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Abstract
Certain EEG components (e.g., the contingent negative variation, CNV, or beta oscillations) have been linked to the percep-
tion of temporal magnitudes specifically. However, it is as of yet unclear whether these EEG components are really unique to 
time perception or reflect the perception of magnitudes in general. In the current study we recorded EEG while participants 
had to make judgments about duration (time condition) or numerosity (number condition) in a comparison task. This design 
allowed us to directly compare EEG signals between the processing of time and number. Stimuli consisted of a series of blue 
dots appearing and disappearing dynamically on a black screen. Each stimulus was characterized by its duration and the total 
number of dots that it consisted of. Because it is known that tasks like these elicit perceptual interference effects that we used 
a maximum-likelihood estimation (MLE) procedure to determine, for each participant and dimension separately, to what 
extent time and numerosity information were taken into account when making a judgement in an extensive post hoc analysis. 
This approach enabled us to capture individual differences in behavioral performance and, based on the MLE estimates, to 
select a subset of participants who suppressed task-irrelevant information. Even for this subset of participants, who showed 
no or only small interference effects and thus were thought to truly process temporal information in the time condition and 
numerosity information in the number condition, we found CNV patterns in the time-domain EEG signals for both tasks that 
was more pronounced in the time-task. We found no substantial evidence for differences between the processing of temporal 
and numerical information in the time–frequency domain.

Introduction1

Studies investigating the neural processes underlying the 
perception of time in humans have suggested that there are 
activation patterns and neural mechanisms that are unique to 
timing. One neural activation pattern that has been associ-
ated with the perception and production of intervals in the 
order of hundreds of milliseconds to multiple seconds is 
a slow negative deflection measured using EEG at fronto-
central and parietal–central locations. The association is 
driven by the observation that amplitude variations of this 
slow contingent negative variation (CNV) are related to vari-
ations in temporal performance, that is, subjective timing 

(Bendixen, Grimm, & Schröger, 2005; Durstewitz, 2004; 
Macar, & Vidal, 2004; Macar, Vidal, & Casini, 1999; Pfeuty, 
Ragot, & Pouthas, 2005). Critically, it is assumed that the 
CNV reflects the accrual of temporal information over time, 
the core component of the clock- or pacemaker-based theo-
ries of interval timing (see for a discussion of these models, 
van Rijn, Gu, & Meck, 2014). However, failures to replicate 
performance-dependent variations in CNV amplitudes (Kon-
onowicz, & van Rijn, 2011) and results that are difficult to 
align with the view that the CNV represents the core com-
ponent of timing-tasks (Ng, & Penney, 2014), have led to a 
re-evaluation of the role of processes reflected by the CNV. 
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This re-evaluation is further supported by the observation 
that other EEG components than the CNV track subjective 
timing more accurately than the CNV, and that these com-
ponents even correlate with subjective timing when no CNV 
is present (Kononowicz, & van Rijn, 2014a).

In earlier work, we have argued (Kononowicz, & Penney, 
2016; Kononowicz, & van Rijn, 2011; van Rijn, Konono-
wicz, Meck, Ng, & Penney, 2011; see also Ng, & Penney, 
2014) that amplitude variations might reflect more general 
processes that are necessary for any timing task (e.g., the 
setting of decision thresholds, Boehm, van Maanen, Forst-
mann, & van Rijn, 2014), but not the temporal accumula-
tion process as such. Interestingly, this convolution of pure 
timing and the auxiliary processes required to perform a 
timing task has been acknowledged in fMRI studies aimed at 
unraveling the neural foundations of interval timing. In most 
fMRI experimental designs, neural activity measured during 
a timing task is compared to the activity elicited by a control 
task that does not have a temporal component, but is other-
wise as similar as possible (and see Kulashekhar, Pekkola, 
Palva, & Palva, 2016, for an MEG study using a similar 
setup as the current study). This can be conceptualized as 
interpreting the differences in activation between both tasks 
as the reflection of pure timing components. Examples of 
control tasks are typically tasks in which the magnitude of 
another dimension needs to be evaluated; for example, color 
(Bueti, & Macaluso, 2011; Coull, Vidal, Nazarian, & Macar, 
2004) or space (Coull, Charras, Donadieu, Droit-Volet, & 
Vidal, 2015). Based on such fMRI studies, widespread brain 
networks linked specifically to the processing of temporal 
magnitudes have been identified. Among these, the sup-
plementary motor area (SMA) has been suggested as a key 
component in interval timing (Coull, Vidal, & Burle, 2016; 
Wiener, Turkeltaub, & Coslett, 2010). For example, Coull 
et al. (2015) showed that SMA activity increases incremen-
tally with increasing stimulus duration. In their experiment, 
participants had to estimate either the duration or distance 
of the trajectory of a moving dot. The contrast between dura-
tion and distance conditions showed that SMA was activated 
only during the temporal task, and, furthermore, activity in 
this region was positively correlated with stimulus duration, 
but not distance. Like the earlier discussed CNV results, 
these results were interpreted to mean that the SMA func-
tions as an active accumulator of temporal information.

As mentioned, the use of comparison tasks is rarely uti-
lized in EEG or MEG studies, rendering it possible that 
observed differences are not due to differences in timing, but 
rather due to differences in auxiliary processes that correlate 
with the length of the perceived intervals (e.g., changes in 
response caution due to the changes in hazard rate). In the 
current study, we utilized a comparison task to investigate 
differences in EEG patterns between timing and non-timing 
tasks that share most other properties. Participants were 

asked to compare two sequentially presented durations and 
indicate whether the second duration was longer or shorter 
than the first. The durations were presented as dynamic dis-
plays of blue dots appearing and disappearing on a black 
screen, together forming a cloud of dots (see Fig. 1; Lam-
brechts, Walsh, & Van Wassenhove, 2013, for a similar task 
design). Each stimulus was characterized by its duration and 
the total number of dots which it contained. In each trial, 
either the first or the second stimulus was always the stand-
ard stimulus (i.e., lasting for the standard duration and con-
taining the standard number of dots), while the other stimu-
lus could take on one of six comparison intervals/number 
of dots. In half of the trials, participants were asked to make 
judgements on numerosity for the first and second stimulus 
instead of the temporal-judgement task. Crucially, the same 
stimuli were used in both tasks to match for task difficulty, 
accumulative nature, sustained attention to the stimuli, and 
working memory demands. Furthermore, non-timing- and 
non-numerosity-related cognitive processes (e.g., decision-
making or preparation of motor responses) are assumed to 
be similar in both conditions.

This paradigm will allow us to assess whether any 
observed CNV differences are unique to timing or whether 
they are shared by both tasks and thus represent more gen-
eral processes. Apart from assessing the contribution of the 
CNV, a time-domain signal, to timing-specific processes, 
this setup also allows for determining the contribution of 
signals in the time–frequency domain. This is specifically 
relevant as recent explorations of oscillatory activity in the 
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Fig. 1  Experimental design. In this classical comparison task, partici-
pants had to judge whether the second stimulus was longer or shorter 
than the first stimulus (time dimension), or consisted of fewer or more 
dots (number dimension). Participants were cued before sub-blocks 
of eight trials which dimension would be the target dimension for 
the next trials. Stimuli consisted of clouds of small blue dots which 
appeared and disappeared dynamically on the screen. Single trials 
started with a “Please blink!” instruction to reduce eye movement 
artifacts during stimulus presentation. Either S1 or S2 was always the 
standard stimulus, lasting for 1.8 s and consisting of 30 dots in total, 
while the other stimulus could take on one of six comparison magni-
tudes in both dimensions
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frequency domain in timing-tasks have suggested that tim-
ing is associated with activity in different frequency bands 
(Kononowicz, & van Wassenhove, 2016; Wiener, & Kanai, 
2016). Frequency bands that have been associated with 
interval timing or time-dependent tasks are theta–power 
(temporal-order maintenance in working memory: Hsieh, 
Ekstrom, & Ranganath, 2011; Roberts, Hsieh, & Ranganath, 
2013), alpha-power and -phase (temporal prediction: Rohen-
kohl, & Nobre, 2011; Samaha, Bauer, Cimaroli, & Postle, 
2015); (duration maintenance in working memory: Chen, 
Chen, Kuang, & Huang, 2015), and beta-power (beta oscil-
lations are correlated with duration estimates: Kulashekhar 
et al., 2016; beta-power measured at the onset of an interval 
production predicts produced duration: Arnal, Doelling, & 
Poeppel, 2015; Kononowicz, & van Rijn, 2015; Kononow-
icz, & van Rijn, 2014b). Yet, as for the time-domain studies 
discussed above, no control condition was present to distin-
guish pure timing signals from auxiliary processes.

To summarize, here, we will compare differences 
observed in EEG voltage (i.e., in the time-domain) and 
EEG power (i.e., in the time–frequency domain) between the 
processing of temporal and numerical information to reveal 
which EEG components are unique to time processing. As 
the processing of temporal and numerical information is 
based on identical stimuli, with similar instructions, any 
observed differences between both conditions are attribut-
able to the differences between time and number processing, 
elucidating the components that are specific to the process-
ing of time.

Materials and methods

Participants

For the initial sample 27 healthy participants with normal 
or corrected-to-normal vision were recruited. They received 
partial course credits or a financial compensation of 15 euros 
for their participation. Informed consent as approved by the 
Ethical Committee Psychology of the University of Gronin-
gen (identification number 15104-NE) was obtained before 
testing. The data of five participants were not included in the 
analysis because of excessive artifacts in over 30% of the tri-
als. Because of creating subgroups of participants in the post 
hoc analysis, we extended the sample by 28 participants, of 
which six were excluded from the analysis because of arti-
facts. The final sample comprised data of 44 participants (38 
right-handed and 29 female) aged between 18 and 29 years 
(M = 21.77 years).

Stimuli and experimental design

Clouds of dynamically appearing and disappearing blue dots 
presented within a circular area around the fixation cross 
served as stimuli. The duration of each stimulus was marked 
by the appearance of the first dots (onset) and disappearance 
of the last dots (offset). The number of dots was determined 
by the total number of unique dots presented. Each stimulus 
could vary simultaneously and independently in duration, 
referred to as time, and in the number of dots displayed dur-
ing the duration. We chose to present the numerosity dimen-
sion dynamically over time to equate the two tasks as much 
as possible—including the accumulative nature timing-tasks 
inherently entail (Coull et al., 2015; for similar task designs, 
see Lambrechts et al., 2013; Martin, Wiener, & van Was-
senhove, 2017).

In a comparison, task participants had to judge whether 
the second stimulus (S2) presented in a trial was shorter or 
longer (time dimension) or consisted of more or fewer dots 
(number dimension) than the first stimulus (S1), whereby 
either S1 or S2 was always the standard stimulus. Partici-
pants were cued at the start of each sub-block of 8 trials 
whether they had to make judgements on time or on number 
throughout that sub-block. Figure 1 shows a visual depiction 
of an experimental trial; in addition, a video demonstration 
can be found online at osf.io/usjh4.

The lifetime of each dot (i.e., the interval between appear-
ance and disappearance of the dot) was sampled from a uni-
form distribution between 0.4 and 0.8 s. Multiple dots could 
be visible at the same time, and it was ensured that at least 
one dot would be on screen at any moment during the inter-
val. Dots had a size of 0.1 degree of visual angle (5 px), 
and appeared within a virtual ring with an outer radius of 
2.8 (150 px) and an inner radius of 0.9 (50 px) degree of 
visual angle around the fixation cross. Positions of single 
dots within one trial were chosen randomly, with the con-
straint that dots could not overlap in space (i.e., they were 
separated by at least 0.2 degree of visual angle (10 px)). The 
experiment was run in Matlab 7.13 (The MathWorks) using 
the Psychophysics toolbox version 3.0.12 (Brainard, 1997) 
in Windows 7 (version 6.1).

The standard stimulus  (TSNS) lasted 1.8 s and consisted 
of 30 dots. Thus, the standard stimulus was always  TSNS 
in both time- and number-trials. The probe stimuli in both 
dimensions took six possible magnitude values defined as 
1.1−4, 1.1−2, 1.1−1, 1.11, 1.12, and 1.14 times the standard 
magnitude2 (hereafter referred to as  T1,  T2,  T3,  T4,  T5, and 
 T6 for time magnitudes, and  N1,  N2,  N3,  N4,  N5, and  N6 for 

2 Durations were rounded to the second decimal (to ensure precise 
presentation timing) and number of dots was rounded to the nearest 
integer.
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number magnitudes). Probe stimuli can be further catego-
rized as congruent (i.e., both dimensions vary in the same 
direction, e.g., shorter and fewer dots as in stimulus  T1N2) 
and incongruent (i.e., dimensions vary in different direc-
tions, e.g., shorter and more dots as in stimulus  T1N4).

It would seem natural to independently select the dura-
tion and the number of dots of non-standard stimuli. This 
would be an appropriate procedure for static stimuli, but, for 
the dynamic stimuli used in this experiment, such a proce-
dure would generate large fluctuations across non-standard 
stimuli in the average rate of drop appearance/disappearance, 
which corresponds closely to the average number of actually 
visible drops at any moment. More importantly, such fluc-
tuations in this salient emergent feature would be strongly 
correlated with fluctuations in both duration (r = − .66) and 
number of drops (r = .70). As a consequence, participants 
might opt to base their judgments, in both the time-task 
and the number-task, on the average rate of drop appear-
ance instead of on the cued dimension, and still perform 
quite accurately. This potential problem can be effectively 
addressed only by allowing some degree of positive depend-
ence between duration and number of dots in constructing 
non-standard stimuli—that is, some compromise is required 
to balance the two mutually incompatible desiderata of low 
correlations between average rate and time and number on 
one hand, and a low correlation between time and number on 
the other. Such a compromise was achieved by conditional 
constrained random sampling of the uncued magnitude of 
the non-standard stimulus. Specifically, the uncued magni-
tude was chosen randomly from a weighted uniform distri-
bution. Weights that we finally decided on were 0.8 for the 
same magnitude as the cued magnitude, and 0.75, 0.55, 0.25, 
0.05, and 0 for magnitudes with increasing distance from 
the cued magnitude (hence,  T1N6 or  T6N1 did not occur in 
the experiment). Using these weights, we simulated 10,000 
stimuli and found a correlation between time and number 
of r = .51, and a correlation of r = .50 between number 
(r = − .47 for time) and rate of drop appearance. We deemed 
this compromise acceptable, as these unavoidable correla-
tions would seem sufficiently small to ensure that average 
accuracy would be sufficiently compromised if judgments 
would be based on the uncued dimension or on average rate 
instead of on the cued dimension. The script running this 
simulation and additional ones exploring different ways to 
combine cued and uncued magnitudes can be found online 
at osf.io/usjh4.

Procedure

Electroencephalograms were recorded, while participants 
were comfortably seated with their heads positioned on a 
chin rest. Stimuli were displayed on a 1280 × 1024 LED-
based monitor screen (Iiyama ProLite G2773HS) with a 

refresh rate of 100 Hz. Participants were seated approxi-
mately 100 cm away from the display.

The experiment was divided into four blocks; each block 
consisting of 80 trials. Within each block, time- and num-
ber-trials were alternating in sub-blocks of eight trials each. 
The order of these sub-blocks was counterbalanced between 
participants. Before each sub-block, participants were cued 
whether they had to make judgements on time or on number. 
In each block, in half of the time-trials,  TS was presented 
first (i.e., as S1); in the other half,  TS was presented second 
(i.e., as S2). The order of trials was randomized. The probe 
stimulus in each of the two conditions  (TS as S1 and  TS as 
S2) was longer than  TS in half of the trials  (T4–T6), and 
shorter in the other half  (T1–T3). Out of the 40 time-trials, 
 T2–T5 appeared eight times each as the probe stimulus;  T1 
and  T6 appeared four times each. The same distribution held 
for number-trials.

Figure 1 shows a visual depiction of an experimental trial. 
Each trial started with a “Please blink!” instruction displayed 
for 1.2 s, followed by the presentation of a grey fixation cross 
for a duration sampled from a uniform distribution between 
0.8 and 1.2 s. Then, S1 and S2 were presented consecutively 
with an inter-stimulus-interval sampled from a uniform dis-
tribution between 1.2 and 1.6 s. The fixation cross remained 
on screen for another uniformly sampled 0.8–1.2 s before the 
response screen appeared and stayed until a response was 
given. Participants were instructed to press S on a conven-
tional US-Qwerty keyboard if they perceived S2 as shorter 
or consisting of fewer dots than S1, and L if they perceived 
S2 as longer or consisting of more dots than S1. A blank 
screen appeared for a uniformed sampled 0.8–1.2 s before 
the next trial started.

Behavioral data analysis

Proportions of “longer”/“more” responses were computed 
for each participant, dimension, and magnitude separately. 
For each participant, data were then fitted to a logistic func-
tion for the two dimensions separately using the Psignifit 
toolbox version 3.0 (Fründ, Haenel, & Wichmann, 2011) 
in Matlab 8.5. As a measure of response accuracy, we com-
puted the Weber Ratio (WR) from the logistic functions. The 
Weber Ratio was computed as half the distance between val-
ues that support 25 and 75% of “longer” (“more”) responses 
normalized by the Point of Subjective Equality following 
Lambrechts et al. (2013). A WR closer to 0 indicates higher 
response accuracy. To test whether the time- and number-
task were equated in difficulty, paired-sample t tests com-
paring WRs in the two dimensions were performed. For all 
results, we calculated Bayes Factors to quantify the evidence 
in favor of the null hypothesis using the ttestBF function 
from the BayesFactor package in R (Morey, Rouder, & 



356 Psychological Research (2020) 84:352–369

1 3

Jamil, 2014) using the default (Cauchy) prior scaling of 
√

2∕2.The evidence for  H0 over  H1 will be denoted as  BF01.

EEG data acquisition and preprocessing

EEG signals were recorded from 30 Ag/AgCl electrodes 
placed at AFz, F3, F1, Fz, F2, F4, FC5, FC3, FC1, FCz, 
FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, 
CPz, CP2, CP4, P3, Pz, P4, O1, and O2 (WaveGuard EEG 
cap, eemagine Medical Imaging Solutions GmbH, Berlin, 
Germany), POz (ground electrode), and additionally from 
left and right mastoids. Online reference was set to the 
average of all 30 electrodes. The sampling rate was 500 Hz 
(TMS International, no online filters, impedances kept below 
10 kΩ). The electrooculogram was recorded from vertical 
and horizontal bipolar montages to measure blinks and eye 
movements.

Offline data analysis was performed using FieldTrip 
(version 20160727; Oostenveld, Fries, Maris, & Schof-
felen, 2011) and customized Matlab scripts. EEG record-
ings were rereferenced to the averaged mastoids; bandpass 
filtered between 0.01 and 80 Hz using a Butterworth IIR 
filter. Epoched data (− 0.8 to 2.4 s, time-locked to the onset 
of the standard stimulus) were corrected for artifacts (eye 
movements, noisy channels) using independent compo-
nent analysis. Subsequently, epochs containing a signal 
range larger than 120 µV in any EEG channel were auto-
matically detected and excluded from further analysis (on 
average 9.84% (95% CI [8.32 11.35]) of all 320 trials were 
discarded) and data were downsampled to 250 Hz. For the 
CNV analysis, epochs were additionally low-pass filtered 
at 5 Hz using the default filter settings in FieldTrip, and the 
average voltage over 0.2 s prior to stimulus onset was used 
for baseline correction.

To examine oscillatory responses, full stimulus epochs 
were analyzed in the time–frequency domain. Single-trial 
time-domain trials were submitted to a time–frequency anal-
ysis based on multitapers. Here, we used Hanning tapers 
with a time resolution of 0.01 s, frequencies of interest were 
set between 2 and 30 Hz in steps of 0.25 Hz, 3 cycles per 
time-window, and frequency smoothing of 1 Hz was used.

EEG data analysis

The main interest of the current study was to identify 
whether differences in processing temporal and numerical 
information could be observed. To facilitate EEG analysis, 
we only looked at standard trials, because standard trials 
always had the same duration and contained a fixed number 
of dots. To test for differences between the time and number 
condition in both the time and time–frequency domain, we 
created linear mixed-effect models (LMMs, lme4 package, 
version 1.1-10; Bates, Mächler, Bolker, & Walker, 2014) in 

R version 3.2.2 (R Development Core Team, 2008) entering 
amplitude averaged over the last 0.6 s before stimulus off-
set (1.2–1.8 s) and averaged over a central electrode cluster 
(FCz, C1, Cz, and C2) for each trial and participant as the 
dependent variable. We chose this particular time-window 
and channel selection based on the previous literature (e.g., 
Macar et al., 1999). Condition (time, coded as 0.5, or numer-
osity, coded as − 0.5) and position of standard (standard as 
S1, coded as − 0.5, or S2, coded as 0.5), as proposed by 
Bausenhart, Dyjas, & Ulrich (2015) and Dyjas, Bausenhart, 
& Ulrich (2012, 2014), were entered as predictors, while 
participant was entered as random intercept. We also tested 
more complex models incorporating information on the non-
standard stimulus, but these models were not favored over 
the simpler models reported here.

For the analysis of time–frequency responses, the same 
model specifications were used, with the exception of the 
dependent variable. Here, we entered power averaged over 
the same time-window and electrode cluster as for the CNV 
analysis and for different frequency bands separately (delta: 
2–4 Hz, theta: 4–8 Hz, alpha: 8–15 Hz, beta: 15–30 Hz).

In addition to this simple random-effects model, we also 
ran more complex random-effect models including random 
slopes for those fixed-effect factors that reached significance. 
As discussed by Bates et al. (2015), full random-effect mod-
els are often too complex to be accurately fitted by the data 
and do not converge, but including random effects for sig-
nificant fixed effects does prevent spurious reporting of fixed 
effects. Whenever the more complex random-effects model 
is favored over the simple random-effects model, we report 
the complex random-effects models. Furthermore, for all 
fixed factors in the LMMs, we used Bayesian analyses to 
quantify the evidence in favor of the null hypothesis. To 
this end, we used the Bayesian Criterion Information (BIC) 
calculated for the model including the fixed factor and for 
the model without the factor as described in Wagenmakers 
(2007).

Results

Behavioral data

Following Lambrechts et al. (2013), we will focus on the 
Weber Ratio for all analyses, but analyses based on ‘propor-
tion correct’ trials yielded the same pattern of results (for 
details, see osf.io/usjh4). Behavioral performance (Fig. 2) 
shows that response accuracy, measured by the Weber Ratio 
(Mtime = 0.14, 95% CI [0.12, 0.16]; Mnumber = 0.17, 95% CI 
[0.15, 0.20]), was lower in the time-task (t(43) = − 2.28, 
p = .03,  BF01 = 0.06 ± 0%), suggesting that the number-task 
was more difficult for participants than the time-task.
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Time‑domain EEG signals

Figure 3A shows the ERPs elicited by the standard stimulus 
occurring as S1 or S2 in the time and number condition. 
An overview of the results of the statistical analyses can be 
found in Table 1. Visual inspection of the ERP responses 

suggests that there is an overall higher onset ERP occurring 
0.3–0.4 s after stimulus onset if the standard was presented 
as S1 compared to presentation as S2. LMM analysis of the 
CNV amplitude in the time-window spanning the last 0.6 s 
of stimulus presentation revealed that dimension influenced 
the magnitude of the CNV, with a more negative ampli-
tude if the dimension is time and if the standard stimulus 
is presented as the second stimulus within a trial (visually 
depicted in Fig. 3B). Notably, no signs of CNV resolution 
(i.e., reversal of the negative trend of EEG signals after stim-
ulus offset) can be seen in standard as S2 trials.

Time–frequency EEG responses

Figure 4 visually summarizes the results of the time–fre-
quency analysis. The same time-window as in the CNV 
analysis was used in LMM analyses testing whether power 
in specific frequency bands, including delta-, theta-, alpha-, 
and beta-bands, is modulated by dimension, position of 
standard or their interaction (summary of results can be 
found in Table 1). Results show that power in alpha- and 
beta-band is modulated by the position of the standard. Spe-
cifically, we found decreased alpha- and beta-power if the 
standard was presented as S2 (see Fig. 4, bottom row). No 
effects of dimension were found, and Bayes’ factors suggest 
that this is a convincing null result.

Intermediate discussion

The current study aimed to investigate differences in EEG 
time and time–frequency domain signals between the pro-
cessing of temporal and numerical information. We will save 

Fig. 2  Behavioral performance. Psychometric curves and behav-
ioral data depict overall performance in the time- and number-task. 
No statistically significant differences were found when comparing 
response accuracy (measured by the Weber Ratio, WR). For display-
ing purposes, psychometric curves were plotted using fitting param-
eters averaged across participants. Errors and error bars depict 95% 
confidence intervals

A B

Fig. 3  Time-domain signals. A Time courses of neural responses 
while processing the standard stimulus, averaged over central elec-
trodes (FCz, C1, Cz, and C2) and plotted separately for both dimen-
sions and positions of standard. Grey area marks the duration of stim-
ulus presentation, while the dark grey area marks the time-window 

over which amplitude was averaged (B) and used for statistical analy-
sis. B Amplitude averaged over the last 0.6 s of stimulus presentation 
(1.2–1.8 s). Data depicted in B were used for model analysis of CNV 
amplitude. Error bars depict 95% confidence intervals
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the discussion of our findings concerning the EEG data for 
the general discussion, and directly turn to the behavioral 
findings and their implications for the post hoc analyses 
described in the following section.

Typically, neuroimaging studies contrasting time with 
another dimension do not analyze behavioral data in great 
detail (but, see Coull et al., 2015). However, the subjec-
tively perceived duration of a specific event is theorized to 
be influenced by other dimensions of the very same event 
(e.g., Walsh, 2003, 2014) in very similar task designs as 
the one employed in the current study. One well-studied 
example of how our subjective experience of time can be 
distorted is the effect of size on time in the visual domain: 
perceived duration increases as a function of increasing spa-
tial magnitude, or, bigger stimuli are perceived as lasting 
longer (Cai, & Connell, 2016; Casasanto, & Boroditsky, 
2008; Xuan, Zhang, He, & Chen, 2007). Another example 
is the effect of numerical magnitude on time perception: 
larger digit magnitudes during stimulus presentation lead to 
overestimated duration judgments (e.g., if the digits 9 and 
2 are presented for the same interval on different trials; the 
interval corresponding to digit 9 will be overestimated) (Cai, 
& Wang, 2014; Oliveri et al., 2008). However, using differ-
ent experimental paradigms or changing perceptual modality 
can change the direction of such interference effects. For 
example, Cai and Connell (2016) showed that when spatial 
information is presented to our haptic senses and time infor-
mation via auditory channels, time affects spatial judgments, 
but not vice versa. Lambrechts, Walsh, and van Wassenhove 
(2013) found that when time, space, and number information 
are presented dynamically (i.e., perceptual evidence has to 
be accumulated over time in all three dimensions), duration 
judgments are resilient to spatial and numerical interfer-
ences, but time itself does influence judgments of the other 
two dimensions.

One way to experimentally test interactions between dif-
ferent dimensions is to manipulate congruency (e.g., Dor-
mal, & Pesenti, 2013; Dormal, Seron, & Pesenti, 2006). 
For example, when experimental stimuli contain a time and 
space dimension, in a congruent trial, both dimensions vary 
in the same direction compared to a standard or comparison 
stimulus (e.g., longer and bigger). In an incongruent trial, 
the dimensions vary in opposite directions (e.g., shorter and 
bigger) and the target dimension is likely to be affected in 
the direction of the uncued condition (e.g., if time were the 
target dimension, the duration would likely be overestimated 
because of the influence of the dimension space). As con-
gruency was also manipulated in the current study, the influ-
ence of the uncued condition could be assessed based on the 
behavioral responses.

Taken together, these behavioral findings indicate that 
participants might not only process information of the cued 
dimension, but also take into account information of the Ta
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uncued dimension. Furthermore, direction and magnitude 
of congruency effects depend on the specific task design 
(e.g., which dimensions were used, whether information had 
to be accumulated or not) and might also differ between par-
ticipants (i.e., some participants show stronger congruency 
effects than others). Especially, in neuroimaging studies in 
which a control task involving another dimension is simply 
subtracted from the time-task, either the paradigm needs to 
ensure that participants only use temporal information in 
the time condition and information of the control dimension 
in the control condition, or any observed neural differences 
should be weighted by the influence each of the dimensions 
has on the observed performance. As the nature of these 
tasks makes it practically impossible to ensure attention to 
just one dimension, it will be necessary to assess the rela-
tive usage of each of the dimensions when interpreting the 
neural signatures.

We conducted extensive post hoc analyses taking into 
account individual differences based on behavioral perfor-
mance (i.e., congruency effects), and incorporated these 
results in the EEG analysis. In doing so, we can carefully 
disentangle the neural processing of temporal versus numeri-
cal information.

Post hoc analyses

Maximum‑likelihood estimation (MLE) procedure

Because participants could potentially also use tempo-
ral information when judging number, and, respectively, 
numerical information when judging time, we used an 
MLE procedure to estimate, per participant, how each 
dimension was weighted in determining the response, 
separately for both task conditions. The model used the 
weighted sum of temporal and numerical evidence for 
each trial (evidencetotal, see Eq. 1); that is, parameter esti-
mation was stimulus driven. Temporal (evidencetime) and 
numerical evidence (evidencenumber) was determined by 
subtracting the magnitudes of the standard stimulus from 
the magnitudes of the non-standard stimulus and subse-
quently scaled from − 1 to 1 by dividing through maximal 
evidence possible (i.e., the more different the non-stand-
ard stimulus magnitudes were from the standard stimulus 
magnitudes, the more evidence). The weights ωtime and 
ωnumber were estimated during the MLE procedure. Evi-
dencetotal was used to compute the probability of responses 
(shorter/fewer or longer/more) based on a standard normal 

Fig. 4  Time–frequency domain signals. Time–frequency domain sig-
nals averaged over central electrodes (FCz, C1, Cz, and C2) and plot-
ted separately for both dimensions (first two rows) and positions of 
standard (first two columns). Data are not baseline corrected. Dashed 

lines mark stimulus onset and offset. The third column shows power 
difference between standard position S1 and S2. Likewise, the third 
row shows power differences between time and number dimension
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distribution. The final weights were those that maximized 
the likelihood of the given series of responses over trials:

Using this procedure, we obtained a weight for time 
and a weight for number for each task condition and par-
ticipant. In an ideal case, assuming participants who com-
pletely follow instructions and ignore the irrelevant dimen-
sion, we find a high weight for time and a low weight for 
number if the task was to judge time, and the reversed 
pattern if the task was to judge numerosity.

Figure 5 shows the ω-estimates for each participant in 
each condition. Participants showing no interference effects, 
for example, would have a high ωtime and a low ωnumber in 
the time condition (i.e., their data would represent a dot at 
the positive end of the x-axis and close to the x-axis with 
regard to the y-component), and the reversed pattern in the 
number condition. Depending on the model output, we cat-
egorized participants into two groups: for a “Dream-Team”, 
we selected those participants who took, in both conditions, 
the relevant dimension (much) more strongly into account 
than the irrelevant dimension (see the shaded grey areas 
in Fig. 5, post hoc defined as  cos2(αmax) ≥ 0.8). Based on 
this selection criterion, we classified 20 participants as 
Dream-Team members and the remaining 24 participants 
as non-Dream-Team members. Differences in time- and 
number-weights between Dream-Team and non-Dream-
Team membership are more pronounced in the time- than 
in the number-task. Bayesian two-sample t tests showed that 
differences are substantial if based on the time-task (ωtime: 
 BF01 = 0.01 ± 0%, ωnumber:  BF01 = 0.01 ± 0%), but inconclu-
sive if based on the number-task (ωtime:  BF01 = 2.00 ± 0.02%, 
ωnumber:  BF01 = 2.35 ± 0.02%).

(1)
evidence

total
= �

time
× evidence

time
+ �

number
× evidence

number
.

In the post hoc behavioral and EEG analysis, we ana-
lyzed data of the Dream-Team and non-Dream-Team groups 
separately.

Behavioral congruency effects

Congruency effects are often tested by comparing the point 
of subjective equality, which can be calculated from individ-
ually fitted psychometric curves, across different conditions 
(e.g., Lambrechts et al., 2013). However, fitting individual 
psychometric curves for congruent and incongruent trials 
separately is problematic, because not all data points are 
available for every participant due to the stimulus sampling 
procedure employed in this study. Instead, we submitted 
the responses (“longer” = 1, “shorter” = 0) to a logistic 
generalized linear mixed-effect model in R. We entered a 
factor dimension (0.5 when participants were asked to pay 
attention to time, − 0.5 when attention was directed to num-
ber) and a factor encoding the position of standard (coded 
as − 0.5 if the standard appeared as S1, and as 0.5 if the 
standard appeared as S2) as fixed effects. In addition, we 
added the magnitude of the cued dimension (scaled from 
− 3, corresponding to  T1/N1, to 3, corresponding to  T6/N6), 
and the magnitude of the uncued dimension (same coding 
as for the cued magnitude) as fixed effects. Apart from test-
ing the main effects of all entered factors, for both cued and 
uncued magnitude, we added the two-way interaction with 
dimension. Including this interaction allows for assessing the 
differential influence of each of the two different dimensions 
on the effect of the cued/uncued dimension on the recorded 
response. Participant was entered as random intercept.

As previously described, we report outcomes of more 
complex random-effects models if possible and if the more 
complex model is favored over the simple random-effects 
model. For all fixed factors in the LMM, we used Bayesian 
analyses to quantify the evidence in favor of the null hypoth-
esis based on BIC, as described previously.

Post hoc results

Behavioral data

Behavioral performance (Fig. 6B, C, left column) shows that 
the Weber Ratio as a measure of response accuracy (Dream-
Team: Mtime = 0.11, 95% CI [0.09, 0.14]; Mnumber = 0.17, 
95% CI [0.14, 0.20]; non-Dream-Team: Mtime = 0.16, 95% CI 
[0.12, 0.19]; Mnumber = 0.17, 95% CI [0.14, 0.21]), did vary 
between tasks for Dream-Team participants, but not for non-
Dream-Team participants (Dream-Team:  BF01 = 0.34 ± 0%; 
non-Dream-Team:  BF01 = 3.49 ± 0.04%).

Table 2 presents the results of LLM analyses on all par-
ticipants combined (row 1, “all”), and for both Dream-Team 

Fig. 5  MLE output for the two task conditions: time and number. 
Each dot represents the estimated weights of one participant. Shaded 
grey area marks the selection criterion for Dream-Team membership, 
defined as  cos2(αmax) ≥ 0.8. For a participant to be grouped in the 
Dream-Team, their dot needs to fall into the grey area in both condi-
tions
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(row 2, “DT”) and non-Dream-Team (Row 3, “nDT”). 
The LLM of all participants estimated the likelihood of a 
“more” response as a function of the entered predictors. 
The first column indicates that, for all (subsets of) partici-
pants, dimension did not influence the proportion of longer 

responses. The position of the standard stimulus (column 
2) influences the responses for all (subsets of) participants, 
with the standard presented as the first stimulus increasing 
the likelihood of a longer response (i.e., for all participants, 
− 0.5 × − 0.46 = 0.23; cf. Bausenhart, Dyjas, & Ulrich 2015; 

A

B

C

Fig. 6  Overall A, Dream-Team B, and non-Dream-Team C behavioral 
performance. Parameters of psychometric fits depicting overall per-
formance in the time- and number-task were averaged over partici-
pants. In none of the groups, statistically significant differences were 
found when comparing response accuracy (measured by the Weber 
Ratio, WR). Psychometric curves and behavioral data depict congru-
ency effects for time and number separately. In a congruent trial, the 

magnitudes of the non-standard stimulus varied in the same direc-
tion (e.g., shorter duration and fewer dots than the standard stimu-
lus), in an incongruent trial magnitudes varied in opposite directions, 
respectively (e.g., shorter duration and more dots than the standard). 
Psychometric curves depicting congruency effects for time and num-
ber were fitted using the pooled data of all participants within each 
group. Errors and error bars depict 95% confidence intervals
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Dyjas, Bausenhart, & Ulrich 2012, 2014). The magnitude 
of the cued dimension also influences the likelihood of a 
“more” response in all (subsets of) participants, demonstrat-
ing that participants, indeed, took into account the presented, 
cued magnitude. The last column also describes an effect 
that is similar for all (subsets of) participants, as, for all par-
ticipants, the effect of the uncued dimension is conditional 
on which dimension was cued. If the cued dimension was 
time (coded as 0.5), the magnitude of the number dimension 
strengthens the effect of the cued dimension when congru-
ent, demonstrating a strong congruency effect. However, 
when the dimension is number (coded as − 0.5), any main 
effects of congruency are diminished. This can be observed 
in Fig. 6, rightmost column, as congruency does not have 
a strong impact on “proportion more” in either set of par-
ticipants. The middle column of Fig. 6 suggests stronger 
congruency effects for the non-Dream-Team than for the 
Dream-Team. This is reflected in Table 2, column 4 and 
5, as the magnitude of the uncued dimension has a strong 
effect in the non-Dream-Team, and no effect  (BF01 = 57.12) 
for the Dream-Team (column 4). The interaction between 
dimension and magnitude cued dimension strengthens this 
interpretation, as if the cued dimension is time, the Dream-
Team takes the magnitude of the cued dimension even more 
into account (as the estimated beta is positive). On the other 
hand, the non-Dream-Team incorporates the time magnitude 
to a lesser extent, as their responses in the time-cued trials 
are driven to a larger degree by the numerosity dimension. 
Thus, Dream-Team members were more successful in ignor-
ing the irrelevant information of the uncued dimension and 
based on their responses mainly on task-relevant informa-
tion, as was the intention of the task.

Time‑domain EEG signals

CNV time courses depicted in Fig. 7A show a trend towards 
an overall more negative CNV development in the Dream-
Team compared to the non-Dream-Team. This trend is also 
visible in Fig. 7B, which shows CNV amplitude averaged 
over the last 0.6 s of stimulus presentation. Results of the 
model analysis conducted separately for Dream-Team and 
non-Dream-Team members are summarized in Table 3. The 
previously found significant influence of the factor dimen-
sion is also reflected in the analysis of both subsets of par-
ticipants. However, the effect of the position of the standard 
stimulus was mainly driven by Dream-Team participants.

Time–frequency EEG responses

A summary of the time–frequency responses in the Dream- 
and non-Dream-Team can be seen in Fig. 8. Detailed results 
of the model analysis can be found in Table 3. The pattern of 
significant effects in the Dream-Team and non-Dream-Team Ta
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subgroups is very similar to the one found in the previous 
analysis including all participants. Specifically, we again 
find that alpha- and beta-power decreases if the standard 
stimulus was presented as S2. Notably, when taking Bayes 
Factors into account, the effects found in the alpha-band 
seem to be less substantial in the Dream-Team compared to 
the non-Dream-Team.

Frequentist analyses suggest an effect for Dream-Team 
participants of dimension and position of standard in the 
theta-band; however, Bayes’ factors favor the null (i.e., there 
not being differences between dimensions and position of 
standard).

Discussion

In the present study, an interval-timing task was compared to 
a dynamic numerosity-estimation task in search for EEG sig-
natures that are unique to the processing of temporal infor-
mation. Time-domain EEG results showed a CNV pattern 
in both the time- and numerosity-task that was significantly 
more negatively deflected in the time condition. However, 
as discussed below, a cautious interpretation of this phe-
nomenon is required. No substantial differences between 
the processing of temporal and numerical information were 
found when looking at time–frequency domain signals. Even 
when selecting a subset of participants who more accurately 
followed instructions (i.e., those who mainly used temporal 

information in the timing task and numerical information 
in the number-task), the pattern of results did not change.

Figure 2 and the left-most column of Fig. 6 show the 
behavioral performance for both numerosity- and time-tasks. 
The difference in Weber Ratio between numerosity and time 
observed in the overall sample, with numerosity being more 
difficult than time, is driven by the Dream-Team sample, as 
no difference is observed when the performance of the non-
Dream-Team participants is analyzed. This corroborates the 
finding that non-Dream-Team participants take numerosity 
into account in timing trials, even though this negatively 
affects their performance. We did not expect to observe this 
difference, as the parameters of the experimental design 
were based on pilot studies in which performance was non-
distinguishable between conditions.

Individual differences in magnitude of interference 
effects can inform EEG analysis

In neuroimaging studies, when looking for a comparison 
task for a timing task, the choice most often comes down 
to testing another dimension of the same stimulus used in 
the timing task (e.g., distance/time a dot travelled: Coull 
et al., 2015; prevalent color hue/duration of stimuli: Bueti, 
& Macaluso, 2011; Coull et al., 2004), because the two tasks 
are thought to be as similar as possible in terms of cognitive 
processes and demands. However, these tasks are used in 
behavioral experiments to study the magnitude interference 

A

B

Fig. 7  Time-domain signals for Dream-Team (solid lines) and non-
Dream-Team (dashed lines) members. A Time courses of neural 
responses while processing the standard stimulus, averaged over 
central electrodes (FCz, C1, Cz, C2) and plotted separately for both 
dimensions, positions of standard, and Dream-Team membership. 
Grey area marks the duration of stimulus presentation, while the dark 

grey area marks the time-window over which amplitude was averaged 
(B) and used for statistical analysis. B Amplitude averaged over the 
last 0.6 s of stimulus presentation (1.2–1.8 s). Data depicted in B was 
used for post hoc model analysis of CNV amplitude. Error bars depict 
95% confidence intervals
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A

B

Fig. 8  Time–frequency domain signals comparing Dream-Team and 
non-Dream-Team members. Data were averaged over central elec-
trodes (FCz, C1, Cz, and C2) and plotted separately for both dimen-
sions (first two rows) and positions of standard (first two columns) in 

A and B. Data are not baseline corrected. Dashed lines mark stimu-
lus on- and offset. The third column shows power difference between 
standard position S1 and S2. Likewise, the third row shows power 
differences between time and number dimension
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effects, that is, how a task-irrelevant stimulus dimension 
influences the perceived magnitude of the task-relevant 
dimension (Walsh, 2003, 2014). Studies have typically 
yielded asymmetrical patterns of interference effects, with 
time estimation being affected by the magnitude of other 
dimensions, while time itself does not affect the perceived 
magnitude of other dimensions at all, or to the same extent 
(e.g., spatial magnitude/time: Cai, & Connell, 2016; Casas-
anto, & Boroditsky, 2008; Xuan et al., 2007; numerical mag-
nitude/time: Cai, & Wang, 2014; Oliveri et al., 2008). If all 
stimulus dimensions are presented in an accumulative man-
ner similar to time, time has been reported to be resilient to 
spatial and numerical interference (Lambrechts et al., 2013), 
a finding not supported by our results: in the current study, 
we found sizeable interference effects, and large individual 
differences in the magnitude of these interference effects, 
revealed by an MLE procedure estimating to which extent 
temporal and numerical evidence was taken into account. 
Although, in general, our data suggested that judgements 
on time were more likely to be affected by numerosity than 
the other way around, we identified a subset of participants 
based on the MLE estimates who showed little or no inter-
ference effects in either dimension (i.e., those participants 
seem to have selectively and rather exclusively used tem-
poral information to make judgements on time and numeri-
cal information to make judgements on numerosity). The 
large inter-subject variability in interference effects could 
potentially also explain ambiguous findings about direction-
ality of these effects (e.g., as reported in Lambrechts et al., 
2013), in that they could, to a certain extent, be caused by 
participant sampling. Further, the direction of interference 
may depend on which and how many other dimensions are 
tested (e.g., integrating information of three dimensions as in 
Lambrechts, Walsh and van Wassenhove (2013) work might 
differ from integrating only two dimensions as in the current 
study), the exact paradigm (e.g., comparison, equality judge-
ments, or reproduction tasks, as is discussed in Matthews, 
& Meck, 2016), and the nature of the task (e.g., whether 
the magnitude of the other dimension needs to be accumu-
lated or not). More extensive research on the effect of task 
design on interference effects could potentially resolve these 
ambiguous findings.

Another insight gained from the MLE results is that, con-
trary to what was intended in this task, many participants 
did use task-irrelevant information of the uncued dimension 
when making a judgement on the cued dimension. This also 
means that, in these tasks, not only time but also numeros-
ity is processed in the brain, which undermines the signal 
subtraction method employed in many fMRI studies and in 
the current EEG study. The subtraction method relies on the 
idea that the experimental and the control condition differ in 
the cognitive component of interest, while other cognitive 
processes remain equal (see, also for critique, Friston et al., 

1996). The MLE procedure adopted in the current study 
presents one way to quantify behavioral interference effects 
on a single subject basis and inform subsequent EEG analy-
sis. By selecting the Dream-Team participants based on the 
MLE estimates, we aimed to ensure to compare EEG signals 
during the processing of temporal information with signals 
recorded during the processing of numerical information.

The MLE estimates reflect the degree to which interfer-
ence effects occurred on a single subject basis. However, 
care needs to be taken when interpreting these estimates, as 
the underlying mechanisms could, for example, reflect atten-
tional or decision-making processes. Yet, we would argue 
in favor of the first interpretation: although the task-irrele-
vant dimension could, in principal, cause interference at a 
relatively late decision-making stage (Matthews, & Meck, 
2016), recent research suggests that interference effects not 
only occur in comparison tasks where a decision is clearly 
needed, but also in temporal reproduction tasks which do 
not require to make a direct decision on stimulus properties 
(Chang, Tzeng, Hung, & Wu, 2011; Rammsayer, & Verner, 
2014).

Role of the CNV in timing

CNV patterns commonly observed in timing-tasks were 
apparent in both the time-task and the number-task, but they 
were more pronounced in the time-task. The latter result 
provides some support for the notion that CNV is intimately 
related to the accumulation of temporal information (Ben-
dixen et al., 2005; Durstewitz, 2004; Macar, & Vidal, 2004; 
Macar et al., 1999; Pfeuty et al., 2005). Problematic for this 
notion, however, is the fact that the CNV differences between 
the two tasks were very similar for Dream-Team and non-
Dream-Team participants. This is because as Dream-Team 
participants were found to rely more strongly and exclusively 
on temporal information in the time-task, a relatively more 
pronounced CNV development should have been expected 
for these participants in the time-task, resulting in a larger 
CNV difference between tasks, if CNV specifically reflects 
active accumulation of temporal evidence. Instead, rather 
than specifically tracking the accumulation of time (Kon-
onowicz, & Penney, 2016; Ng, & Penney, 2014; van Rijn 
et al., 2011), these findings provide additional support to 
the notion that CNV reflects a time-critical but more general 
decision processes which might be best characterized as an 
accumulation process over time. This is plausible also in 
light of the nature of the task: by presenting the numerosity 
dimension dynamically, there is a clear temporal component 
not only in the time-, but also in the number-judgement task. 
Because the temporal component is task-critical in the time, 
but not in the number-task, this could explain our finding of 
a more pronounced CNV in the time-task. In fact, within the 
time perception literature, no other study has tested the CNV 
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using a comparison task, although it is known that CNV 
patterns might also play an important role in non-timing 
evidence accumulation tasks (e.g., Boehm et al., 2014).

An interesting difference between the current study and 
other timing-CNV studies is that the stimuli marking an 
interval usually have distinct onset and offset (a circle chang-
ing its color). Here, interval onset and offset were fuzzier 
and less distinctly marked by the appearance and disappear-
ance of only a few dots. This difference could explain why 
we did not see a clear CNV deflection at stimulus offset.

In the analysis as reported here, Dream-Team-ness was 
treated as a discrete grouping factor. However, when it was 
included in model analysis as a continuous measure per par-
ticipant (see also Fig. 5), no qualitatively different results 
were observed (this additional analysis is available online 
at osf.io/usjh4).

Role of neural oscillations in timing

While most of these studies have been largely exploratory, 
that is, they assessed whether there are any bands correlat-
ing with subjective temporal performance, other work has 
explored how oscillatory patterns could be related to tim-
ing at a theoretical level. For example, in a recent exten-
sion of the striatal beat frequency model (Buhusi, & Meck, 
2005; Matell, & Meck, 2000, 2004), the integrative model 
for interval timing and working memory (Gu, van Rijn, & 
Meck, 2015) proposes that working memory and interval 
timing originate from the same underlying oscillatory pro-
cesses. The model predicts that working memory is encoded 
in phase-amplitude coupled gamma–theta oscillations, while 
duration information is encoded in coupled theta–delta oscil-
lations. However, there is no empirical evidence to support 
these predictions, including the current study.

Recent EEG studies have reported evidence, suggesting 
that beta oscillations may play an important role in timing, 
in that power of beta oscillations predicts behavioral perfor-
mance (i.e., whether an interval was over- or underestimated 
in an interval production tasks, Kononowicz, & van Rijn, 
2015). This finding has been replicated using MEG, with the 
addition that beta-power is greater in a temporal-judgement 
task as compared to a color-judgement task (Kulashekhar 
et al., 2016). In the current study, we did not find any dif-
ferences between conditions in the beta-band. In fact, no 
frequency band tested here showed any substantial differ-
ences between the processing of temporal and numerical 
information, also when looking at Dream-Team participants 
exclusively.

The only convincing difference which we found when 
also taking Bayes Factors into account was a decrease in 
alpha and beta-power if the standard stimulus was pre-
sented as S2. This effect was very similar in Dream-Team 
and non-Dream-Team participants. These findings can be 

interpreted as being related to preparation processes. Alpha 
desynchronization has been connected to attentional pro-
cesses (Klimesch, Sauseng, & Hanslmayr, 2007), so that 
lower alpha-power during the presentation of S2 could mean 
that participants were more attentive, because they also had 
to make a decision during that time. Beta desynchronization 
can be interpreted as an effect of motor or response prepara-
tion (Engel, & Fries, 2010; Zhang, Chen, Bressler, & Ding, 
2008), given that S2 was closer to the required response in 
time and that in these trials, a decision could potentially be 
made immediately after the presentation of S1.

Conclusion

We found that depending on the dimension, CNV patterns 
are negatively deflecting, with a more negative CNV if the 
task-critical dimension was time. However, a CNV pattern 
is also visible if the task-critical dimension was number. 
There are at least two possible conclusions for the CNV also 
to occur in the number-task: (1) the CNV reflects a timing 
process, and because of the nature of the task, we also have 
a temporal component in the number-task, or (2) the CNV 
reflects a time-critical process, but not the processing of tem-
poral information per se. In our view, the specific pattern 
of results observed in this study provides stronger support 
for the latter view. Furthermore, we found no differences in 
EEG time–frequency signatures between the processing of 
temporal and dynamic numerical information; that is, the 
components and time-window which we examined are nei-
ther specific to the processing of time, nor to the processing 
of numerosity. There are at least three possible explanations: 
(1) an existing difference between the processing of temporal 
and numerical information in EEG data was not uncovered 
by our analyses (e.g., because on not addressing phase-
amplitude coupling dynamics; see Gu et al., 2015). (2) There 
is no significant difference in our EEG data, because the 
relevant differences are either too subtle to be captured by 
mass-action techniques such as EEG, or, these magnitudes 
may be processed in other, non-cortical structures whose 
electric activity cannot easily be captured with EEG (e.g., 
time has been proposed to be encoded in cortico-basal gan-
glia-thalamic circuits; for a review, see Buhusi and Meck, 
2005 or Gu, van Rijn and Meck, 2015). Or (3) there is only 
one mechanism or system for the processing of magnitudes, 
in general (as proposed in ATOM: A General Theory Of 
Magnitude, see Walsh, 2003, 2014).

An important issue that the current study addresses is 
that the outcome or findings of neuroimaging studies using 
these kinds of magnitude tasks could be misleading if it is 
not carefully assessed what participants actually did. The 
MLE procedure applied here proposes one way to capture 
individual differences in magnitude interference effects, and 
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its outcome can inform analyses of neuroimaging data to 
link brain responses to actual behavior.
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