimental
values including surface roughness, thickness, refractive indices (n) and extinction coeffi-
cient(k) of P(VDF-TrFE) differ substantially from each other. The process of the deposition
is a key factor in the optical and other physical properties. So, it is necessary to study the
surface topography, optical constants, and dipping process of the LB films, which can be set
as a research starting point for understanding the microscopic mechanism governing the
optical behaviors of this film. In this work, the optimal surface pressure was firstly obtained
by π-A isotherm experiment. The properties of P(VDF-TrFE) LB films were characterized
by X-ray diffraction (XRD), White light interferometer (WLI), Atomic force microscopy
(AFM), Fourier transform infrared reflection (FTIR), Variable-angle spectrum ellipsometer
(VASE), and Ultraviolet-visible spectrophotometer (UV-Vis Spectra). Finally, the Lambert–
Beer’s Law and dispersion model were used to illustrate the optical constants and show
different values.

2. Materials and Methods
2.1. Materials

P(VDF-TrFE) (Mw 1
4 300,000, VDF: TrFE mol% = 25:75) used in this work was pro-

vided by ARKEMA, PIEZOTECH (Columbus, Paris, France) with a density of 1.78 g/cm3.
The ITO-glasses were purchased from the GULUO GLASS (Luoyang, Henan, China) and Si
wafers were GUI JING ELECTRONIC (Shenzhen, Guangdong, China), both of the thick-
nesses of the two substrates are 1 mm, and the thickness of ITO layer is 200 nm (PV 20 nm).
The N’N-dimethylformamide (DMF, AR, 99.5%) was used as the solution of PVDF, ace-
tone (AR, 99.9%) and ethyl alcohol (AR, 95%) used as cleaning reagent were provided by
CHRON CHEMICALS (Chengdu, Sichuan, China).

2.2. Films Preparation

Pretreatment of P(VDF-TrFE) solution and substrate: The experiment was completed
in the national standard super clean room laboratory (grade 105). P(VDF-TrFE) particles
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were dissolved in DMF to make solution (0.01 wt%), then put the solution into the water
bath to 70 ◦C and stirred for about 5 h, and placed at room temperature over 24 h. ITO-
glasses and Si wafers were selected for the substrate, and the substrates were dipped into
acetone and ethyl alcohol for 10~20 min and washed with deionized water after ultrasonic
cleaning, then baked for 30 min.

Preparation of the P(VDF-TrFE) micro/nano films: Figure 1 shows the fabrication
process of P(VDF-TrFE) nano films. The nano films were performed with a KSV-NIMA
system, the solution was spread onto the surface of ultra-pure water for (10~30) mL
with a syringe. After the thorough evaporation of the DMF solvent for 10~40 min, the
polymer molecules were compressed with a movable barrier until they formed close packed
structure. Then π-A curves of isotherm experiment and collapse pressure were obtained
by LB software in KSV-NIMA system. The deposition of nano films was assembled by
horizontal lifting mode and deposited onto the ITO-substrate at the surface pressure of
15 mN/m [38]. The microfilms were mainly prepared by spin-coating (conventional spin
coater, 750 rpm) with the same substrate and solution. The dipping tools were a microliter
syringe and a dropper for different concentrations of 0.1 wt% and 0.01 wt% [13].

Figure 1. Schematic of preparation of P(VDF-TrFE) ultrathin films.

2.3. Characterization

Microstructure and surface morphology were measured with XRD-6000 (Shimadzu
Inc., Saitama Prefecture, Tokyo, Japan) (conditions: Cu target, 40 kV, 30 Ma, scanning
speed 10◦/min), WLI (New View 8300, Zygo Corp., Laurel Brook Road, Middlefield,
CT, USA), AFM (MultiMode 8, Bruker Corp., Billerica, MA, USA). Transmittance was
carried out using UV-Vis Spectra (U-3501, Hitachi Inc., Chiyoda District, Tokyo, Japan)
(spectrum:185 nm~3200 nm, wavelength precision: ± 0.2 nm, near infrared light: ± 0.2 nm,
Wavelength resolution: 0.1 nm). FTIR spectra was recorded with 60SXR-FTIR (Nicolet
Corp., Madison, WI, USA), wavenumber range: 400 cm−1~4000 cm−1. Refractive index,
thickness and extinction coefficients were obtained by VASE (M-2000 UI, J.A.Woollam
Corp., Lincoln, NE, USA) over the wavelength range from 250 nm to 1700 nm, accuracy:
0.2◦, repeatability: 0.005◦, and angle range 45◦~90◦.

3. Results and Discussions
3.1. Deposition Mechanism of Ultrathin Films

As known, the exact surface or collapse pressure is the premise of the dipping. There
are few reports about how to obtain and determine the collapse pressure of PVDF or
P(VDF-TrFE). Table 1 displays the comparison of the collapse and surface pressure in this
work and some published work. In order to obtain the exact collapse pressure, 12 target-
values have been set in the π-A experiment for 5, 10, 15, 20, 25, 35, 40, 45, 50, 55, 60 and
65 mN/m, respectively.
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Table 1. Comparison of the preparation conditions and parameters for PVDF ultrathin films.

Collapse Pressure
(mN/m)

Surface Pressure for
Dipping (mN/m) Solvent Solution Concentration Dipping Mode Reference

60–70 15 DMF 0.01 wt%P(VDF-TrFE) Horizontal This article
6 15 DMSO 0.01 wt%P(VDF-TrFE) Horizontal 38

5–20 5 DMSO 0.01 wt%P(VDF-TrFE) Horizontal 49
60 40 DMF 0.1 wt%-PVDF Y 40
– 5 DMF P(VDF-TrFE-CFE) 0.01wt% Horizontal 50

As shown in Figure 2, the P(VDF-TrFE) molecules were pushed closely, and this
process can be divided into four stages as the barrier was compressed. In stage I, when
the barriers moved from 250 cm to 165 cm, the surface pressure increased slowly from
0.818 mN/m to 5 mN/m. This means that the hydrophobic end—“F” atom of P(VDF-TrFE)
molecules begins to stand up and compress from the “gas-liquid” quasi free state to “liquid”
condensed phase. With the surface pressure increasing from 5 mN/m to 15 mN/m in
stage II, the slope of the curve is markedly elevated, which signifies that a liquid film has
formed. When the surface pressure rises quickly from 20 mN/m to 40 mN/m in stage III,
polymer molecules completely erect and the stable solid phase films form. Until the barrier
moved to the end (25 cm), the curve exhibits a tipping point at which the condensed phase
transition changes from III to IV, the slope decreases and the films can begin to be packed
or be seen as the monolayer collapsing. Unfortunately, the exact collapsing pressure has
not been found. In this isothermal experiment, the collapse pressure of P(VDF-TrFE) can
be over (65~70) mN/m, which is close to 60 mN/m [40], much greater than the value of
23 mN/m [38] and 18 mN/m [49]. In practice, a surface pressure cannot be higher than
72.8 mN/m, which is the surface tension of pure water [53].

Figure 2. π–A isotherm and the LB films formation of P(VDF-TrFE) Solution (0.01%) with ultra-pure
water subphase.

Figure 2 demonstrates that P(VDF-TrFE) molecules begin to form a monolayer when
the surface pressure increases quickly to 5 mN/m, the slope is remarkably increasing.
So, the stable monolayer can form on the ultrapure water surface with a collapse pres-
sure at (10~20) mNm−1. This can be the main reason that the senior researchers [38,49]
have selected “15mN/m” as the optimal value of dipping surface pressure. In addition,
from Table 1, it has also displayed that the concentration of P(VDF-TrFE) solution is not
necessarily related to the collapse pressure.
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3.2. Structure and Surface Morphology

As a semicrystalline polymer, the lamella of PVDF or P(VDF-TrFE) bulk materials
and thick films (>30 µm) are embedded among the amorphous phase. The LB films are
polycrystalline with chains parallel to the horizontal direction of it, and seem to be without
lamellar [48,54]. Figure 3a,b show XRD patterns of PVDF and P(VDF-TrFE) LB films. It was
found that P(VDF-TrFE) exhibits the peaks at 2θ ≈ 20.5◦, 21.44◦, 22.8◦, 29.44◦ and the peak
intensity represents the sum of diffraction peaks about crystallographic plane (110), (200)
of β phase. It also exhibits peaks at 2θ ≈ 17.64◦, 18.04◦, 26.84◦, corresponding to diffraction
from (100), (200) of α phase. It can be concluded that: (i) the peak intensity of P(VDF-TrFE) is
much stronger than PVDF, which can be attributed to the molecular polarity and rotational
barriers of the PVDF molecules at room temperature. It is difficult to obtain the stable
β-PVDF at normal temperature and pressure, unless TrFE is added to the original PVDF
molecular chains by certain proportion (50~80%). The atomic radius of positive hydrogen
is larger than that of negative fluorine atoms. When the VDF and TrFE units are randomly
distributed along the molecular chain to form a random copolymer, and the rotational
barrier will prevent the chain from forming trans-configuration (β and few γ); (ii) Heating
leads to phase transition (α → β). High temperature treatment above the Curie points
(135 ◦C) to 140 ◦C, which can stimulate a large number of α-PVDF (orthorhombic) molecules
to transform into β phase (monoclinic), with strenuous dipole movements [12,16].

Figure 3. X-ray pattern of (a) P(VDF-TrFE) and (b) PVDF; WLI of P(VDF-TrFE) by LB with different
ML: (c) 10 mL, (d) 100 mL.

The WLI is widely used in the measurement of surface 3D topography of optical films.
As shown in Figure 3c,d, there is a clear boundary line between the deposition area and non-
deposition, and clear deference in morphology of the P(VDF-TrFE) LB films with different
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thicknesses (ML). The films became thinner and the roughness rose with ML increasing.
The thickness of 10 mL was 20.617 nm, less than that of 100 mL, the surface roughness rose
sharply (5.977 nm→ 13.4016 nm), which is explained with the same conclusion of AFM.

The LB films always have a weak binding force with the substrate, the tapping-mode
of AFM has been adopted to reduce the force between the tip and the films, and shorten
contacting time, which is compared with the contacting-mode. Figure 4 displays that
both PVDF and P(VDF-TrFE) films by the LB technique are thinner, than they are with
spin-coating. Especially, the monolayer thickness by LB is about 2nm, which is in good
agreement with Palto [38]. On the other hand, the thickness of the films by spin-coating is
18.0~48.2 nm. The former is an order of magnitude smaller than the latter, which leads to
the change of transmission spectrum as shown in Figure 5. Furthermore, the former was
more compact and uniform than the latter.

Figure 4. AFM of P(VDF-TrFE) by LB and spin-coating with different ML and different concentration:
(a) 30 mL; (b) 60 mL. (c) P(VDF-TrFE) (0.1 wt%) and (d) P(VDF-TrFE) (0.01 wt%) by spin-coating.

Figure 5. (a) FTIR spectra of PVDF and P(VDF-TrFE) films by different method; (b) the partial
enlarged view of (a).

It is worth paying more attention to the existence of an obvious crystal boundary
among the films by spin-coating, which, due to P(VDF-TrFE) macromolecules had folded
multilayers and agglomerated together to form a peak or island structure on the substrate
(see Figure 4c,d). The blue oblique lines (see Figure 4a,b) are the place where the film
deposited sufficiently (dot A, B, C), which indicates the crystallographic plane (110) with
a 45◦ orientation. It proves that a large number of β-PVDF crystallites have appeared.
The preparation method for the films, such as the spin-coating method, mainly depends
on the direct adsorption on the surface, and the orientation and arrangement of molecules
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are difficult to control. However, the molecules of LB films can orient better with the
high surface pressure and self-assembly, after being adsorbed on the surface of fluid
subphase [56]. All in all, the LB method is better than the spin-coating for preparing an
ultrathin film of P(VDF-TrFE).

In Figure 4a, the total thickness of P(VDF-TrFE) by LB with 30 mL and 60 mL are
55.2 nm and 161.0 nm, respectively. However, the monolayer thickness is obviously
thicker than the former. The main reason is that the interlayer spacing became wider [57].
Firstly, as the deposition continued, the solution became diluted and the TR (transfer ratio,
represents the quantity and the quality of the deposited monolayer on a solid support)
decreased [56]. After deposition, the moisture increasing and retention time was not enough
to dry sufficiently, and the mixture with the polarity H2O molecules strengthened repulsive
force intermonolayer, resulting in the LB films thicker. Secondly, after the treatment at
high temperature above the Curie point, H2O molecules escaped, although the crystalline
orientation of polymer monolayer had been enhanced, the relaxation effect existed. At the
same time, the gap still exists with H2O molecules evaporation, and the interlayer distance
had no significant change. On the whole, the thickness of the LB multiplayer increased.

3.3. Optical Properties
3.3.1. FTIR Spectroscopy

As shown in Figure 5, the transmittance of P(VDF-TrFE) LB films was obviously the
maximum and reached 100%, equal to glass (SiO2), from 4000 cm−1 to 7000 cm−1. On the
whole, the transmittance of PVDF and P(VDF-TrFE) was high in IR-band or high absorption
in UV band. It demonstrates that the PVDF polymer, as an unconjugated polymer, has a
maximum transmittance in IR, that was, in the low energy state, even the P(VDF-TrFE)
molecules in the ground state (S0) may absorb a single photon. But the energy with the
absorption from S0, was not enough to complete the transition to singlet excited state S1 or
S2 [58]. So, the incident light could pass through easily, resulting in a high transmittance.

In addition, it has been found that the more dilute the PVDF solution (0.01 < 0.1%)
was, the more transparent the films were (graph 1 and graph 2). This can be attributed
to the high concentration, which leads to P(VDF-TrFE) molecules fully spreading on the
surface of the subphase, and the films were compact to decrease the transmittance. Further-
more, the results showed that the films by different preparation methods have a different
impact on the transmittance (graph 2 and graph 3). The films prepared by the LB method
were much thinner than by dropper and microliter syringe, so the transmittance of the
former was higher than the latter at the same wavelength. Lastly, a fairly qualitative but
nonetheless significant observation was that the transmittance of P(VDF-TrFE) LB films
was higher than that of PVDF. The reason may be that, for P(VDF-TrFE) molecules, VDF
and TrFE units are randomly distributed along the molecular chain to form a random
copolymer and cocrystallize into a single crystalline phase analogous to β-PVDF [57]. The
crystallinity and orientation of polymer increased, with “n” decreasing, and “T” increasing
correspondingly [59].

3.3.2. UV-Vis Spectroscopy

As shown in the UV-Vis spectroscopy of the P(VDF-TrFE) LB films (Figure 6a), it shows
that there are three points of high transmittance points (~463 nm, ~611 nm, ~858 nm)
and three low transmission points (~424 nm, ~530 nm, ~664 nm) in the visible region.
The transmittance reduces linearly with the number of MLs increasing, which proves the
regularity of LB films we prepared.
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Figure 6. (a) UV-Vis spectra of P(VDF-TrFE) LB multiplayer films with different ML; (b) The optical
path schematic of P(VDF-TrFE) monolayer film.

The mechanism of this phenomenon can be explained with the Lambert-Beer’s Law [60]:

A = εCL, (1)

where A, C and L are the absorbance, concentration, and optical length of media or solution,
respectively. For thin films, C and ε are constants, so A ∝ L, and T ∝ 1/. Thus, the
transmittance of 30 mL is larger than that of 100 mL and 200 mL at the same wavelength.
Although the LB films were obtained by multiple times and the short interval among
each deposition, there is not enough time for P(VDF-TrFE) or PVDF molecules to solidify,
owing to the weak Van der Waals force among the films and the substrates. So, they
can fully stretch and intersperse, and the films could be regarded as a monolayer (see
Figure 6b). Because of the anisotropy of semicrystalline polymer, the refractive index of
P(VDF-TrFE) films shows a significant change with the inhomogeneity of the films. There
exists absorption in the amorphous orientation, and the refractive index (n) must change
with the dielectric constant frequency of incident light wavelength (Formula (3)), which is
consistent with band theory [61]:

ε = ε1(λ) + iε2(λ) (2)

α = 4πK/λ = A
(
hυ− Eg

)m (3)

3.3.3. Optical Constants

Refractive index (n) and extinction coefficient (k) are the main optical parameters
to evaluate the physical properties of anisotropic optical films. The ellipsometry shows
easy operation, simple data processing, nondestructive and high accuracy, promoting an
appropriate method to measure the n, k and thickness of ultrathin films [61,62].

As known, no matter what kind of optical films, chromatic dispersion inevitably ap-
pears. PVDF or P(VDF-TrFE) is the typical transparent polymer with no or low absorption,
like PE, PMMA, PC [56–60,63]. It can be wise to use the Cauchy relations to simulate and
calculate for PVDF or P(VDF-TrFE), for less parameters and simple model [38].

In Figure 7, all the curves of n and k are basically in accordance with dispersion
law, the value of n or k decreases with the λ increasing, which is according with the
Cauchy relations.

n(λ) = An +
Bn

λ2 +
Cn

λ4 + · · · (4)

k(λ) = Ak +
Bk
λ2 +

Ck
λ4 + · · · (5)



Nanomaterials 2022, 12, 588 9 of 13

Figure 7. Variation of n, k of P(VDF-TrFE) with incident-light wavelength and ML fitted by Cauchy-
model: (a) 30ML; (b) 100ML; (c) 200ML.

The values of n are all over 1.40, which increase with thickness in the visible region
(380~800 nm), indicating that PVDF and P(VDF-TrFE) films are the typical antireflective
film, which confirms the previous results of the UV-Vis spectra. Every kind of film has a
small amount of absorption, the k of 60 mL, 160 mL, 200 mL, is constant value, meanwhile,
the k of 200 mL is a variation by dispersion-model. The absorption of 60 mL, 160 mL and
200 mL are strong (~0.1382, ~0.1601). It is worth noting that the maximum of n belongs to
30 mL, whose curve has a tendency of anti-dispersion when λ > 675 nm, such as 60 mL and
160 mL. The main optical parameters of P(VDF-TrFE) LB films could be obtained associated
with the calculation (Table 2).

Table 2. The Parameters of P (VDF-TrFE) ultrathin films with Cauchy-model.

Number of ML
Fitting Parameters

An Bn Cn Ak Bk Ck

30 1.5978 0.1476 0.0309 0.1178 0 0
60 1.4736 −0.1022 0.0226 0.1382 0 0
160 1.5499 0.0286 0.0043 0.1601 0.7523 0
200 1.443 0.0074 0.0092 0.0124 0 0

Figure 8 shows the mean thickness of P(VDF-TrFE) monolayer are 2.072 nm by AFM,
2.447 nm by VASE and 2.688 nm by WLI, which are not significantly related to the refractive
index (n) and extinction coefficient (k). In addition, the measurement standard error of VASE
is the maximum, which was attributed to the scattering of inhomogeneity ultrathin films.

Figure 8. The film thickness vs. the number of MLs: (a) WLI; (b) AFM; (c) VASE.
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In this work, the experimental values of n are larger than calculated values by first-
principles theory [23,51,54], as well as larger than the experimental value [22,24,25,49,50,64].
The only reason can be the preparation technology of P(VDF-TrFE) films. It demonstrates
that refractive index of LB films (nanometer scale) is higher than by spin-coating (micron
scale), which agrees with the conclusion of FTIR spectra, AFM and WLI. The large k is
attributed to the photon absorption and scattering, which is caused by pores and defects of
the films [65–67]. As shown in Figure 9, the films of PVDF or P(VDF-TrFE) exhibit almost
the same optical properties within the same scope, whether its thickness is in the nano scale
or the micro scale.

Figure 9. Comparison of the optical parameters in PVDF nano and microfilms.

4. Conclusions

P(VDF-TrFE) transparent ultrathin films were fabricated by the LB technique. The range
of collapse pressure is from 65 mN/m to 70 mN/m, and the dipping value of the LB films
is 15 mN/m, which could be explained with the theory of polymer molecular condensing
and stacking at different stages. The LB films show transmittance in the IR-band and high
absorption in the UV band because of the energy band and optical absorption of P(VDF-
TrFE) intrinsic characters. The transmittance of the films over 50~85% in the visible region,
which decreased linearly with the number of MLs. Meanwhile, both the thickness of the
monolayer and the TR decrease with the concentration of solution. The refractive index is
between 1.443~1.598 (600~650 nm). Therefore, these results imply the P(VDF-TrFE) optical
LB films have a promising application in the transparent MEMS devices in the future.
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