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Background: Soft tissue sarcoma (STS) is a group of tumors with a low incidence and a
complex type. Therefore, it is an arduous task to accurately diagnose and treat them.
Glycolysis-related genes are closely related to tumor progression and metastasis. Hence,
our study is dedicated to the development of risk characteristics and nomograms based
on glycolysis-related genes to assess the survival possibility of patients with STS.

Methods: All data sets used in our research include gene expression data and clinical
medical characteristics in the Genomic Data Commons Data Portal (National Cancer
Institute) Soft Tissue Sarcoma (TCGA SARC) and GEO database, gene sequence data of
corresponding non-diseased human tissues in the Genotype Tissue Expression
(GTEx).Next, transcriptome data in TCGA SARC was analyzed as the training set to
construct a glycolysis-related gene risk signature and nomogram, which were confirmed in
external test set.

Results: We identified and verified the 7 glycolysis-related gene signature that is highly
correlated with the overall survival (OS) of STS patients, which performed excellently in the
evaluation of the size of AUC, and calibration curve. As well as, the results of the analysis of
univariate andmultivariate Cox regression demonstrated that this 7 glycolysis-related gene
characteristic acts independently as an influence predictor for STS patients. Therefore, a
prognostic-related nomogram combing 7 gene signature with clinical influencing features
was constructed to predict OS of patients with STS in the training set that demonstrated
strong predictive values for survival.

Conclusion: These results demonstrate that both glycolysis-related gene risk signature
and nomogram were efficient prognostic indicators for patients with STS. These findings
may contribute to make individualize clinical decisions on prognosis and treatment.
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INTRODUCTION

Soft tissue sarcoma (STS) accounts for 1% of adult cancer.
Although its occurrence is relatively rare, STS highly
heterogeneous. In the United States, approximately 13,500 new
people were diagnosed with STS in 2019 (Siegel et al., 2019).
There are more than 100 subtypes of STS, and the clinical
characteristics of each subtype are different (Choi and Ro,
2020). In general, even if the primary tumor is removed, 25%
of the patients will develop distant metastasis (Brennan et al.,
2014). The ability to precisely predict the outcome on the basis of
every patient’s clinical information, pathological and molecular
features have attracted growing attention especially in the era of
precision tumor treatment. A number of reports in literature have
predicted the survival status of STS patients (Mariani et al., 2005;
Cahlon et al., 2012; Callegaro et al., 2016; Gamboa et al., 2020).
However, nomograms in these studies were all limited to be based
on the clinical features that can only be determined after surgery;
in consequence, their clinical applications might be restricted.
The ideal nomograms should also include biomarkers, molecular
signatures, and genomic expression to help predict survival status
more accurately (Gamboa et al., 2020). With the rapid
development of bioinformatics tools, multiple biomarkers for
clinical diagnosis, treatment, and prognosis prediction have been
identified (Wu et al., 2018; Li et al., 2019a; Long et al., 2019). The
heterogeneity of the genome and the low response to traditional
therapies warrant the development of effective therapeutic
targets. Therefore, it is essential to determine potential precise
new clinical prognostic biomarkers and therapeutic targets.

Metabolic pattern changes are one of the hallmarks of tumor
cells. They tend to have a higher glycolysis efficiency, which is
called the Warburg effect (Ganapathy-Kanniappan and
GeschwindGeschwind, 2013). Glycolysis is essential for the
development, invasion, metastasis, and drug resistance of
tumor cells (Gatenby and Gillies, 2004). Moreover, previous
studies have shown that targeting glycolysis-related metabolic
pathways can effectively inhibit the growth of tumor cells (Abdel-
Wahab et al., 2019). However, only few studies have investigated
the role of glycolysis-related genes in STS. Huangyang et al.
reported that the expression level of gluconeogenic isozyme
fructose-1,6-bisphosphatase 2 (FBP2) was down-regulated in
most subtypes of STS, and the re-expression of FBP2
significantly inhibited tumor growth (Huangyang et al., 2020).
Mao et al. (2016) found that melatonin could inhibit theWarburg
effect and directly inhibit the growth of leiomyosarcoma tumors.
However, further studies on the mechanism of glycolysis-related
genes are still necessary to develop more effective treatment for
STS patients.

The Cancer Genome Atlas (TCGA) project aims to provide
comprehensive transcriptome data and corresponding clinical
information for various cancer patients (Jia et al., 2018). The
GTEx database provides transcriptome sequencing data of 54
normal tissue samples from nearly 1,000 individuals (GTEx
Consortium, 2015).

In our work, we comprehensively analyzed the RNA
sequencing profile and clinical characteristics of the TCGA-
SARC data set and the GTEx data set to screen out

7 glycolysis-related genes that are related to the prognosis of
STS patients, and established a 7 gene prognostic signature.
Furthermore, we constructed and verified a predictive
nomogram for STS patients based on the 7-gene signature,
which may aid in determining the prognostic status of STS
patients and guiding tumor therapy and postoperative
monitor. The workflow of our study is shown in Figure 1.

MATERIALS AND METHODS

Data Obtainment and Preliminary Collation
We downloaded the RNA expression profiles with corresponding
clinical features from the TCGA-SARC and GTEx databases at the
UCSC Xena website (https://xena.ucsc.edu/). The TCGA database
includes the results of large-scale sequencing of 33 human tumors
and the corresponding clinical information, which helps study the
molecular mechanism of tumors. Sequencing data (RNA FPKM
values) of 265 samples (including 263 sarcoma samples and 2 normal
tissue samples) were obtained and transformed by log2(FPKM+1).
The GTEx database includes RNA transcriptome data of 54 normal
tissue samples from healthy individuals. We obtained the RNA
sequencing data (FPKM value) of corresponding muscle and
adipose tissues from the GTEx database and used them as a
control for additional matches. Correspondingly, the RNA

FIGURE 1 | Flowchart of construction and validation of the signature and
nomogram.
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sequencing data in GTEx were also converted by log2 (FPKM+1) for
comparison with those in TCGA.

The gene expression data of GSE21050 were obtained from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/). The
GSE21050 gene sequencing data were based on the GPL570
platform, which contains 310 sarcoma samples. The samples
of TCGA-SARC were determined as the training set, while the
GSE21050 dataset was identified as an external validation.

Identification of Differentially Expressed
Genes Related to Glycolysis
First, we merged the transcriptome data in TCGA-SARC and
GTEx, including a total of 913 normal samples and 263 tumor
samples. In order to screen out glycolysis-related genes, we
performed Gene Set Enrichment Analysis (GSEA; version 4.1)
based on the gene set downloaded from Molecular Signatures

Database v5.1: BIOCARTA_GLYCOLYSIS_PATHWAY,
GO_GLYCOLYTIC_PROCESS, HALLMARK_GLYCOLYSIS,
KEGG_GLYCOLYSIS_GLUCONEOGENESIS, and REACTOME_
GLYCOLYSIS. Then, the 63 differentially expressed glycolysis-
related genes (DEGRGs) were identified based on the
criteria of |log2FC|>1 and the adjusted p value < 0.05.

Identification of DEGRGs Related to Overall
Survival and Establishment of Prognostic
Signatures
To identify the prognostic DEGRGs, the 263 sarcoma samples were
analyzed as the training set, and the matched TCGA-SARC clinical
features were acquired from UCSC Xena (https://xenabrowser.net/).
The following data analyses were completed in R software (version 3.
6.2). Firstly, the “survival” package (version 3.2.7) in R software was
used to perform univariate Cox regression to analyze the 63DEGRGs

FIGURE 2 | Results of GSEA based on glycolysis-related gene sets. KEGG_GLYCOLYSIS_GLUCONEOGENESIS (A), HALLMARK_GLYCOLYSIS (B),
GO_GLYCOLYTIC_PROCESS (C).
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identified above. Then, DEGRGs with p value < 0.05 were selected to
perform the least absolute shrinkage and selection operator regression
(LASSO) analysis based on the “glmnet” (version 4.0.2) and
“survival” (version 3.2.7) packages. LASSO is a biased estimate for
processing data with multicollinearity, which identifies an optimum
lambda value. Finally, a 7 DEGRGs signature related to the prognosis
of STS patients was developed, and the risk score of each patient with
STS was generated and calculated as follows: Risk Score � ∑n

i�0 βi*
Gi,where βi is defined as the coefficient of gene i of the LASSO
analysis; Gi presents the expression level of each gene. Based on this
gene signature, STS patients in the training set were divided into high-
risk and low-risk groups on account of the critical value (i.e., the
median risk score). A total of 309 samples in GSE21050 (survival data
missing in 1 sample) were identified as the test set. To assess the

accuracy of results, we analyzed the data in the test set at the same
level. To assess the availability of the signature, we conducted overall
survival analysis to evaluate the overall survival differences in the
high-risk and low-risk patients. Receiver operating characteristic
(ROC) curves were obtained using the “survivalROC” package
(version 1.0.2). The ROC curves at 3 and 5 years were also
generated to evaluate the credibility and accuracy of the risk signature.

Analysis of the Clinical Characteristics
Associated With Prognosis
Univariate Cox regression and multivariate Cox regression
analyses were conducted to evaluate the influences of clinical
features on the prognosis of patients. We eliminated the samples

FIGURE 3 | Differently expressed glycolysis-related genes (DEGRGs) between sarcoma samples and normal tissues. The screening criteria was based
on the |log2FC| ≥1 and p<0.05. (A) Heatmap of DEGRGs (B) Box plot of DEGRGs. FC, fold change. Color images are available online.
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with incomplete clinical information in the training set, and those
with complete information were selected for the next processing.
The Cox regression analyses included the following factors: age,
margin, metastasis, depth, ethnicity, gender, race, diagnoses, and
the risk score identified above. Multiple ROC curves were
constructed using the “survivalROC” package in R software.

Establishment of Prognosis-Related
Nomogram and Validation
We combined the risk signature with the factors identified above to
build a nomogram for prognostic prediction of sarcoma patients in
the training set, using the “rms” package (version 6.0.1) in R software.
Meanwhile, the 1, 3, and 5 years calibration curves were created to
assess the consistency between the realistic results and the results
demonstrated by the nomogram in the training set.

RESULTS

Patient Characteristics and Transcriptome
Expression Level
TCGA-SARC RNA sequence expression data and the corresponding
clinical information were obtained fromUCSCXena. There were 265
sequence profiles in TCGA-SARC, with 263 tumor samples and 2
normal samples. The 263 STS samples were contained, including 105
leiomyosarcomas (LMS), 56 dedifferentiated liposarcomas (DL), 34
undifferentiated sarcomas (US), 25 myxofibrosarcomas (MF), 12
malignant fibrous histiocytomas (MFH), 10 malignant peripheral
nerve sheath tumors (MPNST), 10 synovial sarcomas (SS), 3 myxoid
leiomyosarcomas, 3 giant cell sarcomas, 2 pleomorphic liposarcomas,
and 3 other sarcoma samples. Thematched normal samples obtained
from the GTEx database included 911 normal tissue samples (396
muscle and 515 adipose samples). Finally, we identified 263 tumor

FIGURE 4 | Feature selection using the Univariate Cox analysis and Lasso regression model. (A) Forest map of DEGRGs associated with STS survival, univariate
Cox regression, p < 0.01. (B) LASSO coefficient spectrum of 7 DEGRGs. (C) On account of 1000 cross-validation for tuning parameter selection via LASSO.
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samples and 913 healthy tissue samples. Eventually, the expression
levels of 19,532mRNAs were identified.

Screening of DEGRGs
Five gene sets related to glycolysis were downloaded from the
Molecular Signatures Database v5.1, and a total of 326 gene
expression data were generated. In order to analyze the
difference levels of 5 glycolysis-related gene sets in STS and
normal samples, we performed GSEA analysis (version 4.1).
The analysis results of DEGRGs are shown in Figure 2.

Next, we obtained the expression levels of a total of
326 glycolysis-related genes from these 5 gene sets in the
training set. Based on the criteria of |log2FC|≥1 and adjusted
p < 0.05, 63 DEGRGs were identified, including 34 down-
regulated and 29 up-regulated genes. The heatmap

(Figure 3A) and boxplot (Figure 3B) of these 63 DEGRGs
were generated in R software. The glycolysis-related gene
expression matrix are shown in the Supplementary Materials.

Risk Signature Construction
In order to determine the overall survival-related DEGRGs,
univariate Cox regression analysis was applied to analyze the
above identified 63 DEGRGs in the training set, and 10 genes
were selected (Figure 4A). Then, using the “glmnet” package,
DEGRGs with p < 0.01 were further used for the LASSO
regression analysis to establish a gene signature (Figures 4B,C).
The risk score of every patient was acquired by multiplying the gene
level (X) with the regression coefficient (ɑ). Finally, 7 DEGRGs
highly related to prognosis were utilized to build a prognostic-related
model: risk score � (X CDK1 * 0.1079) + (X ADORA2B * 0.0936) + (X

FIGURE 5 | Risk signature development. Survival analysis of the training (A), test (B). The upper part demonstrates the KM(Kaplan-Meier) curves for the high and
low risk groups. The number shows the living patients with time in the two groups. Differences in gene expression level between two groups, risk distribution of per
samples, and relationship between survival status and survival times, training set (C,E,G), test set (D,F,H). The dark line shows the cut-off point dividing the two groups.
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P2RX7 * -0.1412) + (X EFNA3 * 0.0764) + (X AURKA * 0.0311) + (XLHX9

* 0.1598) + (X IGF1 * −0.2258).
On account of the median risk score, the patients with STS in the

training set were divided into high-risk and low-risk groups.
Expression heatmaps, risk distribution plots, and survival status
profiles of the 7 identified DEGRGs were constructed, and the
survival difference between the two groups in training set (Figures
5A,C,E,G). Similar differences were also observed in the test group,

which verified the prognostic model (Figures 5B,D,F,H). As shown
in Figures 6A,B, the characteristics of the 7 DEGRGs can
satisfactorily predict the survival status of STS patients, with AUC
� 0.66 (test set: 0.662).

Evaluation of the DEGRGs Signature
First, we constructed a nomogram according to the expressions of the
7 DEGRGs to predict the prognosis status of STS patients (Figure 7).

FIGURE 6 | Receiver operating characteristic (ROC) of 7 DEGRGs model in the training (I), test (J).

FIGURE 7 | The nomogram predicting the survival status of STS patients on the base of the expression level of 7 DEGRGs.
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The results from univariate and multivariate independent prognostic
analyses showed that the risk characteristics of the 7 DEGRGs were
significantly (p < 0.05) related to the survival status of STS patients
(Figures 8A,B). Analysis of multiple ROC curves showed that risk
score signature had the largest AUC area (Figure 8E). The AUC size
represents the prognostic efficiency of the 7-DEGRGs model. The
larger the area, the better the predictive effect on patient’s prognosis.
In addition, based on the “timeROC” package (version 0.4) in R
software, curves were plotted to evaluate the predictive value (Figures
8C,D). Our results showed that the 7 DEGRGs prognostic model
could predicted both 3-year survival rate (AUC � 0.72) and 5-year
survival rate (AUC � 0.699). These results demonstrated the excellent
accuracy and sensitivity of the model.

Construction and Evaluation of a
Nomogram Incorporating the DEGRGs
Signature With Clinical Factors
Based on multiple Cox regression, we constructed a prognostic
nomogram to predict 1-year, 3-year, and 5-year survival

possibility (Figure 9). Furthermore, calibration plots of the 1-
year, 3-year, and 5-year survival prediction were used to assess the
predictive ability of the nomogram, as shown in Figures 10A–C.
The calibration curve showed that the nomogram had a high
consistency between the actual and prediction results of survival
state in the training set.

DISCUSSION

Glycolysis-related genes have been revealed to play an important
role in the occurrence and development of tumors (Yu et al., 2017;
Yang et al., 2020). YAP1 affects the glycolytic metabolism of
undifferentiated pleomorphic sarcoma through the NF-κB
pathway (Rivera-Reyes et al., 2018). Lactate dehydrogenase
inhibitors reduce the production of lactic acid and inhibit
glycolysis, thereby inhibiting the proliferation of A673 sarcoma
cells (Rai et al., 2017). Phosphoglycerate dehydrogenase
(PHGDH) is highly expressed in Ewing’s sarcoma and is
associated with poor patient survival. PHGDH knockdown or

FIGURE 8 | Evaluation of the DEGRGs signature. The Result of univariate andmultivariate Cox analyses (A,B). The AUC curves to predict the survival status of STS
patients at the 3- and 5-year survival time in train set (C), test set (D).The multi ROC curves of risk model and other clinical characteristic.
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in vitro pharmacological inhibition lead to decreased cell
proliferation and cell death (Tanner et al., 2017). These studies
indicate that glycolysis-related genes may play an important role
in STS.

STS is a rare cancer, including more than 100 subtypes, with
different pathological characteristics, molecular changes, and
various prognosis of the patients. The efficient diagnosis and
effective treatment of STS is difficult on account of the rarity and
complex subtypes (Meyer and Seetharam, 2019). With the
availability of more gene databases, novel analytic tools can be
developed to explore biomarkers for rare tumors (e.g., STS) from
existing data (van IJzendoorn et al., 2019). With the development
of bioinformatics, a growing number of studies have proved that
processing gene databases is an effective method to assess the
transcriptome characteristics associated with prognosis, which
can help identify new serum biomarkers for clinical diagnosis,
prognosis prediction, as well as postoperative treatment (Ouyang
et al., 2019).

Cancer cells usually have more vigorous metabolism than
normal cells, which is characterized by aerobic glycolysis and
anabolic cycles to support tumor metastasis and proliferation
(Ancey et al., 2018; Orang et al., 2019). In recent years, an
increased number of tumor-related studies have focused on

investigating the glycolytic process (Abbaszadeh et al., 2020).
According to these studies, multiple genes and pathways
related to glycolysis have been discovered. Analogs and
blockers of these genes have also been developed, involving
a variety of molecules, chemical drugs, and nano-drugs
(AkinsAkins et al., 2018). Several studies have also reported
the mechanism of glycolysis in STS. For example, Duan et al.
found that glycolysis inhibitor 2-deoxyglucose can induce
alveolar rhabdomyosarcoma cell apoptosis by regulating the
expression level of Noxa (Ramírez-Peinado et al., 2011).

We were committed to identifying potential glycolysis-related
gene biomarkers for assessing the risk and prognosis of STS
patients. In this study, we screened out 7 glycolysis-related genes
and established a prognostic nomogram by combined the model
with several clinical features, which was effective in predicting
STS. Through the joint analysis of the TCGA and GTEx
databases, 63 DEGRGs were identified, which might serve as
potential biomarkers for STS. Univariate Cox regression analyses
were conducted and filtered out 10 prognosis-related DEGRGs.
Subsequently, the LASSO regression was performed to further
analyze these 10 genes in the training set, based on which the 7
GEGRGs (CDK1, ADORA2B, P2RX7, EFNA3, AURKA, LHX9,
andIGF1) model was finally established.

FIGURE 9 | Nomogram combing risk score and clinical factors for prediction of the individualized survival probability of STS patients. In the “diagnose” row, LMS
(leiomyosarcomas), DL ( dedifferentiated liposarcomas), US( undifferentiated sarcomas), MF(25 myxofibrosarcomas), MFH(malignant fibrous histiocytomas), MPNST
(malignant peripheral nerve sheath tumors), SS( synovial sarcomas).
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The functions of the identified 7 DEGRGs have been
previously reported. For instance, Menon et al. demonstrated
that CDK1 was up-regulated in melanoma cells and interacted
with Sox2 to promote the proliferation of melanoma (Ravindran
Menon et al., 2018). Desmet et al. found that blocking ADORA2B
inhibited the invasive activity of breast cancer cells and reduced
their ability to metastasize (Wilkat et al., 2020). ADORA2B
knockdown reduced tumor vascularization and thus inhibited
the growth of head and neck squamous cell carcinomas (Desmet
et al., 2013). Furthermore, Wang et al. proved that P2RX7 was
overexpressed in gastric cancer tissues, promoting tumor
proliferation through ERK1/2 pathway and Akt pathway,
which was also correlated with poor prognosis (Lili et al.,
2019). Wang et al. reported that cathelicidin inhibited colon
cancer metastasis through a P2RX7-dependent pathway (Wang
et al., 2020). EFNA3, as an Eph receptor ligand, affected the
migration and proliferation of human umbilical cord endothelial
cells through the PI3K/AKT pathway (Cheng et al., 2019). Chen
et al. found that AURKA directly promoted theWarburg effect by
phosphorylating lactate dehydrogenase B (LDHB), thereby
promoting tumor growth (Li et al., 2019b). It has also been
confirmed that the expression level of LHX9 was significantly up-
regulated in osteosarcoma, and inhibiting LHX9 reduced the
ability of cell growth and invasion (Li et al., 2019c). Li et al.
proved that the levels of IGF-1 and IGF-1R in osteosarcoma were
elevated, and their overexpression promoted the invasion and
resistance of osteosarcoma cells (Yu et al., 2020).

Recently, with the development of bioinformatics tools,
multiple glycolysis-related gene models have been developed to
assess the survival status of cancer patients (Cai et al., 2020). To
our knowledge, our study is the first to screen out DEGRGs by
analyzing data from the public TCGA database to predict the
survival status of STS patients. Moreover, based on these 7
DEGRGs, through combining the risk score and clinical
characteristics, we constructed a nomogram to assess the
prognosis of STS patients. We found that glycolysis-related
genes and STS prognosis were closely correlated, which may
provide us with a novel strategy for the treatment of STS.

This work has some limitations. First of all, the number of STS
samples in TCGA-SARC data set was relatively small, and that of
normal samples was insufficient though GTEx database was also
involved. Second, several important clinical features (e.g., tumor
stage) of the patients in the TCGA database were not sufficiently
detailed, which may affect the treatment and prognosis of STS
patients. Finally, more independent external queues need to be
analyzed on the basis of our model to ensure the predictive
performance of the nomogram.

CONCLUSION

By using the high-throughput sequencing data in the TCGA
database, we performed a variety of high-dimensional regression
analyses (LASSO and Cox regression models) to identify the
prognostic DEGRG markers for STS patients. The 7 gene
prognostic signature is an effective predictor of STS. Through
combining the 7 DEGRGs and clinical characteristics of STS
patients, we established a prognostic nomogram that has superior
efficacy in STS risk and patient survival prediction. The significant
effectiveness of this model may be helpful for decision-making in
clinical treatment, and further study is warranted to reveal the
biological and molecular roles of these DEGRGs in STS.
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