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Parkinson’s disease is a common multisystem neurodegenerative disorder characterized

by typical motor and non-motor symptoms. There is an urgent need for biomarkers for

assessment of disease severity, complications and prognosis. In addition, biomarkers

reporting the underlying pathophysiology assist in understanding the disease and

developing neuroprotective therapies. Ultimately, biomarkers could be used to develop

a more efficient personalized approach for clinical trials and treatment strategies.

With the goal to improve quality of life in Parkinson’s disease it is essential to

understand and objectively monitor non-motor symptoms. This narrative review provides

an overview of recent developments of biomarkers (biofluid samples and imaging) for

three common neuropsychological syndromes in Parkinson’s disease: dementia, fatigue,

and depression.
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INTRODUCTION

Parkinson’s disease (PD) is now considered as progressive and multisystem α-synucleinopathy.
Therefore, PD is characterized not only by motor symptoms, but also a broad range of non-
motor symptoms (NMS) (1). NMS can aggravate disease burden and significantly contribute to
worsening of quality of life (2). Biomarkers which are associated with worse motor performance as
well as development of NMS are of special importance in PD. A biomarker is “a characteristic that
is objectively measured and evaluated as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic intervention” (3). The ideal PD biomarkers
should have a reasonable effect size, are reproducible across different cohorts and are ideally verified
in neuropathological proven PD cases. Biomarkers in PD can include (i) biomarker for prodromal
stage to identify PD before motor symptoms occur, (ii) biomarkers of susceptibility to identify
persons who are at risk for PD, (iii) biomarkers for motor and non-motor burden to assess disease
severity and monitor the efficacy of therapies. The last one can help to identify patients who are
at risk to develop complications and may lead to individual optimization and prevention in health
care. This review provides an update on recent advances in the development of biomarkers (biofluid
samples and neuroimaging) for three common neuropsychological syndromes: dementia, fatigue
and depression.

COGNITIVE IMPAIRMENT

Cognitive deficits are common in PD and can present as mild dysfunction in the prodromal
and early stages, or as dementia (PDD) in advanced stages (4). Approximately 20%
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of patients with de novo PD have mild cognitive impairment
(MCI) (5). The concept of PD-MCI was introduced 2012 (MDS
Task Force) and characterizes a cognitive decline that is assessed
during neuropsychological testing but does not impair activities
of daily living (6). MCI is considered an intermediate state of
cognitive dysfunction in PD that may progress to PDD. Up
to 75% of patients will develop dementia over the longterm
disease course (7). However, the rate to PDD, the cognitive profile
and severity of cognitive dysfunction show high interindividual
variation. Given its high medical and social impact and its
health-related costs, the identification of biomarkers for PDD
is of high priority (8). Biomarkers reflecting cognitive decline
can facilitate early diagnosis and may indicate response to
therapeutic interventions.

Clinical factors, such as higher age, male sex, low level
of education, longer disease duration, higher Hoehn &
Yahr stage, axial impairment, excessive daytime sleepiness,
cardiovascular autonomic dysfunction, REM sleep behavior
disorder, hallucinations and PD-MCI were found to strongly
predict the development of PDD (9–13). Moreover, impairment
of memory and language (posterior-cortical dysfunction) seems
to be linked to a higher risk of PDD (14, 15).

Given the neuropathology of PDD several studies aimed to
identify biomarkers which reflect proteinopathy, neuronal loss,
abnormal neurotransmitters, and structural and functional brain
changes. Lewy bodies and amyloid plaques in the neocortex
and limbic system are typical neuropathological features of
Alzheimer’s disease and PDD (16, 17). Hence, the majority
of studies investigated amyloid-ß 1–42 (Aß), tau protein, and
α-synuclein in the cerebrospinal fluid (CSF) of PD patients
(Table 1). In many studies the level of Aß was reduced in PDD.
Low CSF levels of Aß were found to be related to deterioration
in attention, executive function, semantic fluency and memory
(21, 38, 40, 45). One-half of PDD patients had the CSF biomarker
signature of Alzheimer’s disease (46) suggestive of an overlap
with Alzheimer’s disease pathology (47). Low baseline CSF Aβ

was associated with more rapid cognitive decline later in disease.
By contrast, the levels of total (t-tau) and phosphorylated tau (p-
tau) were found to be increased or unchanged in PDD (Table 1).
For clinicians it is highly relevant to know which biomarkers
accurately predict the progression from MCI to PDD. Therefore,
based on the data from cross-sectional and longitudinal studies
one can assume that reduced Aß predicts cognitive decline in
PD (40, 42, 48).

Several studies assessed the CSF levels of α-synuclein in PD.
Meta-analyses demonstrated that total α-synuclein levels are
lower in PD compared to controls (49, 50). However, in terms
of α-synuclein and cognitive decline there are conflicting results
with both low and high levels in the presence of cognitive
impairment (29, 41, 48). In the DATATOP study with up
to 8 years of follow-up, lower α-synuclein levels predicted
better preservation of cognitive function (verbal learning and
memory, visuospatial working memory) in early disease. Thus,
α-synuclein may reflect changes in multiple cognitive domains
and may predict cognitive decline in PD (29, 41, 48). On
the other hand most studies of non-demented PD failed to
find any association between α-synuclein levels and cognition

(51, 52). It seems that CSF α-synuclein levels may increase
with disease stage. This could explain why cognitive deficits
in connection with high levels of α- synuclein were found in
more advanced disease stages (53). Isoforms of α-synuclein (e.g.,
phosphorylated, ubiquitinated, oligomeric) are potentially more
sensitive to cognitive decline than the total α-synuclein level
(24, 30). Another study examining plasma levels of α-synuclein
found higher levels in PDD and a correlation with mini mental
state examination scores (54). This finding, however, requires
further investigations.

In another longitudinal study, high neurofilament light chain
protein, low Aβ and high heart fatty acid–binding protein
at baseline were related to future PDD with a relatively
high diagnostic accuracy (19). Also several serum proteins,
such as C-reactive protein, interleukins, interferon-γ, tumor
necrosis factor α, uric acid, and cystatin C were found to be
associated with cognition in PD (55). In particular, low uric
acid concentrations, low levels of epidermal growth factor (EGF)
and insulin-like growth factor (ILGF) seems to have predictive
value for deterioration of cognitive function in PD (56–61). In
combination with clinical markers, a study of 390 patients from
the Progression Markers Initiative study with newly diagnosed
PD, the occurrence of cognitive impairment at 2 years follow-up
could be predicted with good accuracy using a model combining
information on age, non-motor assessments, DAT imaging,
and CSF biomarkers. Here, the Montreal Cognitive Assessment
(MoCA) scores and low CSF Aβ to t-tau ratio and DAT
imaging results were the best predictors of cognitive impairment
(39). Using data from the Parkinson’s Progression Markers
Initiative, Fereshtehnejad et al., identified distinct subgroups
via a cluster analysis of a comprehensive dataset consisting of
clinical characteristics, neuroimaging, biospecimen and genetic
information. Here, the CSF biomarkers differed between these
PD subtypes. Patients with diffuse malignant disease course and
fast cognitive decline, showed an Alzheimer’s disease-like CSF
profile (low Aβ, low Aβ/t-tau ratio) (62).

Applying computerized neuroimaging analyses several MRI
studies have found gray matter atrophy and disruptions of white
matter integrity in PDD, although findings in non-demented
PD and PD-MCI remain inconsistent (63) (Tables 2, 3). A
longitudinal study using voxel-based morphometry (VBM)
found neocortical volume reduction (temporo-occipital region,
hippocampal and parahippocampal) as the most relevant finding
in patients who develop PDD (97). Another study has identified
a validated Alzheimer’s disease pattern of brain atrophy as an
independent predictor of cognitive impairment in PD (64). More
specifically cortical thinning in the right precentral, frontal, and
in the anterior cingulate cortex as well as gray matter atrophy
(prefrontal, insula, caudate nucleus, hippocampal) predicted
cognitive decline in PD (23, 66, 70, 76, 98). Cognitive impairment
was also found to be associated with lower gray matter
volume and increased mean diffusivity in the nucleus basalis of
Meynert, compared to non-demented patients. Moreover, these
changes were predictive for developing cognitive impairment
in cognitively intact patients with PD, independent of other
clinical and non-clinical markers of the disease (99). The
nucleus basalis of Meynert and the pedunculopontine nucleus
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TABLE 1 | Cerebrospinal-fluid (CSF) biomarkers of cognitive impairment and dementia in Parkinson’s disease.

Study CSF biomarker Participants Methods Result

Aß1-42 t- tau p-tau t-α-syn o-α-syn other

Alves et al. (18)* + + + PDND 104 MDS Task Force Low Aβ predicted early

dementia

Bäckström et al. (19)* + + + + + PDND 104

C 30

PSP 13

MSA 11

NFL

H-FABP

Low Aβ, NFL and H-FABP

predicted PDD

Brockmann et al. (20) + + PDND 353

PDD 103

Genetic variants

known to be

involved in

Aβ clearance

Risk variants in APOE and

cystatin C genes were

associated with lower Aβ

Compta et al. (21) + + PDND 20

PDD 20

C 30

MMSE

DSM-IV-R

MDS Task Force

PDD: ↑ t-tau

PDND: ↓ Aβ positively

correlated with

phonemic fluency

Compta et al. (22) + + + PDND 19

PDD 29

C 9

MMSE

MDS Task Force

PDD: ↓ Aβ

↑ t-tau and p-tau in

a subgroup

Compta et al. (23)* + + + PDND 27 MMSE

MDS Task Force

Low Aβ predicted PDD

Compta et al. (24) + + + + PDND 21

PDD 20

C 13

MMSE/PDD by

MDS Task Force

PDD: ↓ Aβ, ↑ t-tau,

↑ o-α-syn

Ffytche et al. (25) + PD 423

3-4 years

of follow-up

Compare baseline

structural imaging

and CSF data in

patients who go

on to develop

illusions or

hallucinations in

newly

diagnosed PD

Patients with early onset PD

psychosis: Aβ ↓

Gmitterová et al. (26) + + + + PDND 22

PDD 31

DLB 51

C 32

Discriminatory

potential of tau,

p-tau, Aβ, NSE

and S100B across

the spectrum

of LBD

PDD Aβ ↓, tau ↑

Rapid disease course not

associated with decrease

of Aβ

Halbgebauer et al. (27) + PDND 22

PDD 29

C 36

Modified serpinA1 PDD: acidic serpinA1

isoform ↑

Hall et al. (28) + + + + PDND 90

PDD 33

C 107

MMSE

MDS Task Force

PDD: ↑ p-tau, Aβ or t-α-syn

no differences

Hall et al. (29)* + + + + + PDND 42

C 69

Low Aβ predicted memory

decline, high α-syn

predicted reduced

cognitive speed

Hansson et al. (30) + + PDND 30

C 98

MMSE

MDS Task Force

PDD: ↑ o-α-syn

Janssens et al. (31) + + + + probable AD 52

FTD 59

DLB 39

PDD 14

C 88

young C 32

3-methoxy-4-

hydroxyphenylglycol

(MHPG)

Aβ young C > C > FTD >

PDD, DLB > AD

tau AD > FTD > PDD, DLB

> C > young C

p-tau AD > FTD =

PDD,DLB = C> young C

MHPG PDD, DLB > AD > C

(Continued)
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TABLE 1 | Continued

Study CSF biomarker Participants Methods Result

Aß1-42 t- tau p-tau t-α-syn o-α-syn other

Lindqvist et al. (32) + PDND 71

PDD 16

C 33

MMSE PDD: C-reactive protein ↑

IL6 ↑

TNF-Alpha →

Eotaxin→

MCP-1→

MIP-1beta→

IP-10→

Maetzler et al. (33) + PDND 14

PDD 12

MMSE PDD: Aβ ↓

Maetzler et al. (34) + + PDND 21

PDD 10

C 39

MMSE No difference

Maetzler et al. (35) + + PDND 77

PDD 26

C 72

MMSE

MDS Task Force

No difference

Modreanu et al. (36) + + + PD 37

PDD 21

PDD at

18-months 35

Spatial

disorientation,

memory

complaints over

disease course

PDD: Aβ ↓

tau and p-tau no difference

‘PDD -converters’ had

significantly lower Aβ

at baseline

Parnetti et al. (37) + + PDND 67

PDD 48

C 41

MMSE No difference

Parnetti et al. (38)* + + + + + PDND 44

Disease C 25

MMSE

MoCa

Low Aβ predicted more

rapid decline

Schrag et al. (39)* + + PDND 390

C 178

MoCa over 2 years Low Aβ/t-tau ratio predicts

cognitive decline

Siderowf et al. (40)* + + + PDND: 45 Dementia

rating scale

Low Aβ predicted rapid

decline in Dementia

rating scale

Stewart et al. (41)* + + + + PDND 350 Verbal memory,

cognitive

processing speed,

and visuospatial

working memory

Lower α-synuclein predicted

better preservation of

cognitive function

Terrelonge et al. (42)* + + + + PDND 341 Memory,

visuospatial,

working

memory–executive

function, and

attention

processing speed

Low Aβ predicted

cognitive impairment

Vranová et al. (43) + + PDND 27

PDD 14

C 14

MMSE

MDS Task Force

PDD: ↑ t-tau/ Aβ index

Aβ or t-tau no differences

Wennström et al. (44) +

PDND 38

PDD 22

C 52

MMSE

MDS Task Force

No difference

PD, Patients with Parkinson’s disease; PD-MCI, Parkinson’s disease patients with mild cognitive impairment; PDD, Parkinson’s disease patients with dementia; PDND, non-demented

PD; MSA, multiple system atrophy; PSP, progressive supranuclear palsy; AD, Patients with Alzheimer’s disease; DLB, Dementia with Lewy body; C, Controls; MoCA, Montreal Cognitive

Assessment; MMSE, Mini Mental Status Examination; Aβ, Aβ1–42 amyloid; NFL, neurofilament light chain protein; H-FABP, heart fatty acid-binding protein; *longitudinal studies.

in the brainstem are important cholinergic projections in and
post-mortem studies have shown that neuronal loss in in the
nucleus basalis is an early phenomenon in PD (100, 101).
Combining many modalities, Compta et al. (23) performed a

longitudinal study in non-demented PD patients including CSF,
neuropsychological and MRI studies at baseline and 18 months
follow up. Here, a combination of lower CSF Aβ, reduced verbal
learning, semantic fluency and visuoperceptual scores, as well
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TABLE 2 | Cortical and subcortical structural changes related to cognitive impairment and dementia in Parkinson’s disease.

Study Participants Methods Result

Weintraub

et al. (64)

PDND 60 VBM* In PD-MCI hippocampal and temporal gray matter atrophy.

Melzer et al.

(65)

PDND 57

PD-MCI 23

PDD 16

C 34

VBM In PD-MCI gray matter atrophy in temporal, parietal, frontal cortex, amygdala, right putamen,

and hippocampus.

In PDD additional atrophy in medial temporal lobe, lingual gyrus, posterior cingulate gyrus, and

bilateral caudate.

Lee et al. (66) PD-MCI 51

C 25

VBM* PD-MCI to PDD converters had lower GM density in the left prefrontal areas, left insular cortex

and bilateral caudate nucleus compared with that in PD-MCI non-converters.

Borroni et al.

(67)

PDND11

PDD 10

LBD 13

C 10

VBM In PDD bilateral frontal and subcortical (caudate nucleus) gray matter atrophy.

Duncan et al.

(68)

PDND 125

C 50

VBM

DTI

Frontal and parietal gray matter volume reductions were associated with reduced executive

function. Increased mean diffusivity was associated with performance on the semantic fluency

and Tower of London tasks in frontal and parietal white matter tracts.

Hattori et al.

(69)

PDND 32

PD-MCI 28

PDD 25

DLB 29

C 40

VBM

TBSS

In PDD more atrophy in the cerebellum, thalami, insula, parietal cortex and occipital cortex.

Kandiah et al.

(70)

PDND 97 Hippocampal volume

White

matter hyperintensities*

Hippocampal volume predicts PD-MCI and PDD.

Rektorova

et al. (71)

PDND 75

PD-MCI 29

PDD 22

Spatial Independent

Component Analysis

In PDD gray matter volume reductions in the hippocampus and temporal lobes, fronto-parietal

regions and increases in the midbrain/cerebellum correlated with visuospatial deficits and letter

verbal fluency, respectively.

Biundo et al.

(72)

PDND 15

PD-MCI 14

HC 21

Cortical thickness In PD-MCI cortical thinning in right supramarginal, dorsolateral prefrontal cortex, hippocampus,

orbito-frontal, fusiform, superior parietal, and cuneus.

Pereira et al.

(73)

PDND 90

PD-MCI 33

H 56

Cortical thickness In PD-MCI cortical thinning in left precuneus, inferior temporal precentral, superior parietal, and

lingual regions.

Hanganu

et al. (74)

PDND 15

PD-MCI 17

H 18

Cortical thickness * In PD-MCI thinning in temporal and medial occipital lobe, nucleus accumbens and amygdala

correlate with cognitive decline.

Ibarretxe-

Bilbao et al.

(75)

PDND 16

C 15

Cortical thickness* In PD cortical thinning in bilateral fronto-temporal regions and reduced amygdala volume.

Mak et al. (76) PDND 66

PD-MCI 39

H 37

Cortical thickness* PD-MCI converters showed bilateral temporal cortex thinning at baseline.

Hwang et al.

(77)

PDND 12

PDD 11

C 14

Cortical pattern

matching

Cortical thickness

PDD showed thinning bilateral sensorimotor, lateral parietal, right posterior cingulate,

parieto-occipital, inferior temporal and lateral frontal relative to C and PDND.

Zarei et al.

(78)

Early PD 24

moderate PD

18

PDD 15

C 39

Cortical thickness MMSE correlated positively with cortical thickness in the anterior temporal, dorsolateral

prefrontal, posterior cingulate, temporal fusiform and occipitotemporal cortex.

Pagonabarraga

et al. (79)

PDND 26

PD-MCI 26

PDD 20

C 18

Cortical thickness From PDND to PDD a linear and progressive cortical thinning was observed in areas

functionally specialized in declarative memory (entorhinal cortex, anterior temporal pole),

semantic knowledge (parahippocampus, fusiform gyrus), and visuoperceptive integration

(banks of the superior temporal sulcus, lingual gyrus, cuneus and precuneus).

Carlesimo

et al. (80)

PDND 25

C 25

DTI Increased mean diffusivity in the PD hippocampi; high hippocampal mean diffusivity values

obtained low memory scores.

Chen et al.

(81)

PDND 19

PDD 11

C 21

DTI In PDD lower fractional anisotropy in the left hippocampus, higher mean diffusivity in

widespread white matter regions. In PD positive correlation between MoCA score and

fractional anisotropy of left inferior longitudinal and hippocampus, and bilateral superior

longitudinal fasciculus.

PD, Patients with Parkinson’s disease; PD-MCI, Parkinson’s disease patients with mild cognitive impairment; PDD, Parkinson’s disease patients with dementia; PDND, non-demented

PD; DLB, Dementia with Lewy body; C, Controls; MoCA, Montreal Cognitive Assessment; MMSE, Mini Mental Status Examination; * longitudinal studies.
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TABLE 3 | Changes of function and connectivity related to cognitive impairment and dementia in Parkinson’s disease.

Study Participants Methods Result

Gorges et al.

(82)

PDND 14

PDD 17

C 22

Resting-state fMRI In PDND hyperconnectivity (network expansions) in cortical, limbic, and basal

ganglia-thalamic areas. In PDD decreased intrinsic functional connectivity compared

with controls (predominantly between major nodes of the default mode network).

Baggio et al.

(83)

PDND 32

PD-MCI 23

C 36

Resting-state fMRI In PD-MCI reduced connectivity between dorsal attention network and right

fronto-insular regions (worse performance in executive functions) and increased

connectivity between default mode network and medial and lateral occipito-parietal

regions (worse visuo-spatial performance).

Amboni et al.

(84)

PDND 21

PD-MCI 21

C 20

Resting-state fMRI In PD-MCI patients decreased functional connectivity in bilateral prefrontal cortex

(fronto-parietal network).

Tessitore

et al. (85)

PDNT 16

C 16

Resting-state fMRI In PDND decreased default mode network connectivity correlated with

cognitive parameters.

Rektorova

et al. (86)

PDND 18

PDD 14

C 18

Resting-state fMRI In PDD decreased connectivity in the right inferior frontal gyrus compared to PDND

and C (using posterior cingulate cortex/precuneus as seed for analysis).

Borroni et al.

(67)

PDND11

PDD 10

LBD 13

C 10

Resting-state fMRI Reduced local coherence of frontal regions in PD and in PDD.

Olde et al.

(87)

PDND 55

C 15

Resting-state fMRI In PDND longitudinally decreases in functional connectivity most prominent for

posterior brain regions correlated with disease progression and cognitive decline.

Seibert et al.

(88)

C 19

PDND 19

PDD 18

Resting-state fMRI In PDD corticostriatal functional correlations were decreased in bilateral

prefrontal regions.

Lin et al. (89) PDND 17

PDD 17

C 17

Arterial spin labeling

(ASL) magnetic

resonance

imaging (ASL-MRI)

In PDND and PDD progressive widespread cortical hypoperfusion.

Le Heron

et al. (90)

PDD 20

AD 17

C 37

Arterial spin labeling

(ASL) magnetic

resonance

imaging (ASL-MRI)

In AD and PDD posterior hypoperfusion (including posterior cingulate gyrus,

precuneus, occipital regions). Perfusion in medial temporal lobes (AD<PDD) and right

frontal cortex (PDD<AD) differed between PDD and AD.

Vander

Borght et al.

(91)

PDD 9

AD 9

C 9

[18F]fluorodeoxyglucose-

PET

In PDD and AD hypometabolism with similar regional accentuation (lateral parietal,

lateral temporal and lateral frontal association cortices and posterior cingulate cortex).

In contrast to AD PDD showed greater metabolic reduction in the visual cortex and

relatively preserved metabolism in the medial temporal cortex.

Gonzalez-

Redondo

et al. (92)

PDND 14

PD-MCI 17

PDD 15

C 19

[18F]fluorodeoxyglucose-

PET

In PD-MCI the hypometabolism exceeded atrophy in the angular gyrus, occipital,

orbital and anterior frontal lobes. In PDD these areas were atrophic and surrounded

by extensive hypometabolism.

Shinotoh

et al. (93)

PDND 14

PDD 2

PSP 12

C 13

Acetylcholinesterase

activity using N-methyl-

4-[11C]piperidyl

acetate PET

In PDD higher reduction of choline acetyltransferase and acetylcholinesterase than

in PDND.

Bohnen et al.

(94)

PDND 11

PDD 14

AD 12

C 10

Acetylcholinesterase

activity using

[11C]Methylpiperidin-4-

ylpropionate PET

Mean cortical acetylcholinesterase activity was lowest in PDD.

Hiraoka et al.

(95)

PDD 12

C 13

[5-(11)C-

methoxy]donepezil-

PET

In PDD density of acetylcholinesterase in the cerebral cortices correlated with

improvements in visuoperceptual function after 3 months of donepezil therapy.

Kotagal et al.

(96)

PDND 11

PDD 6

DLB 6

C 14

Acetylcholinesterase

activity using

[11C]Methylpiperidin-4-

ylpropionate PET

Thalamic cholinergic denervation is present in PD, PDD, and DLB but not in AD.

PD, Patients with Parkinson’s disease; PD-MCI, Parkinson’s disease patients with mild cognitive impairment; PDD, Parkinson’s disease patients with dementia; PDND, non-demented

PD; DLB, Dementia with Lewy body; AD, Patients with Alzheimer’s disease; C, Controls; MoCA, Montreal Cognitive Assessment; MMSE, Mini Mental Status Examination; PET, positron

emission tomography.
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as cortical thinning in superior-frontal/anterior cingulate and
precentral regions were found to be predictive for PDD.

For the assessment of white matter pathology using DTI
and imaging of metabolites (Proton magnetic resonance
spectroscopy) there is currently not enough longitudinal data
available and the value of these techniques to predict cognitive
decline has to be further explored. The existing studies indicate
that microstructural changes, such as increased mean diffusivity
or reduced fractional anisotropy in the hippocampus, the frontal
and parietal white matter tracts are associated with cognitive
decline in PD (68, 80, 81, 102–104). In particular, an increased
mean diffusivity may be predictive for cognitive decline before
fractional anisotropy decreases. However, these findings need
further validation in longitudinal studies.

FATIGUE

Fatigue is a common symptom that includes both mental
and physical aspects. Up to 70% of individuals with PD
experience fatigue every day (105). Fatigue dramatically impairs
quality of life (106). It is a complex syndrome emerging from
dysfunction in the nervous, endocrine and immune system
(107). From a clinical point of view fatigue is frequently
associated with other non-motor syndromes, like sleepiness,
apathy, depression and autonomic dysfunction (105, 108).
However, fatigue can also occur as an isolated syndrome; it is
therefore important to understand that fatigue and sleepiness
or depression is not the same condition (109, 110). Central
fatigue is commonly measured through questionnaires, such
as the Fatigue Severity Scale (111) which is recommended
by the Movement Disorder Society (MDS) task force (112).
Central fatigue can be described as a feeling of constant
exhaustion and can occur in various chronic disorders.
Peripheral fatigue is characterized by failure to sustain the
force of muscle contraction and is more readily accessible to
quantification (106, 113).

A key mechanism underlying fatigue is the activation of
the inflammatory cytokine network (107, 114). Therefore,
inflammatory markers serve as potential biomarkers of fatigue.
In particular, higher serum levels of IL-6, IL1-Ra, sIL-2R,
and VCAM-1 were associated with higher fatigue levels in
patients with newly diagnosed, drug-naïve PD (115, 116).
This neuroinflammatory processes may promote glutamate
dysregulation and further influence neuronal activity and
neuroplasticity, and impact neuronal circuits mediating
distress and motivation in PD (117–119). Interestingly, higher
serum uric acid levels were significantly associated with less
fatigue (120).

In addition, dysfunction of the endocrine system, such
as hypothalamic-pituitary-adrenal system which is connected
to basal ganglia, amygdala, thalamus and frontal cortex,
seems to contribute to the pathophysiology of fatigue (113).
Although there are no neuropathological studies of PD-fatigue
supporting this model so far, several neuroimaging studies
showed that multiple brain areas are involved in fatigue
in PD. These include frontal, temporal and parietal regions

indicative of emotion, motivation and cognitive functions (121–
126). In SPECT imaging with technetium-99 hexamethyl-
propylene-amine-oxime PD-fatigue was associated with reduced
perfusion in the frontal lobe (125). Others used PET with
dopaminergic and serotonergic markers in fatigued vs. non-
fatigued PD patients. Less serotonergic marker binding was
found in striatal and limbic regions (thalamus, anterior cingulate,
amygdala, insula) in PD-fatigue. The striatal 18F-dopa uptake
was similar in fatigued and non-fatigued groups, but voxel-
based analysis localized the reduced dopamine uptake to the
caudate and insula in PD-fatigue (127). In addition the serotonin
transporter (SERT) availability was significantly reduced in the
striatum and thalamus of fatigued PD patients, suggesting that
increasing the brain level of serotonin may improve PD-fatigue
(127). The reduced serotonergic transmission suggests that a
disturbed neurotransmitter balance within the basal ganglia
and associated regions changes the integration of emotional
and motor information in limbic regions, thus resulting in
fatigue symptoms (128). With regard to striatal dopamine
transporter uptake, results are conflicting. Two studies found
no difference between fatigued and non-fatigued PD (127, 129).
In the study by Chou et al., striatal dopamine transporter
uptake was a significant predictor of fatigue in mild but
not moderate-to-severe PD. They postulated that the lack of
association between fatigue and nigrostriatal loss in advanced
PD may reflect a denervation “floor” effect (130). Many of these
studies have assessed advanced disease stages and patients on
dopaminergic treatment. In contrast, Tessitore et al. studied
fatigue in drug-naïve early PD using resting-state functional
MRI (fMRI). Fatigue itself, and fatigue severity were associated
with a decreased connectivity within the supplementary motor
area and an increased connectivity within the default mode
network (121). Importantly, these functional abnormalities
occur independently from both dopamine-induced connectivity
and structural changes. This study is in line with earlier
neurophysiological studies suggesting that abnormal premotor
and primary motor cortices connectivity correlate with fatigue
(131, 132). Tessitore et al. hypothesized that the increased
connectivity of the default mode network represents an
initial cognitive compensatory response to the fatigue-related
motor connectivity changes. In this sense fatigued PD-
patients, when internally oriented, have to increase mental
expenditure to maintain the same level of motor planning
performance in order to switch more easily to externally oriented
processing (121).

In summary, abnormalities in motivation of self-initiated
tasks and motor function may play a significant role in the
pathophysiology of fatigue (133). While non-dopaminergic
basal ganglia pathways seem to be involved in PD-fatigue,
the dopaminergic dysfunction may only play a role through
extrastriatal projections.

DEPRESSION

PD patients are twice as likely to develop depression compared
to healthy individuals (134). Depressive symptoms affect 40–50%
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of PD patients and significantly impact quality of life in PD (2).
In particular, patients with cognitive impairment, longer disease
duration, motor fluctuations, female gender, and higher doses of
levodopa are at risk to develop depression (9).

Like other NMS, depression seems to be linked to
inflammatory signaling. Increased inflammatory responses
have been described both in the brain and peripheral blood of
PD patients (135). Depression correlated with a high serum level
of IL-10 (136) and IL-6 (137). High levels of both sIL-2R and
TNF-α in blood samples from PD patients were significantly
associated with more severe depression and anxiety (119).
As reflection of CNS involvement, high CRP levels in CSF of
PD patients were associated with more severe symptoms of
depression (32). However, these findings are not specific for PD.
Chronic inflammation in physically ill patients is often associated
with symptoms of depression and also occurs in normal aging
(138–140). Moreover, PD in general is characterized by elevated
levels of inflammatory cytokines, such as IL-6, tumor necrosis
factor, IL-1β, IL-2, IL-10, C-reactive protein, and RANTES (141).

Depression in PD is associated with several structural
and functional changes in the limbic system. In particular,
changes in the amygdala, hippocampus and orbitofrontal cortex
were frequently reported in PD depression (142–151). The
involvement of the serotonergic system was demonstrated
in post-mortem tissue and validated in vivo by several
PET imaging studies (152–155). Compared to controls the
serotonin transporter binding in non-depressed PD was lower
in the striatal region, the orbitofrontal cortex, and the
dorsolateral pre-frontal cortex which is an area known to be
involved in major depression (155). Using dopaminergic and
serotonergic presynaptic transporter radioligands a prominent
role of serotonergic degeneration in limbic regions such as
the anterior cingulate cortex was demonstrated (156, 157).
Other PET studies observed a higher availability of the
serotonin transporter in the raphe nuclei and limbic regions
of depressed PD patients (152, 153). Likewise, decreased
plasma levels of serotonin were found to be correlated
with severity of depression (158). However, studies of the

serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in
CSF from depressed and non-depressed PD patients, have
yielded contradictory results (159), and serotonergic dysfunction
alone may only explain vulnerability to depression in PD.
Yet, symptoms of depression are also linked to mesolimbic
dopaminergic degeneration (160, 161) which is in line with
the clinical observation of improvement of depression by
dopaminergic treatment (162).

CONCLUSION

From this overview emerges a comprehensive picture of recent
fluid and imaging biomarkers which have been studied in a
number of clearly defined and sizable cohorts of PD patients
with PD. Especially longitudinal studies are necessary to make
the biomarkers potentially useful for therapeutic or even
clinical trial evaluation. A number of recent studies have
provided ample evidence for specific predictive biomarkers
across multiple domains combining clinical, biochemical,
and neuroimaging information. Yet, at this stage a lack
of standardized and comparable methods preclude clinical
everyday use of these biomarkers beyond their value as
diagnostic or prognostic tools in cohorts of patients. Thus,
more research needs to be undertaken into finding reliable
combinations of predictors of NMS in PD on an individual
level, and standardization and harmonization of protocols
in particular in CSF handling and neuroimaging has to be
taken further.
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