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Graft rejection remains the major obstacle after vascularized solid organ transplantation.
Endothelial cells, which form the interface between the transplanted graft and the
host’s immunity, are the first target for host immune cells. During acute cellular
rejection endothelial cells are directly attacked by HLA I and II-recognizing NK cells,
macrophages, and T cells, and activation of the complement system leads to endothelial
cell lysis. The established forms of immunosuppressive therapy provide effective
treatment options, but the treatment of chronic rejection of solid organs remains
challenging. Chronic rejection is mainly based on production of donor-specific antibodies
that induce endothelial cell activation—a condition which phenotypically resembles
chronic inflammation. Activated endothelial cells produce chemokines, and expression
of adhesion molecules increases. Due to this pro-inflammatory microenvironment,
leukocytes are recruited and transmigrate from the bloodstream across the endothelial
monolayer into the vessel wall. This mononuclear infiltrate is a hallmark of transplant
vasculopathy. Furthermore, expression profiles of different cytokines serve as clinical
markers for the patient’s outcome. Besides their effects on immune cells, activated
endothelial cells support the migration and proliferation of vascular smooth muscle
cells. In turn, muscle cell recruitment leads to neointima formation followed by reduction
in organ perfusion and eventually results in tissue injury. Activation of endothelial cells
involves antibody ligation to the surface of endothelial cells. Subsequently, intracellular
signaling pathways are initiated. These signaling cascades may serve as targets to
prevent or treat adverse effects in antibody-activated endothelial cells. Preventive
or therapeutic strategies for chronic rejection can be investigated in sophisticated
mouse models of transplant vasculopathy, mimicking interactions between immune cells
and endothelium.

Keywords: endothelial activation, donor-specific antibodies, transplant vasculopathy, vascular signaling, HLA I
and II

INTRODUCTION

Endothelial cells (ECs) are semiprofessional antigen-presenting cells; furthermore they express
all major sets of antigens that can be recognized by immune cells. Therefore, they constitute a
preferential target in vascularized grafts for the host immune system to discriminate between self
and non-self (Piotti et al., 2014). Various transplantation-dependent factors lead to EC activation,
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and upon reperfusion ECs themselves trigger T cell co-
stimulation and specific immune cell activation. It has been
shown in vitro that the co-stimulation properties of ECs are
influenced by their vascular origin, the presented antigen, and
the maturity of the T cell (Rothermel et al., 2004). So far,
rejection after allogeneic solid organ transplantation remains the
major limiting factor for graft survival. Allograft rejection can be
categorized as hyperacute, acute, or chronic, depending on the
time of onset after the transplant procedure. In addition, it can
be classified on the basis of the principal mechanism, such as
cell-mediated or antibody-mediated rejection.

Preformed Antibodies Against ECs Elicit
Hyperacute Rejection
In vascularized grafts, hyperacute rejection is seen within
minutes after organ reperfusion. The underlying mechanism
is the presence of preformed anti-donor specific antibodies
in the recipient prior to transplantation (Moreau et al.,
2013). Common reasons for these preformed antibodies
are previous blood transfusions, transplantations, and in
women, a history of one or more pregnancies. The preformed
anti-donor specific antibodies are directed against ECs and
other vascular cells. Deposition of antibodies on the EC
surface is sufficient to activate the complement system, both
distinct mechanisms result in formation of an interstitial
neutrophilic infiltrate, intravascular platelet adhesion, and
aggregation. One observation, specific for hyperacute rejection
after lung transplantation, is diffuse alveolar damage promoted
by donor-specific IgG antibodies that induce T cell-mediated
lymphocytotoxicity (Frost et al., 1996). In addition to its
effects on immune cells and platelets, the activated complement
system initiates an enzymatic cascade that forms the membrane
attack complex (MAC), resulting in pores in the plasma
membrane of ECs and subsequent cell lysis (Wehner et al.,
2007). Nowadays hyperacute organ rejection has become rare
because the detection of anti-donor specific antibodies is a
routine procedure performed before any organ transplantation
(Moreau et al., 2013).

T Cell- and B Cell-Dependent Pathways
Contribute to Acute Rejection
Whereas hyperacute rejection occurs within the first few minutes
after organ reperfusion, acute rejection refers to graft rejection
days or months after transplantation (Mengel et al., 2012).
While features of adaptive immunity are used to describe and
characterize acute rejection, the innate immune system also
plays a crucial role in acute transplant rejection. Importantly,
its effects are in part independent of adaptive immunity.
For example, in mice lacking an adaptive immune system
but developing normal NK and myeloid cell compartments,
pro-inflammatory cytokines, such as interleukin-1β (IL-1β)
and interleukin-6 (IL-6), are significantly upregulated after
heterotopic heart transplantation (He et al., 2003). Besides several
immunological factors there are various non-immunological
factors, e.g., ischemia–reperfusion (I/R) injury or infections
during transplantation, that are harmful to graft ECs (Chong

and Alegre, 2012; Krezdorn et al., 2017). Similar to hyperacute
rejection, acute rejection can arise in a T cell-mediated
fashion, the so-called acute cellular rejection or in a B cell-
dependent mechanism termed antibody-mediated rejection. The
two mechanisms can occur independently of each other, but
the immunological pathways of acute cellular rejection and
antibody-mediated rejection overlap (Moreau et al., 2013).
In acute cellular rejection, there are two known antigen-
dependent T cell-activating pathways. In the direct pathway,
T cells of the host immune system recognize intact foreign
HLA: antigen complexes presented on the surface of donor-
derived antigen presenting cells (APCs) in the host lymphoid
organs. In contrast, in the indirect pathway, recipient T cells
recognize fragments of donor HLA peptides bound to HLA
molecules on recipient APCs (Ochando et al., 2006). Both
pathways contribute to B cell activation which plays a crucial
role in developing antibody-mediated rejection. Antibody-
mediated rejection is driven by generation of antibodies
directed against HLA I and HLA II molecules or other
immunogenic targets on the surface of graft ECs. In early
antibody-mediated rejection, de novo synthesized donor-specific
antibodies against HLA I and HLA II molecules are equally
common. During late antibody-mediated rejection, however,
donor-specific antibodies are mainly directed against HLA II
molecules. This finding is interpreted as an indicator for two
distinct pathways in the development of antibody-mediated
rejection (Walsh et al., 2011). Persistent occurrence of antibodies
against the graft endothelium results in chronic antibody-
mediated rejection.

The past few years have seen improvements in
immunosuppressive therapies and concepts to tackle acute
rejection. As a result, acute rejection is now seen in less
than 15% of patients that lack preformed anti-donor
specific antibodies. With fewer episodes of acute rejection
and improved short-term graft survival, chronic rejection
has become increasingly relevant (Najarian et al., 1985;
Gonzalez-Molina et al., 2014).

Chronic Rejection Arises From
Persistent Inflammation of the
Endothelium
Chronic allograft rejection develops over a period of months
to years and is described as transplant vasculopathy (TV),
characterized by neointima formation. With further progression,
the luminal diameter decreases and the internal elastic lamina is
destroyed. Intima thickening, as a hallmark of TV, is manifested
by proliferation of myofibroblasts and accumulation of
extracellular matrix, both seen on histopathological examination.
TV is found as bronchiolitis obliterans syndrome (BOS) in
lung transplantation, as cardiac allograft vasculopathy after
cardiac transplantation, and as renal transplant arteriosclerosis
following kidney transplantation (Pedagogos et al., 1997; Pilmore
et al., 2000). One risk factor for the development of chronic
rejection is the occurrence of donor-specific antibodies. In a
prospective, single-center cohort study, 47% of the patients
were serum positive for antibodies against graft ECs after lung
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transplantation (Tikkanen et al., 2016).This agreed with an earlier
study’s finding of a negative correlation between the appearance
of anti-donor specific antibodies and graft survival (Mao
et al., 2007). Antibodies against the major histocompatibility
complex (MHC) I can elicit chronic allograft rejection in mice
lacking functional T and B cells (Uehara et al., 2007). Even
in the absence of an intact complement system, one of the
generally accepted criteria for antibody-mediated rejection, a
mononuclear infiltrate is formed by NK cells and macrophages
(Hirohashi et al., 2010).

Figure 1 provides an overview of the interplay of different
cellular compartments of the innate and adaptive immune system
as well as soluble factors such as antibodies and complement
factors. All of the pathways, starting with allorecognition of the
graft and leading to rejection, interfere with others. The time
of occurrence and concentration of each factor determine the
phenotype of rejection.

In acute inflammation, ECs undergo transcriptional and
translational changes and are converted into an activated
state. Activated ECs are phenotypically characterized by
increased permeability and cytokine release, enhanced
adhesiveness for leukocytes, and pro-thrombic features
(Pober and Cotran, 1990). These reactions serve to effectively
eliminate invading pathogens and destroy potentially
harmful agents. However, when the immune system fails
to resolve inflammation a chronic inflammatory state
will persist, involving subsequent destruction of primarily
unaffected tissue (Ryan and Majno, 1977). Altogether, ECs
in a transplanted solid organ can be activated during the
surgical procedure of transplantation, either by presenting
antigens bound to their HLA molecules or by antigens
expressed by themselves.

The major questions we address in this review include the
following:

• What are the main target structures on the vascular
endothelium of the transplanted organ that can be
recognized by immunological and non-immunological
factors?
• How will the endothelial phenotype be affected during

activation?
• What role plays the immune system during activation of

ECs and in organ rejection?
• How is the vascular structure altered due to organ rejection?
• What kind of research models do we have to address further

questions, and what are the advantages and limitations of
the different models?

IMMUNOLOGICAL ENDOTHELIAL
ACTIVATION FACTORS

A major goal after solid organ transplantation remains
prevention of an ongoing inflammatory process in the vessel
wall, which is the pathological correlate of chronic rejection.
Therefore, a reduced donor-specific immune response in a
mature immune system is desirable. Graft-infiltrating, innate

immune cells comprise a major pro-inflammatory stimulus
driving TV and putting graft function at risk.

Endothelial Interactions of Anti-HLA
Antibodies
It is established that antibodies against molecules of the
major histocompatibility complex (MHC), which is termed
human leukocyte antigen (HLA) in humans, play a critical
role in transplant rejection after solid organ transplantation
via fixation and activation of complement, which in turn
causes cytotoxicity in the graft endothelium (Patel and Terasaki,
1969). In addition to these so-called complement-dependent
effects, more recent evidence suggests that ligation of anti-HLA
antibodies can also cause complement-independent effects in
the graft endothelium via induction of intracellular signaling
cascades (Thomas et al., 2015). In particular, binding of anti-HLA
class I (HLA I) antibodies has been shown to cause phenotypical
alterations of the endothelium, including pro-inflammatory
activation via up-regulation of inducible pro-inflammatory
adhesion molecules and cytokines such as intercellular cell
adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1
(VCAM-1), and monocyte chemoattractant protein-1 (MCP-1)
(Naemi et al., 2013; Zilian et al., 2015), as well as increased
adhesion of inflammatory leukocytes via Fcγ receptor (FcγR)-
dependent mechanisms (Hirohashi et al., 2012; Valenzuela et al.,
2013b). Moreover, binding of anti-HLA I antibodies has been
associated with proliferation of ECs (Jindra et al., 2008; Thomas
et al., 2015). The complement-independent effects of anti-HLA
antibodies in ECs are mediated via activation of a variety
of signaling cascades including, but not limited to, mitogen-
activated protein (MAP) kinase pathway, the extracellular-
regulated kinase (ERK) pathway, and the nuclear factor (NF)-
kappa B and fibroblast growth factor (FGF) pathway (Thomas
et al., 2015). Another important intracellular signal transducer
in ECs is mechanistic target of rapamycin (mTOR). HLA I
crosslinking on ECs triggers mTOR/Rictor/Sin1 association,
which results in formation of mTORC2 complex (Jin et al., 2014).
Rearrangement of the cytoskeleton and cell migration is mediated
through activation of mTORC2 and the downstream-located Rho
GTPases. Furthermore, anti-HLA I antibodies mediate mTORC1
formation by inducing the mTOR-Raptor complex, resulting in
increased EC proliferation (Sarbassov et al., 2004). Binding of
anti-HLA I antibodies induces phosphorylation of Akt at Ser473
and ERK at Thr202/Tyr204, inducing expression of the anti-
apoptotic genes Bcl-2 and Bcl-xL (Jin et al., 2004). Another way
for anti-HLA I antibodies to induce EC proliferation is via the
generation of inositol phosphate, which serves as a messenger of
Akt signaling (Bian et al., 1997). In vitro treatment of ECs with
the mTOR inhibitors sirolimus and everolimus reduces monocyte
adhesion by repressing mTORC1- and mTORC2-dependent
pathways. Accordingly, administering mTOR inhibitors in a
mouse model of fully mismatched cardiac transplantation
results in reduced mononuclear infiltration (Salehi et al.,
2018). Furthermore, anti-HLA I antibodies induce tyrosine
phosphorylation of members of the Src family, regulating
complex signal transduction pathways (Jin et al., 2002). Activated
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FIGURE 1 | Overview of interactions of endothelial and immune cells leading to different forms of rejection after solid organ transplantation. EC, endothelial cell; C1,
complement factor; Ab, antibody; expr., expression; apopt., apoptotic (Piotti et al., 2014).

Src is required for phosphorylation of cortactin, an actin-binding
molecule, which is part of the adhesion molecule ICAM-1 cluster.
Phosphorylated cortactin stabilizes ICAM-1 clusters and induces
cytoskeletal remodeling with improved leukocyte transmigration
capacity (Yang et al., 2006). In contrast with the regulatory
events mediated by anti-HLA I antibodies in the endothelium,
the effects of anti-HLA II antibodies are less well established. Le
Bas-Bernadet and colleagues demonstrated that the monoclonal
HLA-DR antibody L243 caused differential effects in human
vascular ECs and B cells, such as activation of the protein kinase
C and protein kinase B/Akt signaling cascades (Le Bas-Bernardet
et al., 2004). A more recent report demonstrated that HLA
II antibody-dependent interaction with human ECs induced a
complex TH17 cell-dependent immunological mechanism that
might mediate humoral kidney transplant rejection. Specifically,
endothelial ligation of a monoclonal anti-HLA II antibody and
native allospecific anti-HLA II antibodies from patient sera
activated this pathway via up-regulation of interleukin (IL)-6 in
a co-culture model of a human EC line and primary peripheral

blood monocytes (Lion et al., 2016). Independently, Zhang and
colleagues have demonstrated that endothelial HLA II ligation
caused proliferation and migration of ECs via the induction of
a complex network of signaling cascades including Src, focal
adhesion kinase, phosphatidyl-inositol-3 kinase (PI3K), and ERK
(Jin et al., 2018). Finally, the monoclonal anti-HLA II antibody
L243 and native anti-HLA II antibodies from allosera have
recently been shown to cause complement-independent non-
apoptotic cytotoxicity in human ECs via a lysosomal membrane-
mediated cell death pathway (Aljabri et al., 2019).

Endothelial Interactions of Non-HLA
Antibodies
Numerous experimental and clinical studies have demonstrated
that antibodies directed against endothelial non-HLA antigens
are also critically involved in acute and chronic AMR after
transplantation of various solid organs (Opelz, 2005). However,
compared with anti-HLA antibodies, much less is known on the
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generation and functional significance of non-HLA antibodies in
transplant rejection.

Two major groups of non-HLA antibodies are known. The
first group is directed against polymorphic alloantigens, whereas
the second group interacts with a variety of autoantigens
of the endothelium (Zhang and Reed, 2016). A prototypical
alloantigen targeted by antibodies of the first group is
the endothelial MHC I chain-related gene A (MICA) (Zou
and Stastny, 2009). The clinical importance of antibodies
against MICA has been demonstrated in a study on kidney
transplant patients (Zou et al., 2007). Non-HLA antibodies of
the second group are directed against numerous endothelial
autoantigens, including several cell surface or intracellular
proteins (Dragun et al., 2016). Importantly, non-HLA antibodies
directed against autoantigens appear to be of major clinical
significance, because their presence in the circulation is
associated with adverse clinical outcome, as recently reported
by independent groups for renal transplantation (Cardinal
et al., 2017; Delville et al., 2019; Lefaucheur et al., 2019).
For example, an autoantigen targeted by non-HLA antibodies
is the G protein-coupled receptor anti-angiotensin type I
receptor (AT1R), which is critical for mediating the effects
of angiotensin II in blood vessels (Dragun et al., 2016).
The clinical significance of AT1R antibodies for rejection has
been demonstrated in kidney transplantation patients (Dragun
et al., 2005). Other examples of autoantigens targeted by non-
HLA antibodies include the endothelial receptor endothelin
type A receptor (ET1AR), perlecan, and endoglin (Dragun
et al., 2016). Interestingly, a large number of other non-HLA
candidate proteins that may serve as endothelial autoantigens
associated with transplant rejection have been identified by
array approaches (Li et al., 2009; Sigdel et al., 2012). The
mechanisms by which non-HLA antibodies mediate transplant
rejection are currently under intense investigation. Similar to
what has been explained for complement-independent signaling
of HLA antibodies in the endothelium, non-HLA antibodies
may mediate their detrimental effects in transplantation via
the induction of endothelial signal transduction (Zhang and
Reed, 2009). An important issue for future studies will be to
improve our understanding of the interrelationship of HLA
alloantibodies and non-HLA autoantibodies in the pathogenesis
of humoral rejection.

Figure 2 shows different effects of antibodies towards ECs.
Due to complement activation, antibodies may induce acute
rejection of the graft by directly damaging the endothelium or, if
the antibody titer reaches a sub-lytic level, EC expression profile
is altered, leading to a more chronic rejection phenotype.

NON-IMMUNOLOGICAL ENDOTHELIAL
ACTIVATION FACTORS

Non-immunological factors activating the endothelium of
vascular allografts are still not fully understood but have been best
investigated in cardiac, lung and renal transplantation. Activation
of ECs is a multifactorial process that is regularly initiated
long before the donor’s brain death. Factors associated with
critical illness, pain, infections, and treatment contribute to EC

FIGURE 2 | Schematic representation of known effects of antibodies towards
surface antigens on endothelial cells. Binding of antibodies can either leads to
acute rejection due to immune cell or complement mediated lysis or to a state
of chronic rejection due to endothelial cell activation (Colvin and Smith, 2005).
Elements of Figures 2, 3 and 4 were taken and adjusted from Servier Medical
Art at http://smart.servier.com, licensed under a Creative Commons
Attribution 3.0 Unported License.

activation. When brain death is diagnosed, the therapeutic goals
are revised with the aim of protecting organs from further adverse
events. Still, factors such as I/R injury and systemic inflammatory
reaction caused by the artificial surface of the cardiopulmonary
bypass (during heart transplantation) contribute to ongoing
endothelial injury.

Brain Death of Organ Donors Is the First
Inducer of Endothelial Dysfunction
During the Process of Transplantation
Organ donors are predominantly diagnosed with brain death
due to cerebral damage following intracranial bleeding or
trauma (McKeown et al., 2012). During this process, before
organ retrieval is initiated, the donor organism undergoes
profound systemic changes. Consequently, approximately 25%
of potential organ donors are excluded from explantation
due to hemodynamic instability (Szabo, 2004; Girlanda, 2016).
Furthermore, the process of organ retrieval—as a multi-visceral
operation—also causes systemic inflammation, altering vascular
structures, which requires intensive hemodynamic management
to minimize the risk of organ hypoperfusion, arrhythmia
or cardiac arrest.

Acute cerebral damage is immediately followed by a rapid
increase of intracranial pressure and is compensated by a
catecholamine storm, resulting in arterial hypertension and
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bradycardia (Smith, 2004). The acute catecholamine-mediated
compensatory mechanisms are followed by a loss of sympathetic
activity and consecutive peripheral vasodilatation with the risk
of hypoperfusion of possible allografts. Changes of plasma
catecholamines during the late phase after brain death result
in endothelial dysfunction (Szabo et al., 2002). Szabo et al.
established a canine model of induced brain death (inflation of a
subdural balloon) to assess coronary blood flow and the influence
of the endothelium on vasodilatation. Besides changes in blood
flow, the authors observed severe endothelial dysfunction by
impaired vasodilation caused by application of endothelium-
dependent acetylcholine (Szabo et al., 2002). The same group
demonstrated in a large animal model, that coronary blood
flow increases approximately threefold but drops significantly
below baseline levels as soon as the acute phase is over.
They hypothesized that nitric oxide supply improves endothelial
function, because after infusion of L-arginine, the substrate for
nitric oxide supply, the decrease in coronary blood flow was less
pronounced. They concluded that enhancement of endogenous
nitric oxide synthesis due to L-arginine treatment is beneficial for
endothelial function and thus for myocardial performance after
brain death (Szabo et al., 2006).

Takada et al. (1998) showed in a rat model, that experimentally
induced explosive brain death is followed by an up-regulation
of immunoregulatory and cell adhesion molecules (CAMs)
compared to animals with non-explosive brain death). They
postulated a preconditioning effect on allografts leading to
adverse donor–host reactions after transplantation. Segel et al.
found an abundance of CAMs and increased cytokine expression
in animal models of brain death and searched for an association
with endothelial dysfunction. Relative expression of ICAM-
1, VCAM-1, IL-1, and IL-6 mRNAs was significantly elevated
in brain-dead animals, while the hemodynamics remained
uncompromised (Segel et al., 2002). The authors concluded that
an increase in IL-1 might mediate the overexpression of the
adhesion molecules and IL-6 mRNAs. Similar effects have been
proven for humans by Mehra et al., who divided recipients
into groups that received cardiac allografts from donors with
either explosive or non-explosive brain death (EBD vs. non-
EBD). EBD was defined as acutely increased intracranial pressure
(Mehra et al., 2004). No significant differences were found
in posttransplant survival and distribution of immunological
and non-immunological variables between recipients of organs
from EBD donors and recipients of organs from non-EBD
donors. Interestingly, allografts from EBD donors demonstrated
advanced intimal thickening and a higher cardiac event rate, by
contrast with grafts from non-EBD donors. Consequently, hearts
from donors with EBD had lower organ survival than those from
non-EBD donors. These findings were attributed to a release of
cytokines following leukocyte activation in vascular beds of all
peripheral organs including the heart (Mehra et al., 2004).

Koo et al. (1999) found lower E-selectin, DR locus of HLA
(HLA-DR), ICAM-1, and VCAM-1 expression in biopsies from
human living-related kidney donors than from cadaveric donors,
which may be associated with beneficial graft survival). Similar
findings were also observed in cadaveric and living-donor livers
before transplantation (Jassem et al., 2003). These results are

further supported by Anyanwu et al. (2002) investigating domino
hearts (living-related heart transplantation from recipients who
require heart-lung transplantation). Domino hearts also tend to
develop less allograft vasculopathy than cadaveric grafts.

Ex vivo lung perfusion models have widely been used to
assess endothelial activation during transplantation in lungs. Park
et al. showed in a xenotransplant model, that nitric oxide donor
treatment reduced platelet adhesion and vascular resistance of
the lung (Park et al., 2015). Von Willebrand factor (vWF)
secretion from ECs was reduced; complement activation and
thrombin generation were inhibited. Another treatment strategy
to prevent EC activation was investigated by Kim et al., who
showed that aurintricarboxylic acid (ATA), a platelet inhibitor,
significantly inhibited tumor necrosis factor alpha (TNF-α)-
or lipopolysaccharide-induced endothelial E-selectin expression.
As a result of inhibited E-selectin expression, adhesiveness of
monocyte to ECs was impeded (Kim et al., 2008). Thrombin-
induced vWF secretion and complement activation were reduced,
although in vitro findings revealed that ATA induced endothelial
tissue factor expression and platelet activation (Kim et al., 2008).

Altogether, ECs of transplanted organs are already affected
during brain death and before the process of transplantation is
initiated. This leads to EC activation and facilitates increased
leukocyte–endothelial interactions. Thus, treatment of organ
donors prior to explantation focuses on prevention of vascular
allograft injury and needs to be developed further.

I/R Injury Contributes to Further
Endothelial Activation After
Transplantation
Another non-immunological factor that causes endothelial
dysfunction is I/R injury. Reperfusion injury develops hours
or days after the initial phase of blood flow suppression or
disruption during organ explantation and occurs either as
cold or warm ischemia. Despite restoration of flow, further
tissue and microcirculation injury occurs during reperfusion.
The associated damage even exceeds the injury during the
initial ischemic phase. Within the damaged tissue, apoptosis,
autophagy, and necrosis are induced concurrently to start repair
and regeneration processes. Predomination of regeneration
processes leads to organ survival, while prevailing damaging
processes result in organ failure (Nordling et al., 2018).

A common feature of graft I/R injury is increased
vascular permeability caused by endothelial dysfunction
and microvascular damage. The most important factor is the
adhesion of neutrophils to the activated endothelium. Neutrophil
adhesion to ECs is mediated by interactions between CAMs on
the surface of neutrophils and ECs, e.g., P-selectin, E-selectin,
and ICAM-1. The abundance of these factors depends strongly
on the local tissue conditions after explantation, e.g., time of
ischemia (Tsukimori et al., 2008). P-selectin expression occurs
acutely following I/R injury due to its storage in preformed
intracellular Weibel–Palade bodies, whereas expression of other
CAMs is delayed depending on their translation process.

Neutrophil–EC adherence not only provides physical
interactions but also results in altered intracellular signaling
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in both cell populations (Saragih et al., 2014). For instance,
adhesion of neutrophils to ECs induces intracellular Ca2+

increases, F-actin stress fiber formation, myosin light chain
kinase activation, and isometric tension generation in ECs
(Wang and Doerschuk, 2000). In addition to these structural
changes in the endothelium, neutrophil adherence to activated
ECs induces reactive oxygen species (ROS) production only
in ECs, not in neutrophils. Due to increased ROS production,
neutrophil–EC interactions lead to typical necrosis (Francis and
Baynosa, 2017). This appears to mediate cytoskeletal remodeling,
which may stimulate subsequent inflammatory responses.

Ischemic injury and the subsequent interaction between
immune cells and ECs cannot fully explain the damage observed
during I/R injury. Several non-immunological conditions play a
pivotal role. This includes pro-coagulatory and pro-thrombotic
changes on the surface of the endothelium, resulting in vascular
occlusion (Nordling et al., 2015).

Recent studies have shown that a healthy EC layer is the
most important factor in maintaining proper control over
inflammation and hemostasis, as described above. Alphonsus
and Rodseth showed that the endothelial glycocalyx (eGC)
modulates vascular homeostasis through its physical barrier
properties (Alphonsus and Rodseth, 2014). Mounting evidence
suggests that I/R injury causes the degradation of eGC, associated
with postischemic oxidative stress and increased leukocyte
and platelet adhesion. ROS may account for damage to the
eGC as well (Kolarova et al., 2014). In patients suffering from
sepsis, an ablated layer of eGC is negatively correlated with
leukocyte–endothelial interactions, thrombogenicity, and
vascular permeability. These effects could be reversed when the
eGC was restored. Degradation of eGC reinforces plasminogen
activator inhibitor-1 release and ICAM-1 expression, with
the consequence of intensified attachment of monocytes to
ECs. Furthermore, reduced eGC is associated with increased
endothelial nitric oxide synthase (eNOS) activity, which
is associated with impaired vascular homeostasis. These
findings illustrate that physical factors also make an important
contribution to regulation of the vascular inflammatory
responses and blood clotting function (Cao et al., 2019).

Other work has highlighted that stressed ECs release high
quantities of adenosine triphosphate (ATP) and adenosine
diphosphate (ADP) into the extracellular environment. These
mediators act as early stimulators of inflammatory responses,
which, in turn, catalyze additional platelet aggregation, resulting
in microthrombus formation and further microvascular damage.
ATP and ADP can also directly stimulate macrophages and
neutrophils to release pro-inflammatory mediators and express
leukocyte adhesion molecules (Sugimoto et al., 2009). In several
rodent transplantation models, a direct linear correlation was
found between cold ischemic time, I/R injury, and early allograft
dysfunction. Prolonged ischemic time was associated with
increased ROS production, cytokine expression, cardiomyocyte
apoptosis, and caspase activity (Yun et al., 2000; Krishnadasan
et al., 2004; Tanaka et al., 2005; Lemke et al., 2015).

To date, the treatment of I/R injury relies heavily on
immune-modulating drugs with undesirable side effects, but
recent studies suggest new therapeutic targets (Tarjus et al.,

2019). After renal transplantation, many patients develop
hypertension under treatment with the immunosuppressive
drug tacrolimus to suppress rejection. This is a risk factor
for allograft vasculopathy and lower overall patient survival,
but the underlying mechanisms have not yet been completely
elucidated. A decrease in production of the vasodilator nitric
oxide (NO) by eNOS has been suggested to be responsible for the
endothelial dysfunction and hypertension elicited by tacrolimus
(Cook et al., 2009). Therefore, immunosuppressive drugs are
suspected to amplify the damage to an already critically stressed
and dysfunctional endothelium. One potential new therapeutic
target could be the epithelial sodium channel (ENaC). Active
ENaC decreases eNOS activity and therefore reduces NO release,
which in turn leads to stiffer ECs. This could explain the
observed prevention of renal tubular injury and renal dysfunction
after kidney I/R injury in mice with endothelial αENaC
deficiency. Moreover, in human ECs, pharmacological ENaC
inhibition promoted eNOS coupling and activation, resulting
in NO release and vasodilatation. Altogether, the authors
conclude that endothelial αENaC influences vasoconstriction and
vasodilatation and plays an important role in recovery from
ischemic injury (Tarjus et al., 2019).

SOLUBLE FACTORS ORCHESTRATE
INTERPLAY BETWEEN ECs AND
IMMUNE CELLS

Chemokines
Besides their prominent effects on promoting signal transduction
between different cell populations, chemokines are also able to
induce angiogenesis and vascular remodeling (Belperio et al.,
2005). Chemokines, as well as their corresponding receptors, can
be expressed in a constitutive or inducible manner on leukocytes,
neurons, astrocytes, epithelial cells, or ECs and on vascular
smooth muscle cells (VSMCs).

In heart transplantation models of acute allograft rejection,
the chemokines CCL3 and CCL5 were upregulated and the
subsequent mononuclear infiltrate could be diminished by
blocking the CCL3 and CCL5 receptor CCR1 (Gao et al., 2000;
Horuk et al., 2001). Another chemokine that serves as immune
cell recruiter into the vessel wall during rejection is ITAC. In
a prospective study with patients suffering transplant coronary
artery disease, elevated peripheral blood levels of ITAC were
measured and could serve as a clinical marker for patients
at elevated risk of developing chronic rejection (Kao et al.,
2003). ITAC binds to CXCR3 receptors on immune cells, and
immunohistochemical analysis showed mononuclear infiltrates
of CXCR3+ cells within the vasculature (Kao et al., 2003).
In addition to chronic rejection after cardiac transplantation,
elevated levels of CXCR3 ligands were found in patients at high
risk of developing chronic lung allograft dysfunction. In this
setting, CXCR3 ligands serve as chemoattractants for activated
T and NK cells (Shino et al., 2017). CXCR3 and its ligands
are involved in a broad spectrum of inflammatory and/or
vasculature-affecting diseases (e.g., atherosclerosis, hepatitis, and
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systemic sclerosis). Therefore, preventing CXCR3 activation
might be a promising therapeutic approach to delay graft failure
(Van Raemdonck et al., 2015). On the other hand, modulation
of CXCR3 expression might be a therapeutic tool to orchestrate
recruitment of anti-inflammatory cells with the aim of resolving
the chronic inflammation state during organ rejection. Intensive
research efforts are being devoted to a next-generation DNA
methyltransferase inhibitor (DMTi) in breast cancer. DMTi
upregulates CXCR3 ligands and recruits CD8+ cells into the
tumor, thereby enhancing their anti-tumor immune capacity
(Luo et al., 2018).

If ECs are stimulated synergistically with IL-17 and TNF-
α, in vitro expression of the neutrophil-specific chemokines
KC, MIP2α, and LIX increases and overexpression of co-
stimulatory molecules such as LFA-3 or OX-40L occurs (Griffin
et al., 2012). This leads to the recruitment of leukocytes with
enhanced activity, reinforcing a pro-inflammatory environment.
In addition, co-culturing of allogeneic CD4+ T cells and ECs
enhances release of IL-1α by ECs. IL-1α stimulates allogeneic
memory CD4+ T cells to produce IFN-γ and IL-17. IL-17, in
turn, stimulates predominantly smooth muscle cells (SMCs) to
release cytokines and to selectively recruit CCR6+ T cells into
allograft arteries, leading to an amplification of the immune
response. These cell–cell interactions lead to memory CD4+
T-cell proliferation and Th1/Th17 expansion and have been
verified in a humanized mouse model (Rao et al., 2008).

Damage-Associated Molecular Patterns
Damage associated molecular patterns (DAMPs) can be released
by all cell types and serve as homeostatic danger signals,
indicating pathological stress during transplantation or chronic
rejection (Bianchi, 2007; Gallo and Gallucci, 2013).They can
be recognized either by innate lymphocytes or by pattern
recognition receptors (PRR) such as toll-like receptors (TLRs)
(Land, 2012a). It has been shown that the high-mobility group
box protein-1 (HMGB1) is upregulated in a kidney I/R injury
mouse model. HMGB1 can be released from apoptotic cells
or actively secreted, maintaining nucleosomal structure and
regulating gene transcription (Herzog et al., 2014). It induces
up-regulation of adhesion molecules on ECs, which in turn
intensifies leukocyte–EC interaction and finally leads to graft
damage. This effect could be abolished by blocking HMGB1, and
it was not seen in TLR4−/− mice lacking its receptor, which
suggests involvement of the TLR4 pathway in HMGB1 signal
transduction (Wu et al., 2010; Chen et al., 2011). Downstream
of TLR4, both mitogen-activated protein kinase 8 (MAPK8)
and apoptosis signal-regulating kinase 1 (ASK1) are activated
following HMGB1–TLR4 interactions, and could thus serve as
new therapeutic targets to prevent apoptosis during I/R injury
(Mkaddem et al., 2009). It has been demonstrated that HMGB1
can be released from necrotic ECs and cardiomyocytes in the
setting of heart transplantation and activates pro-inflammatory
pathways (Park et al., 2004; Rovere-Querini et al., 2004; Bell
et al., 2006). Yao et al. have shown that overexpression of
microRNA26a, which plays an important role in apoptosis
(Zhang et al., 2010) and induces VSMC growth (Leeper et al.,
2011), inhibits HMGB1 expression and decreases cardiac I/R

injury (Yao et al., 2016). Further studies are needed to investigate
the mechanistic pathway of microRNA26a and to make it
available as a therapy.

TRANSMIGRATION OF LEUKOCYTES
ACROSS THE ENDOTHELIUM

During inflammation, leukocytes are actively recruited into
the vessel wall to resolve the inflammatory state, so cell–
cell contact between ECs and leukocytes must be established.
Alongside other triggers, donor-derived vascular cells, e.g., ECs
and VSMCs, produce and release ROS as well as cytokines
into the extracellular environment, recruiting neutrophils and
macrophages to the site of injury. In turn, recruited and activated
cells themselves start to produce, inter alia, ROS, which acts as an
amplification loop for immune cell stimulation (Land, 2012b).

Activation of ECs Induces Expression of
Adhesion Molecules and Growth Factors
Activation of ECs leads to rapid release of vWF. Also,
adhesion molecules, such as E-selectin, P-selectin, ICAM-1,
and VCAM-1, are upregulated on the surface of ECs (Salom
et al., 1998; Valenzuela et al., 2013a; Fenton et al., 2016).
Interestingly, Fenton et al. found a decrease of E- and P-selectin
expression on the endothelium in their patient cohort of
heart-transplanted children compared to age- and sex-matched
controls from healthy siblings. All patients had been treated
with immunosuppressant and 90% with statins after heart
transplantation (Fenton et al., 2016). A direct contact of dendritic
cells (DCs) and ECs, provided by adhesion molecules, leads to
the transfer of intact MHC:peptide complexes from activated
ECs to DCs. This offers recipient DCs to present foreign MHC
molecules to T cells and serves as a link between direct and
indirect allorecognition (Herrera et al., 2004).

Activation of ECs is not only characterized by intensified
expression of adhesion receptors but also by enhanced synthesis
of numerous growth factors (PDGF, EGF, FGF, VEGF, TGF-β,
etc.) and synthesis of endothelin I (ET-1) as well as expression
of the corresponding receptors (Bian and Reed, 2001; Chen et al.,
2001; Rossini et al., 2005).

The presence of higher numbers of FGF receptors (FGFR)
on the surface of ECs facilitates increased binding capacity of
FGF, which activates the MAPK/ERK pathway and results in
enhanced EC proliferation (Jin et al., 2007). ET-1 is one of the
most potent vasoconstrictors in humans, and its antagonists
are used to treat pulmonary arterial hypertension, but it also
exerts pro-inflammatory effects (Davenport et al., 2016). In a
retrospective study of heart transplantations, elevated ET-1 has
been established as an independent predictor of accelerated
cardiac allograft rejection (Parikh et al., 2019).

Sunitinib, a tyrosine kinase inhibitor, is already used
for gastrointestinal stromal tumor and metastatic renal cell
carcinoma, blocking PDGF and VEGF receptors (Chow
and Eckhardt, 2007). In a rat kidney rejection model, orally
administered Sunitinib was successfully used to prevent
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neointima hyperplasia, one hallmark of renal transplant
arteriosclerosis (Rintala et al., 2016).

Transmigration of Leukocytes Is a
Multistep Progress
For immune cells, up-regulation of transmigration molecules
on the surface of ECs is essential for migration from the
circulation across the endothelial monolayer into the vessel
wall. Before transmigration, leukocytes tether and roll along
the EC monolayer, which is mediated by selectins and integrins
(Muller, 2003). Subsequent leukocyte transmigration is mediated
by specialized molecules (Muller et al., 1993). PECAM, CD99,
or JAM-A are partially stored in lateral border recycling
compartments (LBRCs) within ECs beneath the plasma
membrane near endothelial junctions. To achieve sufficient
transmigration, leukocytes are surrounded by LBRC membrane
to provide unligated receptors for the immune cells (Mamdouh
et al., 2003, 2009). Recent studies suggest relevance of IQ-
domain GTPase-activating protein 1 (IQGAP1), bearing an
actin-binding as well as a calmodulin-binding domain, for
leukocyte transmigration. It has been shown that IQGAP1
interacts with LBRC, and knockdown of the protein prevents
LBRC movement and leukocyte transmigration (Dalal et al.,
2018, 2019). For the transient receptor potential canonical
6 (TRPC6), a ubiquitously expressed Ca2+ channel, co-
localization with PECAM at endothelial junctions during
transmigration has been proven. Chelation of Ca2+ as well
as disruption of TRPC6 function stops leukocytes on the
apical surface of ECs, suggesting a pivotal role for Ca2+

influx during transmigration. A TRPC6 function is likely
located downstream of PECAM, because transmigration
occurs after selective activation of TRPC6 and simultaneous
PECAM blockade (Weber et al., 2015). Taking these findings
together, interfering with Ca2+ currents might be a therapeutic
approach for TV.

Leukocytes can either transmigrate paracellularly across
ECs–ECs junctions or migrate transcellularly through single
ECs (Vestweber, 2015). Paracellular transmigration requires
loosening of endothelial junctions, with VE-cadherin as an
important regulator of these junctional connections (Gotsch
et al., 1997). To leave the bloodstream and invade the vessel
wall, leukocytes must penetrate the basement membrane, which
is composed of laminins and connects the endothelial monolayer
with the underlying SMCs. Laminin 411 is ubiquitously
expressed, whereas laminin 511 is expressed in distinct spots, and
these spots are not preferred sites of leukocyte transmigration
(Sixt et al., 2001). Laminin 511 induces VE-cadherin localization
at endothelial junctions, which results in a RhoA-dependent
stabilization of these cell junctions and reduced leukocyte
transmigration (Song et al., 2017). Yeh and colleagues have
shown that leukocytes are capable of generating 3D traction
stresses to mechanically widen gaps between ECs and initiate
transmigration (Yeh et al., 2018). Immunohistochemical analysis
of the vessel wall of explanted organs with TV revealed that
the majority of infiltrating cells are T cells. Macrophages
account for 8–15% of infiltrating cells, whereas B cells and NK

cells are encountered infrequently (van Loosdregt et al., 2006;
Hidalgo et al., 2010).

Figure 3 is a schematic summary of transcellular and
paracellular transmigration. The most prominent receptors
involved in these two distinct pathways of leukocyte migration
across the endothelial monolayer are depicted.

Prevention of leukocyte recruitment is a putative therapeutic
intervention to prevent TV. It has been shown, that adding the
heparin-based macromolecule Corline Heparin Conjugate
(CHC) to the preservation solution forms a protective
coating on the renal endothelium during cold storage after
kidney explantation. Kidneys were analyzed 24 hours after
transplantation, and the number of infiltrated leukocytes and
the thrombotic area was significantly greater in control kidneys.
CHC treatment is a promising strategy for prevention of I/R
injury-induced leukocyte transmigration (Nordling et al., 2018).

A further means of delaying graft failure is to actively recruit
suppressive, i.e., beneficial leukocytes into the graft. Application
of depletional antibodies or the use of specific knockout and
transgenic mouse strains enabled demonstration of the impact
of different immune cell subtypes on ongoing graft failure. In
various animal experiments, tolerogenic characteristics have been
revealed for regulatory T cells (Tregs), T cells, B cells, NK cells,
and NKT cells (Sakaguchi et al., 1995; Niimi et al., 1998; Seino
et al., 2001; Yu et al., 2006; Haudebourg et al., 2007).

CHANGES IN VASCULAR STRUCTURE

Transplant vasculopathy is characterized by accumulation of
extracellular matrix (ECM) (Lin et al., 1996), endothelial
dysfunction, and VSMC proliferation, which result in diffuse,
concentric intimal thickening (Rahmani et al., 2006). TV
differs in appearance depending on the vessel structure: large
coronary segments are affected by artery shrinkage, resulting
in a loss of luminal diameter, whereas new intimal growth
and subsequent loss of luminal diameter occurs in both
large and small segments (Wong et al., 2001; Suzuki et al.,
2010). In addition to the lumen narrowing, production of
vasoconstrictors such as ET-1 and thromboxane is impaired
and vascular resistance increases, which may result in ischemia
(Rahmani et al., 2006). After activation, ECs elicit the
differentiation and proliferation of quiescent medial VSMCs.
VSMCs transdifferentiate from a contractile phenotype to
dedifferentiated synthetic cells. Dedifferentiated VSMCs migrate
from the media into the neointima and interstitial space, where
they proceed to proliferate. VSMC proliferation and ECM
production aggravate lumen narrowing. Furthermore, VSMCs
produce cytokines which act in an autocrine fashion and
strengthen proliferation (Michael, 2003; Dewald et al., 2005;
Kennard et al., 2008; Wynn, 2008). Most neointimal muscle
cells that evolved from VSMCs are similar in appearance to
their medial progenitors; nevertheless, on the basis of some
important functional differences, neointimal muscle cells are
generally labeled smooth muscle-like cells (SMLCs) (Wong et al.,
2001; Suzuki et al., 2010).
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FIGURE 3 | In response to different pro-inflammatory signals the leukocyte adhesion and transmigration cascade is activated. Slow down, rolling, firm adhesion and
transmigration is mediated by different cytokines and molecules on the surface of leukocytes and ECs. Para-cellular transmigration through EC junctions is the
primary route for extravasation (Vestweber, 2015). Elements of Figures 2, 3 and 4 were taken and adjusted from Servier Medical Art at http://smart.servier.com,
licensed under a Creative Commons Attribution 3.0 Unported License.

Not only ECs but also VSMCs can be directly affected by
donor-specific anti-HLA I antibodies. In vitro stimulation
with anti-HLA I antibodies induces VSMC proliferation in a
dose-dependent manner. Also, migration is promoted, even
in the presence of the proliferation inhibitor mitomycin C.
As underlying mechanism for the observed effect, increased
phosphorylation of FAK Tyr576, Akt Ser473, and ERK1/2
Thr202/Tyr204 is postulated (Li et al., 2011). In a humanized
mouse model, human arteries were grafted into SCID/beige
mice lacking functional T and B cell compartments. In this
mouse model, passively transferred anti-HLA I antibodies were
able to evoke neointima thickening and VSMC proliferation
(Galvani et al., 2009). Recent studies demonstrated a pivotal
role for sphingosine-1-phosphate (S1P) in anti-HLA I-induced
intimal hyperplasia because treatment with anti-S1P antibodies
and siRNA knockdown of sphingosine kinase-1 (SK1) inhibitor
prevents intimal hyperplasia in mice (Trayssac et al., 2015). S1P

is a mediator within signaling pathways for cell survival,
proliferation, and migration (Herzog et al., 2010) and
provides another potential therapeutic target for preventing
TV (Spiegel and Milstien, 2003).

Figure 4 illustrates the vascular changes during alloresponse
after solid organ transplantation. EC activation due to I/R injury
predominantly leads to neutrophil recruitment into the vessel
wall. At a later stage, lymphocytes and macrophages transmigrate
into the vasculature and drive rejection. In the end, due to SMLC
proliferation, TV with hallmark lumen narrowing is established.

EFFECTS OF THE COMPLEMENT
SYSTEM ON ECs

The complement system is part of the innate immune system
and provides a link to adaptive immunity. It can be activated
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FIGURE 4 | Changes of vascular structure due alloresponse following solid organ transplantation. Acute injury is mainly mediated by neutrophiles ans macrophages.
These immune cells produce cytokines and induce expression of adhesion molecules on ECs, leading to further recruitment of immune cells. Activated ECs exert a
pro-inflammatory phenotype and activate smooth muscle-like cells, resulting in their proliferation and lumen narrowing (Mitchell, 2009). Elements of Figures 2, 3 and
4 were taken and adjusted from Servier Medical Art at http://smart.servier.com, licensed under a Creative Commons Attribution 3.0 Unported License.

in three different ways: complement proteins bind to (1)
antibodies bound to ECs, (2) proteins on cell membranes, or
(3) carbohydrate residues on the surface. Independent of the
mode of activation, all three pathways have in common protein
C3 cleavage and subsequent membrane attack complex (MAC)
formation. The MAC consists of complement proteins C5b-C9,
and its activity results in cell lysis. Deposition of the complement
fragment C4d on ECs was established as an independent
marker for acute allograft rejection and as a predictor for long-
term graft loss (Collins et al., 1999; Herzenberg et al., 2002;
Racusen et al., 2003).

Nevertheless, there are some mechanisms that protect against
EC damage due to an activated complement system. Expressed
on human ECs, CD59 binds tightly into the forming MAC, thus
preventing further MAC assembly (Davies and Lachmann, 1993).
Another complement regulatory protein is CD55, which is also
expressed on ECs. Incubation of ECs with CD55- and CD59-
blocking antibodies induces complement fixation, which results
in vWF release and platelet adhesion. Interestingly, complement
fixation was increased in ECs from patients with type 3 von
Willebrand disease lacking functional vWF. vWF seems to act
as a complement regulator on the surface of ECs (Noone et al.,
2016). Renal transplantation models in rats showed a decrease
in mRNA expression of the complement regulators CD59 and
Crry in allografts, and administration of anti-Crry and anti-
CD59 antibodies results in reduced graft survival. A subsequent
clinical study showed significantly increased graft survival in
patients with high expression of complement regulatory proteins
(Yamanaka et al., 2016).

It has been shown that assembly of MAC at sublytic levels
has various effects in different cell types. In vitro stimulation of

human ECs with C5b-C9 induces proliferation and migration.
Furthermore, C5b-C9 promotes the release of pro-inflammatory
cytokines, such as IL-6, MCP-1, and epidermal growth factor
(Fosbrink et al., 2006), which contribute to recruitment of
immune cells and ongoing inflammation.

In a mouse model of vascularized composite allografts, it was
documented that the neutrophil and macrophage infiltrate was
impaired in C3-deficient mice. Treatment with the C3 inhibitor
CR2-Crry was associated with significantly prolonged graft
survival (Zhu et al., 2017). Accordingly, the results of a clinical
study in patients after kidney transplantation demonstrated that
a local upregulation of C3 expression in glomeruli and tubuli
was associated with ongoing acute cellular rejection (Serinsoz
et al., 2005). Neutrophil recruitment to sites of inflammation
can also be reduced by interfering with C5a and its receptor
(Mueller et al., 2013).

WHAT KIND OF RESEARCH MODELS DO
WE HAVE?

Humanized Mouse Models
As there are several examples of successful therapy approaches
in mice that failed to provide similar efficacy in humans, the
transferability of preclinical animal studies to humans might
seem doubtful (Mestas and Hughes, 2004). Species-specific
differences between the murine and human immune systems
should be taken into account. To overcome this limitation in
the field of solid organ transplantation, the use of humanized
mice to study human allografts and xenograft rejection may
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provide insights into the immune mechanisms responsible for
graft rejection [recently reviewed by Kenney et al. (2016)].

Humanized mice have become an important preclinical tool
in translational biomedical research (Walsh et al., 2017) and
serve as a preclinical bridge in several fields [reviewed in Allen
et al. (2019)]. Generally, these mice are reconstituted with
human CD34+ stem cells derived from human cord blood,
bone marrow, and peripheral blood (Lee et al., 2019). This is
made possible by a targeted mutation in the interleukin 2 (IL-
2) receptor common gamma chain [IL2rg(null)] in mice that
are already deficient in T and B cells (Brehm et al., 2013). The
most widely used immunodeficient strains engrafted with human
hematopoietic cells are listed in Table 1 [modified after (Kenney
et al., 2016); a more detailed list with immunodeficient mice
that have been engrafted with human immune systems has been
published elsewhere (Shultz et al., 2012; Hogenes et al., 2014)].
Among other immune defects, these animals do not develop
functional NK cells. This allows efficient engraftment with human
hematopoietic cells, generating a functional human immune
system (Brehm et al., 2013).

BLT(bone marrow, liver, thymus) humanized mice are
generated by implantation of human fetal thymus and liver tissue
into immunodeficient mice followed by systemic reconstitution
with human innate (monocytes/macrophages, DCs, NK cells)
and adaptive immune cells (B cells and T cells) (Wahl et al.,
2019). The presence of a human thymic tissue allows human T
cell education depending on HLA and the induction of HLA-
restricted T cell responses in these mice is comparable with the
human system (Wahl et al., 2019). Even though mice have a
significantly shorter life span than humans, age-associated DNA
methylation changes in the transplanted hematopoietic stem cells
were not found to be increased (Frobel et al., 2018).

Recently, a humanized lung mouse model has been generated
by subcutaneously implanting human lung tissue into the back
of immunodeficient mice (Wahl et al., 2019). The human lung

tissue vascularizes, expands and persists as a human lung implant.
The engraftment of human non-hematopoietic cells, which are
able to present antigens to autologous human immune cells in
the full context of HLA (Wahl et al., 2019), will broaden the use
of humanized mice for research in the field of transplantation.

Heterotopic Versus Orthotopic
Transplantation of Different Organs
Solid organ transplantation is an established treatment option
for patients with end-organ dysfunction (Black et al., 2018).
Progress in surgical techniques has minimized complications and
reduced ischemic injury events. The more common orthotopic
transplantation includes removal of the recipient’s organ and the
insertion of the donor organ in the normal anatomic position,
while in the case of heterotopic or “piggy-back” transplantation
the diseased organ is retained.

Heterotopic heart transplantation (HHT) is extensively used
in murine animal models in the non-working mode (Flecher
et al., 2013). HHT in human patients, first performed by Barnard
and Losman in 1974 (Barnard and Losman, 1975) is used rarely
in comparison with orthotopic heart transplantation (OHT).
The reason for this is major progress in immunosuppression
therapy with the expansion of immunosuppressive protocols to
dampen the host immune response and improve short- and
long-term graft survival (Black et al., 2018). However, HHT may
experience a renaissance, especially for children with advanced
cardiomyopathy, where cardiac transplantation is limited by
pediatric donor availability, by increasing the size of the donor
pool. Beyond that, HHT also enables transplantations in adults
previously not eligible for transplantation. It may be used
especially in recipients with significant pulmonary hypertension
(Flecher et al., 2013). Another advantage is that during temporary
graft dysfunction due to early graft rejection the recipient heart
could serve as an auxiliary pump (Holinski et al., 2016).

TABLE 1 | Immunodeficient mouse strains engrafted with human hematopoietic cells (modified after Kenney et al., 2016)

Strain Abbreviation Il2rg mutation Characteristics Immunological
Characteristics

Availability [Refences]

NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ
NSG Do not express the DNA repair

complex protein Prkdc nor the
X-linked Il2rg gene, the IL2rgnull

mutation prevents cytokine
signaling through multiple
receptors

NOD strain. Immunodeficient
and relatively radiosensitive due
to a defect in DNA repair

Deficient in mature
lymphocytes, serum Ig is not
detectable and natural killer cell
cytotoxic activity is extremely
low

The Jackson Laboratory Stock:
005557 (Shultz et al., 2005)

NOD.cg-Prkdcscid

Il2rgtm1Sug/JicTac
NOG Lacks the intracytoplasmic

domain and will bind cytokines
but will not signal

NOD strain. Immunodeficient
and relatively radiosensitive due
to a defect in DNA repair

Lacks T, B and NK cells,
additional defects in innate
immune cells

Taconic Bioscience Stock: CIEA
NOG mouse (Ito et al., 2002)

NOD.Cg-Rag1tm1Mom

IL2rgtm1Wjl/SzJ
NRG Rag1null mutation renders the

mice B and T cell deficient and
the IL2rgnull mutation prevents
cytokine signaling through
multiple receptors,

NOD strain. Extremely
immunodeficient and relatively
radioresistant

Lacks T, B and NK cells,
additional defects in innate
immune cells

The Jackson Laboratory Stock:
007799 (Pearson et al., 2008)

C.Cg-Rag2tm1Fwa

Il2rgtm1SugJicTac
BRG Lacks the intracytoplasmic

domain and will bind cytokines
but will not signal

Mixed background,
predominately BALB/c strain:
Immunodeficient and relatively
radioresistant

Lacks T, B and NK cells,
remaining innate immune cells
are functional

Taconic Bioscience Stock:
11503 (Traggiai et al., 2004)
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The prognosis for long-term graft survival and retention
depends mainly on revascularization. Injury to the donor-derived
microvasculature during organ explantation and subsequent
ischemia may account for the documented clinical variability
(Soares et al., 2015). Thereby, replacement of the donor graft
vasculature by recipient-derived endothelial and endothelial
progenitor cells may be a strategy for all non-vascularized
free grafts or vascularization of tissue constructs engineered
in vitro (Capla et al., 2006). Exogenous liposomal delivery of
the angiogenic inducer VEGF gene prior to bone marrow–
derived endothelial precursor cell transplantation has been
shown to improve orthotopic liver transplantation-induced
hepatic I/R injury (Cao et al., 2017). In this study, the transfer
of the VEGF gene significantly increased hepatotrophic mitogen
expression, in common with, for example, hepatocyte growth
factor, angiogenesis, and NOS activity (Cao et al., 2017). In
another study, the phosphodiesterase-5 inhibitor sildenafil citrate
protected the graft microvasculature of warm ischemic kidney
transplants (Lledo-Garcia et al., 2009) and autologous fat grafts
(Soares et al., 2015). Sildenafil also decreased edema in lung
I/R injury and ROS formation in a lung I/R injury model
(Guerra-Mora et al., 2017).

The endothelial hypoxia-inducible factor HIF-2α has been
shown to be essential for airway microvascular health and to
play an important role in maintaining lung homeostasis (Jiang
et al., 2019). In an orthotopic tracheal transplantation model,
the genetic deletion of HIF-2α but not HIF-1α caused tracheal
endothelial cell apoptosis. HIF-1α overexpression induced the
expression of proangiogenic factors such as stromal cell-derived
factor 1 (Sdf1) and VEGF, and promoted the recruitment
of vasoreparative Tie2+ endothelial progenitor cells to the
allograft (Jiang et al., 2019). These results are in line with
the findings of a previous study using immortalized human
microvascular endothelial cells (HMEC-1), demonstrating that
reduction of both HIFs reduced cell survival, gene expression of
glycolytic enzymes and pro-angiogenic factors compared with the
corresponding control (Hahne et al., 2018).

ACCOMMODATION: THE ROLE OF
PROTECTIVE GENE EXPRESSION IN
ECs

Accommodation in solid organ transplantation has been defined
as stable allograft function without evidence of pathological
alterations in the presence of alloantibodies and graft deposition
of the complement component C4d (Smith and Colvin, 2012).
The term accommodation was proposed at the beginning of
the 1990s and was initially been demonstrated in the setting
of xenotransplantation (Bach et al., 1991). It was later shown
in a hamster-to-rat xenotransplantation model that increased
expression of protective genes, i.e., anti-apoptotic and anti-
oxidant genes, in ECs of the grafted organ was critical for
mediating transplant survival (Bach et al., 1997). Moreover, it was
found that regulation of endothelial gene expression patterns was
accompanied by a host TH2 cell response. A follow-up study in
a mouse-to-rat cardiac xenograft model demonstrated that the

inducible anti-oxidant heme-degrading enzyme heme oxygenase-
1 (HO-1) plays a key role in mediating anti-inflammatory
protective effects. These protective effects were important for
mediating transplant survival, possibly via the generation of
the gaseous molecule carbon monoxide and biliverdin/bilirubin
(Soares et al., 1998) [for a review see Soares et al. (1999)].
In accordance with these findings, Salama and colleagues
showed, in studies on sensitized kidney transplantation patients
with anti-HLA antibodies, that accommodation appears to be
dependent on the expression of the anti-apoptotic gene Bcl-
xL in the endothelium (Salama et al., 2001). Interestingly, this
study demonstrates that low titers of anti-HLA antibodies can
cause accommodation.

In a more recent HLA-mismatched, humanized murine HHT
model, it was demonstrated that up-regulation of protective
genes, including Bcl-2, Bcl-xL, and HO-1, was associated with
protection against transplant rejection. Furthermore, expression
of inducible inflammatory genes, e.g., ICAM-1 and VCAM-1,
and pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-
6 was decreased in accommodated grafts (Fukami et al., 2012).
In accordance with these findings, targeted up-regulation of
HO-1 protected against anti-HLA class I antibody-mediated pro-
inflammatory activation of ECs (Zilian et al., 2015).

Interestingly, a recent report compared the regulatory effects
of interactions of the endothelium with antibodies against
either AB0 or HLA antigens in a cell culture model of
EA.hy926 ECs. It was demonstrated that ligation of ECs with
anti-AB0 antibodies but not with anti-HLA antibodies caused
accommodation (Iwasaki et al., 2012). The principal findings
of these in vitro studies appear to be in accordance with a
report on AB0-incompatible living kidney donor transplantation
(Brocker et al., 2013).

Furthermore, ligation of anti-AB0 antibodies to EA.hy926
ECs induced upregulation of the complement regulatory proteins
CD55 and CD59 on the RNA as well as on the protein
level (Iwasaki et al., 2012). The first in vivo studies showed
that overexpression of human CD55 and CD59 (hCD55,
hCD59) protects mice from impaired kidney function in an
experimental renal I/R injury model (Bongoni et al., 2017).
A recent retrospective study of 150 patients after kidney
transplantation, confirmed that lower intragraft expression of
CD55 is a risk factor for rapid progression of chronic renal
rejection (Cernoch et al., 2018). A more detailed study of kidney
transplantations demonstrated a correlation between promotor
polymorphisms in complement-regulatory proteins and graft
survival (Michielsen et al., 2018).

CONCLUSION

Graft rejection after transplantation of vascularized solid organs
remains the main obstacle for graft survival. This complex
disease pattern is caused by the interplay of different immune
cell subsets and soluble factors from the recipient’s and the
donor’s immune system. Graft rejection has heterogeneous
characteristics, depending on the affected organ and whether it
arises from cellular- or humoral-dependent pathways, but in any
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case, it leads to organ failure. While medication to treat acute
rejection episodes is available, the therapeutic options for chronic
rejection are limited.

The first target structure to be attacked after transplantation
is the endothelium of the graft vessel wall. ECs are recognized
by the recipient’s immune system due to the expression of
surface molecules such as HLA and others, and activation
of ECs is induced. Beside immunological components, brain
death and I/R injury promote activation of donor-derived
ECs. Activated ECs upregulate expression of various pro-
inflammatory cytokines, and immune cells will be recruited.
Various cytokines have been established as clinical markers
to facilitate early diagnosis of graft failure and allow for
treatment optimization. Furthermore, ECs present an amended
expression pattern of adhesion and transmigration receptors
on the surface to promote transmigration of leukocytes
from the bloodstream across the EC monolayer into the
vessel wall. Due to cytokines released from ECs as well as
leukocytes, a pro-inflammatory microenvironment is built up
and cannot be resolved.

The mononuclear infiltrate and growth factors further
induce migration and proliferation of VSMCs and the
resulting concentric intimal hyperplasia is a hallmark of
long-term graft rejection. Crosslinking of antibodies on
the surface induces phosphorylation and formation of
intermediate signal transducers within the mTOR pathway,
which regulates cytoskeletal changes, proliferation, and
expression activity.

Further research is needed to gain deeper insight into how
innate and adaptive immune responses contribute to graft
rejection and how activation of ECs might be prevented. One
therapeutic approach could be blocking ECs from presenting
antigens, to prevent direct cellular cytotoxicity and to avoid
synthesis of de novo donor-specific antibodies. Another option
could be inhibiting recruitment of immune cells into the vessel
wall, a concept of interest for other vascular diseases such
as atherosclerosis. Humanized mouse models are important
preclinical tools to study the underlying mechanisms of graft
rejection. Despite many differences between the species, these
mice represent a model system to evaluate new drugs and other
treatment options without putting patients at risk.
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