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A B S T R A C T   

The impact of activation energy in chemical processes, heat radiations, and temperature gradients 
on non-Darcian steady MHD convective Casson nanofluid flows (NMHD-CCNF) over a radial 
elongated circular cylinder is investigated in this study. The network of partial differential 
equations (PDEs) for NMHD-CCNF is developed using the modified Buongiorno framework, and 
the network of controlling PDEs is then transformed into ordinary differential equations (ODEs) 
utilizing the Von Karman method. Finally, the resulting non-linear ODEs are computed using the 
ND-solve approach to produce sets of data to assess the proposed model’s skills, which can then 
be handled using the Bayesian Regularization technique of artificial neural networks (BRT-ANN). 
A novel stochastic computing-based application is being developed to evaluate the importance of 
NMHD-CCNF across a spinning disc that is radially stretched. The novelty and significance of 
results for better understanding, clarity, and highlighting the innovative contributions and sig-
nificance of the proposed scheme. Further, to check the validity of the defined results for NMHD- 
CCNF, error charts, validation, and mean squared error suggestions are employed. The impact of 
multiple physical parameters on concentration, radial and tangential velocities, and temperature 
profiles is shown via tables and figures. Additionally, the results demonstrate that as the For-
chheimer number, Casson nanofluid parameter, magnetic parameter, and porosity parameter are 
strengthened, the radial and rotational nanofluid mobility drops dramatically. The stretching 
parameter, on the other hand, has a parallel developmental trend. The heat generation parameter, 
the thermophoresis process, the thermal radiation parameter, and the Brownian motion of 
nanoparticles can all be increased to give thermal enhancement. On the other side, with larger 
estimates in thermophoresis parameters and the activation energy, there is a noticeable increase 
in the concentration profile.  
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1. Introduction 

Swedish scientist ‘Svante Arrhenius’ coined “activation energy,” meaning “the minimum amount of energy required to initiate a 
chemical process,” in 1889. Oil container design, food manufacturing, synthetical processing, oil coating, and other operations all 
involve mass transfer with activation energy. There are active systems that use chemical substances to activate reactions and create a 
large amount of production. Arrhenius [1] monitors the reaction rate using activation energy as a chemical indicator. Most reactants 
need a lot of energy to overcome a reaction shield. As a result, numerous chemical changes can’t go forward effectively until the 
reactants reach a certain energy level. In these cases, the Arrhenius activation energy is associated with energy variation between the 
regions and reactants. Bestman et al. [2] evaluated the influence of Arrhenius activation energy in the passage of a flammable gas 
through a vertical cylinder in 1991. Mullin et al. [3] investigated basic ideas about Arrhenius rates using analytical and empirical data. 
Shoaib et al. analyze the ferrofluid flow model’s magnetic field and heat source impacts [4]. The flowing and activation energy 
distribution among a set of turning circular surfaces filled with Carreau fluid is considered by Arain [5]. Shoaib [6] explored the Ohmic 
heating effects and energy formation in a Ree-Eyring fluid nanofluidic setup. Jensen et al. [7] demonstrated the levels of energy of 
breakdown and thermodynamic estimates of the temperature and heat of explosion for seventy strong compounds utilizing Density 
Functional Theory. Waqas et al. [8] explored the influence of thermal emission and energy of activation on the mixed convection 
flowing of a third grade nanofluid including swimming organisms across a stretched sheet in the presence of a heat source-sink. Zhang 
et al. [9] looked at the dynamics of nanofluids on a nonlinear permeable extended sheet with Lorentz forces and Arrhenius rates. Abdul 
Maleque [10–12] examined the impact of chemical processes with Arrhenius activation energy on dynamic convection heat and mass 
transfer boundary layer fluid flow, among other discoveries. Olanrewaju [13] studies the thermodynamic second law of an Arrhenius 
kinetic species with a coupled Maxwell magneto-nanofluid in porous material. Bhatti et al. found that magnetic field effect decreases 
entropy in a porous mobile sheet of Powell-Eyring nanofluid flow [14]. It was discovered that heat generation is an increasing function 
for all physical quantities studied. 

Nomenclature 

u,v,w Velocity components (m.s− 1)

υ kinematic viscosity (m2.s− 1)

p Pressure (Pa.s)
M Magnetic parameter 
Sc Schmidt number 
Rd Thermal radiation parameter 
Fr Forchheimer number 
Nt Thermophoresis parameter 
Λ chemical reaction parameter 
L(η),F(η),G(η) Dimensionless velocity components 
r(m),φ(rad),z(m) Cylindrical coordinates 
Pr Prandtl number 
Sh Sherwood number 
Nu Nusselt number 
Γ Temperature difference parameter 
Kc Chemical reaction rate constant (s− 1)

kB Boltzmann constant (J.K− 1)

n Fitted rate constant 
py Casson yield stress (Pa)
a Stretching parameter 
β Casson parameter 
P Porosity parameter 
QT Heat generation parameter 
Nb Brownian motion parameter 
θ(η) Dimensionless temperature 
φ(η) Dimensionless concentration 
Rer Local Reynolds number 
E Activation energy parameter (J.K− 1)

qm Mass flux (kg.m− 2.s− 1)

K Permeability (m2)

BRT-ANN Bayesian Regularization Technique of Artificial Neural Networks 
NMHD-CCNF Non-Darcian steady magnetohydrodynamic Convective Casson Nanofluid Flows  
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Centrifugal compressors, air purification devices, food manufacturing, storage systems, thermal power generation systems, and a 
variety of other moving mechanical devices all experience flow patterns powered by a circular cylinder. Von Karman [15] was a 
founder who used the elegant similarity transformation to minimize the leading equations into a set of ordinary differential equations 
to analyze the flow model over a revolving disc, it was eventually dubbed the Von Karman circling disc movement in principle because 
of the pioneering efforts. Anderson et al. [16] explored the Von Kármán spinning movement of a non-Newtonian power-law fluid 
across a circling disc with the new precise power-law indices range of 1.5–2.0 and found comparable answers. The heat flow of 
Cattaneo-Christov, the Von Kármán circling flow issue, is expanded for Navier’s slip circumstance on the stretched spinning disc media 
[17]. 

A few researchers were reporting issues with the Casson fluid framework owing to suitable estimations for a variety of biological 
and specific real solutions, like melting chocolate, orange juice, and sauces prepared with tomatoes. The Casson fluid displays yield 
stress, and once the applied shear stress is larger than the yield stress, the fluid acts as a Newtonian fluid. The fluid acts like an elastic 
solid when the yield stress is larger than the shear stress [18]. Using Navier’s slip condition, they investigated the concentration, 
velocity, and temperature field of a Casson fluid flow across a spiraling disc. Permeable medium, which has various applications in the 
food industry, construction, and industrial operations [19], seems to be an additional medium that regulates the passage of heat and 
fluid velocity. Although Darcy’s law has historically illustrated the flow features of this medium, the expanded Darcy-Forchheimer 
framework is commonly used for flow with greater speed. 

The modified permeable law can be referred to as Darcy-porous Forchheimer’s model or non-porous Darcy’s model, depending on 
the history of the porosity framework since the eighteenth century. Furthermore, the structure of pore spaces in a medium has 
promising applications in a variety of fields (for example, textiles, environmental safety, chemical filtration, electrical and chemical 
batteries, fuel cells, geotechnical engineering, biophysics, ecotoxicity analyses, and petroleum engineering). In addition to the 
occurrence of ohmic dispersion and a non-uniform source or sink of heat, other noteworthy nanofluid flow findings were clarified in 
Refs. [20–29] for diverse geometrical configurations and physical restrictions. 

Numerous mathematical and computational methods were implemented in recent years for the computational analysis of complex 
problems under variable circumstances, such as regular perturbation [30], differential evolution algorithm [31], HAM [32], and ADM 
[33], but artificial neural networking is the most productive mathematical approach because it provides a higher convergence rate and 
lower mean square errors. In a variety of domains, probabilistic mathematical computing-based algorithms employing neural network 
models are used to resolve linear as well as nonlinear differential equations. Artificial neural networks (ANN) can manage large data 
samples, implicitly identify complicated dynamic associations between dependent and independent variables, recognize all regression 
model connections, etc. In conclusion, ANNs are highly adaptive and effective. They can simulate any complex task since they are 
universal function models. Ongoing studies on intelligent computing structure emphasize stochastic strategies in ferrofluid flow 
through exponentially stretched sheets with thermal energy [34], entropy optimization [35], plasma models [36], fluid dynamic 
models [37–39] and reactive transport model [40]. 

The above citations indicate the presence of numerous studies on the 2D or 3D convective flow pattern of Newtonian or non- 
Newtonian nanofluids passing nearby geometrical designs on a plane, whose calculated explanation has been constructed using a 
Cartesian frame linked to the observed data. The study of mass and heat transport phenomena associated with magnetohydrodynamic 
responsive Von Kármán streams of Casson nanofluids across an isothermal elongated rotating cylinder is quite lacking in nanofluids 
research, and it has however to be addressed thoroughly in the context of Buongiorno’s two-phase methodology [41] and the energetic 
controller scheme. Interested readers can refer to the following papers on fluid flow and heat transfer related studies [55–58]. 

The existence of non-linear thermal flows and the participation of a temperature-dependent source of heat, as well as the resistant 
influence of Darcy-Forchheimer and Lorentz drag forces, add to the originality of the current numerical analysis. The leading 
borderline layer comparisons are generated depending on acceptable, precise conversions and reasonable somatic considerations by 
adding the activation energy impact. After that, the nonlinear differential equations are simply calculated using the ND-solve approach 
to provide sets of data for BRT-ANN. In addition, the collected ND-solve datasets are tabulated and visually shown to give a deeper 
practical understanding of the flow pattern and the consequent transport processes using the current radiative-reactive nanofluids 
system. In this study, we observe that both tangential and radial velocity profiles decrease with the increase in values of the For-
chheimer number, magnetic parameter, and porosity parameter, and both tangential and radial velocity patterns decrease with the rise 
in values of the Casson parameter. With rising values of the stretching parameter, radial velocity increases, whereas tangential velocity 
decreases. The temperature profile is improved by the thermal radiation and heat generation parameters. In temperature and con-
centration profiles, has the opposite impact. As the value rises, so do the temperature and concentration profiles. The concentration 
profile decreases as it increases, although the Arrhenius activation energy parameter increases significantly. The local skin friction 
coefficient is dominated by non-Darcian phenomena, which include parameters like P and Fr. The greater the value of Rd, the better the 
rate of heat transmission through the wall. As the value of parameter E increases, the rate of wall mass transfer decreases. 

Mathematica (version 12) and MATLAB (version R2019b) are used in this work for the numerical method. The following are the key 
objectives of the ongoing investigation:  

• A novel stochastic computing-based procedure is being developed to evaluate the importance of NMHD-CCNF across a spinning 
disc that is radially stretched.  

• The training, testing, and validation procedures are used to assess the anticipated solutions for NMHD-CCNF.  
• Investigate and compare the estimated results of generated BRT-ANNs to prescribed data solutions utilizing training/validation 

datasets/testing.  
• To describe how analyses of regression indices, histogram of errors, and MSE graphs were used to quantify increased performance. 
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• Modifying important elements to investigate distinct NMHD-CCNF conditions.  
• Supervised ANN technique was used in this experiment. 

This paper will be organized as follows: Section 2 shows how to formulate the issue using governing differential equations. Section 
3 presents the Artificial Neural Network modelling effort, as well as the graphs and tables examining the proposed model. The current 
findings are described in Section 4. We further compare the acquired results to recently published papers in Section 4. Lastly, in Section 
5, deductions have been derived. 

2. Problem formulation 

We take into account a Casson nanofluid in a three-dimensional magnetohydrodynamic convective non-Newtonian flow over a 
stretchy revolving plate that is heated isothermally, and turn the disc proportionally with angular velocity Ω along z-axis, axially at a 
consistent rate ς, and horizontally in a Darcy-Forchheimer permeable system as shown graphically in Fig. 1. The factors of (u,v,w) also 
describe the velocity of the Casson nanofluid, that displays the motion, in cylindrical coordinates (r,φ,z). The flow of this Casson nano - 
fluid is accelerated at the magnetic flux to achieve a constant transverse magnetic field Bo, the thermal flow is enlarged in the presence 
of nonlinear radiant flow with an internally thermal cause of heat, and the chemical flow is increased by Arrhenius kinetics. The 
temperatures of the barrier wall and flowing stream are given by Tw and T∞ respectively, and its concentrations were symbolically 
expressed by Cw and C∞. 

The PDE that depicts the flow structure for a proposed system in the exclusion of magnetic phenomena are shown as follows [20,44, 
45] using the concept of boundary layer theory [42] and Buongiorno’s model [43]. 

∂u
∂r

+
u
r
+
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∂z

= 0, (1)  
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K
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Fig. 1. Flow diagram.  
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(6) 

The following are the relevant boundary conditions for the system of PDEs along the surface of the plate and away from the surface: 

u= ςr,w = 0, v = Ωr,C = Cw, T = TW at z = 0, (7)  

u → 0, T → T∞, v → 0,C → C∞ as z→∞.

The Rosseland technique [46] is used to compute the heat flow in the z-direction. 

qr = −
4σ∗

3k∗

(
∂T4

∂z

)

= −
16σ∗

3k∗

(

T3∂T
∂z

)

. (8) 

The PDEs (1–6) and their accompanying boundary conditions (7–8) are reformed into ODEs using the Von Karman similarity 
transformation given in (9), (Also, see Refs. [47,48]). 

u = ΩrL(η), v = ΩrF(η),w = (Ωυ)
1
2G(η), η =

(
Ω
υ

)1
2

z,

p − p∞ = 2μΩH(η),φ(η) = C − C∞

Cw − C∞
, θ(η) = T − T∞

Tw − T∞
.

⎞

⎟
⎟
⎟
⎠

(9) 

For the suggested NMHD-CCNF, ODEs with boundary conditions are mentioned below. 

2L+G′ = 0, (10)  

(
β + 1

β

)

L″ − (M +P)L − GL′ − (1+Fr)L2 +F2 = 0, (11)  

(
β + 1

β

)

F″ − (M +P)F − GF′ − 2LF − FrF2 = 0, (12)  

θ″ +Pr QT θ+Rd(1 + Γθ)3θ″ + 3RdΓ(1 + Γθ)2θ′2 +Ntθ′2 +Nbθ′φ′

− Pr Gθ′ +Pr Nbθ′φ′+ Pr Nt = 0,
(13)  

φ″ − ScGφ′ +
Nt

Nb
θ″ − ScΛ(1 + Γθ)nexp

(
− E

1 + Γθ

)

φ= 0, (14)  

subjected boundary conditions are, 

L(η) = a,F(η) = 1,G(η) = 0, θ(η) = 1,φ(η) = 1 as η→0,
L(η) = 0,F(η) = 0, θ(η),φ(η)→ 0 as η→∞.

)

(15)  

Here n is the fitted rate constant, β shows the Casson parameter, P is porosity parameter, Fr represents the Forchheimer number, M is 
the magnetic parameter, Pr denotes the Prandtl number, Nt denotes the thermophoresis parameter, Nb is Brownian parameter, QT 
indicates heat generation parameter, Γ is temperature differences parameter, Rd is thermal radiation parameter, Sc denotes the 
Schmidt number, Λ denotes the chemical reactive factor, E is active energy parameter and a represents stretching parameter. These 
parameters are characterized by: 
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u = ςr,w = 0, v = Ωr, T = TW ,C = CW at z = 0,

The dimensionless formulations of the total viscous frictional factor Cfr, the wall thermal transfer rate Nur, and the wall mass 
transport rate Shr are specifically provided accurately by: 

Cfr =

(
τ2

wφ + τ2
wr

)1/2

(rΩ)
2ρ

, (16)  

Nur =
qhr

(Tw − T∞)k
, (17)  

Shr =
δCqmr

(Cw − C∞)DBρs
. (18)  

Furthermore, the following formulas apply to the related shear stress components (τwr,τwφ), in addition to heat and mass fluxes (qh,qm): 

τwr = μ
(
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)
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,
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(
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r

∂w
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.

We get the following reduced versions by simplifying equations 16–18: 

Cf =

(
β + 1

β

)( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(L′)2
+ (F′)2

√ )

η=0
,

Nu= −
(
1+Rd[1 + Γθ(0)]3

)
(θ′)η=0,

Sh= − (φ′)η=0,

where 

Cf =Re1/2
r Cfr,Nu = Re− 1/2

r Nur, Sh = Re− 1/2
r Shr ,Rer =

Ωr2

υ .

3. Solution methodology 

This study uses BRT-ANN to examine how activation energy during chemical processes, thermal radiation, and temperature 
gradient affect NMHD-CCNF over a revolving axially elongated disc. PDEs are converted to ODEs using the required transformations. 
Adam numerical approach is implemented through ‘ND Solve’ function available in the Mathematica for answering the ordinary 
differential equations. The neural network is generated based on reference data taking the domain 0 and 4 for variants associated with 
the presented fluid flow system. 

3.1. Adams numerical method 

The following is an expression of Adams’s numerical technique for a first-order system: 

dy
dx

=F(x, y),
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Yk+1 = yk +

∫tk+1

tk

dy
dx

dt = yk +

∫tk+1

tk

F(y, t) dt,

where y characterizes the outcome of a linear first-order ODE, x is the data input, Yk+1 denotes the first-order interpolated iterative 
method and the time period represented by t. 

Adams’ methods are predicated on approximating the integral inside the interval (tk, tk+1) with a polynomial. Adams’ methods 
come in two different types: explicit and implicit forms. The Adams-Bashforth (AB) approach is the explicit type, and the Adams- 
Moulton (AM) approach is the implicit type. The first-order AB and AM approaches are forward and backward Euler methods. The 

Fig. 2. A layout of singular neural networking of model.  

Fig. 3. A suggested neural network’s design.  

Table 1 
Variation of parameters of (NMHD-CCNF).  

Scenarios Cases Physical Quantities 

a P M β Fr Nt Nb QT Λ Rd E 

01 1 1.0 0.5 0.5 0.3 0.5 0.7 0.5 0.1 0.5 1.0 0.5 
2    0.5        
3    0.7        

02 1     0.4       
2     0.9       
3     1.4       

03 1        0.1    
2        0.4    
3        0.7    

04 1         0.6   
2         1.2   
3         1.8   

05 1          0.6  
2          1.2  
3          1.8  

06 1           0.2 
2           0.6 
3           1.1  
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linear interpolant-derived second-order iterations of these methods are widely used. The second-order Adams-Bashforth (AB2) method 
is explained in equation (19). 

Yk+1 = yk +
q
2

(
3F(yk, tk − F(yk− 1, tk− 1)), (19)  

here q is the step spacing. Adams-Moulton’s second order (AM2) is an implicit method also referred to as the trapezoidal notion is 

Yk+1 = yk +
q
2

(
F(yk+1, tk+1 +F(yk, tk)).

Adam numerical approach is implemented through ‘ND-Solve’ function available in the Mathematica environment for the solution 
of ordinary differential equations. The neural network is generated on the basis of reference data taking the domain 0 and 4 for variants 
associated with the presented fluid flow system The Proposed Neural Network approach is implemented in MATLAB software by 
implementing the ND-solve technique using default settings for iterations, accuracy objective, and acceptance rate for answering 
ordinary mathematical equations, and then by using the NF-tool (neural network fitting tool) on a similar pattern as reported in Refs. 
[50–54]. 

Fig. 2 illustrates a single neural network model. Here, BRT-ANN is built using NF-tool in MATLAB with suitable parameters of 
unseen neurons, testing dataset, training dataset, and validation dataset, while the suggested network’s topology is shown in Fig. 3. 

Fig. 4. Suggested BRT-ANN processing for NMHD-CCNF model.  
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Using Bayesian Regularization backpropagation, software is utilized to train the weight function of a neural network. The proposed 
BRT-ANN combines a multi-layer neural network structure with Bayesian Regularization backpropagation for optimization. For eleven 
scenarios, numerical solutions are gained by NF-tool for the model of MHD Casson nanofluidic expressed in equation 10–15 by varying, 
β,Fr,QT ,Λ,Rd,and E, each with three cases with defaults values as, 

β= 0.5,Fr = 0.5,QT = 0.1,Λ = 0.5,Rd = 1.0, and E = 0.5 while a = 1,P = 0.5,M = 0.5,Nt = 0.7,Nb = 0.5, n = 0.5,Γ = 0.2, Sc

= 0.5, Pr = 7 are kept fixed.

The place values for BRT-ANN are developed with a scaling factor of 0.04 with input ranging from 0 to 4 using Mathematica ND- 
solve approach. Table 1 lists the descriptions of every scenario of the MHD Casson nanofluidic flow model. By using NF-tool with 10 
neurons in the hidden layer and datasets for learning, verification, and evaluation 80 %, 10 %, and 10 % respectively, the intended 
BRT-ANN procedure is imposed to find results of a steady 3-D MHD Casson nanofluidic flow system. Fig. 4 also shows the process map 
of the completed BRT-ANN. 

The plots for L(η), F(η), θ(η) and φ(η) are depicted in the figures. Table 1 also includes physical quantity change scenarios and 
conditions which illustrate the NMHD-CCNF. Data sets are created for training, testing, and validation, and may be utilized to assess 
the model’s expected outcomes. Table 2 displays the answers of the number of experiments depending on back-propagation networks, 
iterations, MSE, and time connection for all the NMHD-CCNF cases. MSE plots, regression, and histograms of error analysis all verify 
the fantastic work test results of NMHD-CCNF using BRT-ANN. 

Fig. 5 displays the predicted the validity of convergence, trained data, and evaluated gains over epochs indexes for created BRT- 
ANN for confronting the scenarios of β, Fr,QT ,Λ,Rd, and E for L(η), F(η), θ(η) and φ(η) of NMHD-CCNF. The required performance is 
achieved in 219, 100, 88, 136, 163, 148, 67, 161, 141, 151, 174, 102, 175, and 141 iterations in total time of <1s, 2s, 2s, 1s, 3s, 2s, 1s, 
2s, 1s, <1s, <1s, <1s, <1s, and <1s. Fig. 5 shows the impact of error dynamics analysis on error histograms. For the cases of β, Fr,QT,

Λ,Rd, and E for L(η), F(η), θ(η) and φ(η) of NMHD-CCNF, an inspection of the error histogram reveals a large number of error values 
lying over the zero axis, as well as an error box of reference. Fig. 6 illustrate the converging capacity and accuracy, as well as fitness 
curves, for the scenarios of β, Fr,QT ,Λ,Rd, and E for L(η), F(η), θ(η) and φ(η) of NMHD-CCNF. 2.49E-09, 9.38E-09, 3.73E-08, 2.65E-08, 
9.25E-09, 8.26E-08, 2.74E-08, 9.59E-08, 2.84E-08, 1.63E-08, 2.21E-08, 8.86E-08, 9.80E-08, and 2.36E-08 are the corresponding 
gradient values for best performance. Mu parameter 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 500, 500, 500, 500, 500, and 
500 of BRT-ANN is as shown. Furthermore, the picture shows that an increase in iterations lowers both gradient and Mu. The higher the 
network’s testing and training, the higher the convergence for minimal Mu and gradient. Fig. 7 depicts the regression for all data, 
together with training, testing, and validation. It was revealed throughout the analysis that the results and desired values have a 
regression value of R = 1. 

4. Discussions 

The MATLAB software is used to determine the consequences of different values of β, Fr,QT,Λ,Rd, and E for L(η), F(η), θ(η) and φ(η)
of NMHD-CCNF. Figs. 8–11 shows the BRT-ANN results of the NMHD-CCNF model for velocities, temperature, and concentration 
profiles, as well as their AE analysis graphs. The exact error values for the relevant variants are 10− 5 to 10− 9, 10− 5 to 10− 9, 10− 5 to 
10− 8, 10− 5 to 10− 9, 10− 5 to 10− 9, 10− 4 to 10− 8, 10− 5 to 10− 9, 10− 5 to 10− 8. 

This axial portion focuses on the magnetohydrodynamic convection of Casson nanofluids pushed across an elongated rotating disc 
that is positioned horizontally within a Darcy-Forchheimer permeable channel, warmed at constant temperature, and managed 

Table 2 
Outcomes of BRT-ANN of NMHD-CCNF.  

Scenario Case MSE data Performance Gradient Mu Final Epoch Time 

Training Testing      

01 1 1.28367E-13 2.08283E-13 1.28E-13 2.49E-09 5000 219 <1s 
2 5.17130E-13 5.31211E-13 5.17E-13 9.38E-09 5000 100 2s 
3 9.94063E-12 2.18445E-11 9.94E-12 3.73E-08 5000 88 2s 

02 1 3.16751E-12 3.89762E-12 3.17E-12 2.65E-08 5000 136 1s 
2 2.26968E-13 2.11283E-12 2.27E-13 3.63E-09 5000 410 1s 
3 1.32695E-12 1.40816E-12 1.33E-12 9.25E-09 5000 163 3s 

03 1 2.25598E-12 3.09567E-12 2.26E-12 8.26E-08 5000 148 2s 
2 6.84999E-13 1.42956E-12 6.85E-13 2.74E-08 5000 67 1s 
3 4.17639E-13 4.28696E-13 4.18E-13 9.59E-08 5000 161 2s 

04 1 4.15304E-12 8.51828E-12 4.15E-12 2.84E-08 500 141 1s 
2 2.23624E-12 4.88588E-12 2.24E-12 1.63E-08 500 151 <1s 
3 4.05286E-12 5.08361E-12 4.05E-12 2.21E-08 500 174 <1s 

05 1 7.41853E-10 3.21520E-09 7.42E-10 4.29E-08 500 82 <1s 
2 4.73777E-12 6.76567E-12 4.74E-12 8.86E-08 500 102 <1s 
3 1.90470E-12 2.40125E-12 1.90E-12 9.80E-08 500 175 <1s 

06 1 3.62361E-12 4.66304E-12 3.62E-12 2.36E-08 500 141 <1s 
2 3.91196E-12 3.59056E-12 3.91E-12 2.55E-08 500 159 <1s 
3 3.58251E-12 4.39716E-12 3.58E-12 2.09E-08 500 94 2s  
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Fig. 5. Plots of MSE outcomes and error histogram for BRT-ANN of NMHD-CCNF  
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Fig. 5. (continued). 
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continuously through a variable wall concentration. The impacts of variable heat production, nonlinear thermal radiation, and 
Arrhenius activation energy are officially integrated into the planned two-phase nanofluidic flow pattern to strengthen the mass and 
heat transfer process inside the Casson nanofluidic media. The dimensionless forms of L(η), F(η), θ(η), φ(η), Cf , Nu (it is used to 
calculate the heat transfer between the moving fluid flow and the surface in contact with the fluid. Moreover, it creates the linkages 
between convective and conductive heating impacts), and the Sherwood number Sh (it is used for mass transfer calculations. Moreover, 
it develops a linkage between convective mass transfer and rate of diffusive mass transfer), as shown in Figs. 8–11, Table 3, Table 4, 
and Table 5, have several graphical and numerical outcomes. 

Fig. 6. Plots of Fitness curve and Transition state for BRT-ANN of NMHD-CCNF.  
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Fig. 6. (continued). 
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Fig. 7. Plots of regression for BRT-ANN of NMHD-CCNF  
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4.1. Radial and tangential velocity profiles (L(η) and F(η)) 

Figs. 8(a) and 9(a) show the effect of the Casson parameter β on the resultant three-dimensional nanofluid flow. These graphs 
indicate that β has a decreasing effect on the dynamical profiles related to L(η) and F(η) velocities. The cause for this is that when the 
Casson parameter β is estimated larger, the yield stress lessens tremendously. It’s also worth noting that if the Casson parameter β is set 
to increasing values (i.e.,β →∞), the Casson nanofluid acts rheological like a Newtonian nanofluid. As previously noted by Wakif [49], 
the nanofluidic medium’s viscoelasticity trend has a delaying impact on nanofluid flow. As realized in Figs. 8(b) and Fig. 9(b), the drag 
forces of nonlinear Forchheimer that occur in the permeable material greatly increase the nanofluid flow resistance because of the 
amplification in the Fr. 

4.1.1. Temperature profile (θ(η)) 
Brownian mass diffusion encourages ascending thermo-migration of nanoparticles inside the nanofluidic media [59]. It is 

important to note that the upward movement of nanoparticles helps to a certain extent the heat transfer rate inside the nanofluidic 
medium by enhancing θ(η) and bulking its corresponding boundary layer region. In terms of energy, the availability of an inner 
temperature-dependent source of heat, whose intensity can be controlled directly through the heat generation parameter QT, performs 
an increasing thermal function. As seen in Fig. 10(a), a specific heat is transferred non-uniformly throughout nanofluidic system, 
resulting in a significant increase in both the temperature distribution θ(η) and the thickness of the associated boundary layer. The 
thermal properties of the nanofluidic media (i.e., comparable thermal conductivity and diffusivity) improve when the thermal radi-
ation parameter Rd is estimated more accurately. As a response of this thermal strength, θ(η), also the related boundary layer thickness, 
rises dramatically due to growing values of Rd, as seen in Fig. 10(b). 

Fig. 8. Solution & AE plots for L(η) of BRT-ANN  
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4.1.2. Concentration profile (φ(η)) 
In light of the previous thermal observations mentioned in paper [59], it is noted that the thermophoresis procedure helps push 

supporting nanoparticles from the wall to the concentration boundary layer area, causing the nanofluidic channel to compress more, 
for which the mass amount of nanoparticles shifted ascendingly through the diffusion of thermophoretic process is fully rewarded to 
ensure that the wall concentration Cw remains constant. For detrimental chemical reactions, KC is positive. The mass utilization of the 
reacting solid species is assisted by increasing chemical reaction parameter Λ(= KC /Ω) in this scenario. As a result, if the chemical 
reaction process continues during the convective nanofluid flow, the concentration of the nanofluidic medium decreases gradually. As 
a result, against any quickest growing in Λ, φ(η) and the concentration boundary layer thickness display a declining trend, as shown in 
Fig. 11 (b). During Arrhenius kinetics, the destructive tendency of Λ can be realistically slowed down by enhancing E sorted in the 
incredibly rapid reactive expression of the concentration equation, that creates a development in both φ(η) and its related boundary 
layer thickness, as shown in Fig. 11 (a). 

4.2. Skin friction coefficient, nusselt number, and sherwood number (Cf ,Nu, Sh) 

The table form outcomes in Tables 3–5 are derived from precise numerical data sources based on specified quantities Cf ,Nu, and Sh 
for varying values of the integrated control factors. Table 3 shows a measurable increase in Cf due to growing values of the parameters 
like the a,P, Fr, and magnetic parameter M. The viscous frictional impact at the isothermal wall, on the other hand, shows a decreasing 
trend when β is increased. Table 4 shows that the increasing values of Γ and Rd result in an increase in Nu. The dimensionless thermal 
quantity Nu, on the other hand, shows a decreasing trend when the parameters like heat generation parameter QT, Nt, and Nb are 
evaluated greater. Regarding the behavior of the reduced Sh, Table 5 shows that its resultant wall mass transfer can be increased by 
increasing the amplitude of parameters such as the Nb,Λ, and Sc or by reducing the power of parameters such as the Nt and activation 
energy parameter E. 

Fig. 9. Solution & AE plots for F(η) of BRT-ANN  
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5. Conclusions 

The present study examines the non-Darcian flow of Casson nanofluids across a radially extended spinning disc while considering a 
variety of flow characteristics by exploiting the strength of AI-based computing with the Bayesian Regularization technique of artificial 
neural networks. We can list the following important physical inferences drawn from the exhaustive simulation studies conducted by 
BRT-ANNs for the system:  

• Both tangential and radial velocities show an opposite response against M, Fr, and P..  
• Both tangential and radial velocities decrease with increase in values of Casson parameter β.  
• An increase in stretching parameter a results an increase in radial velocity while tangential velocity decreases.  
• The temperature profile is improved by the thermal radiation Rd and heat generation QT parameters.  
• In temperature and concentration profiles, Nb has the opposite impact.  
• As the value of Nt rises, so do the temperature and concentration profiles.  
• The concentration profile decreases as the chemical reaction parameter Λ increases, although the Arrhenius activation energy 

parameter E increases significantly.  
• The local skin friction coefficient is dominated by the non-Darcian phenomena, which includes the parameters like P and Fr.  
• The higher the value of the parameter Rd, the better the rate of heat transmission through the wall.  
• As the value of parameter E increases, the rate of wall mass transfer decreases. 

In the future, one may investigate the proposed BRT-ANNs-based single network to model the approximate solutions of all reference 
results determined by ‘ND-Solve’ routine based on the numerical solution of the fluidic model NMHD-CCNF. Additionally, deep neural 
networks or/and deep learning procedures look promising to be investigated for improved modelling or approximation of outcomes of 
the NMHD-CCNF system. 

Fig. 10. Solution & AE plots for θ(η) of BRT-ANN  
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Fig. 11. Solution & AE plots for φ(η) of BRT-ANN  

Table 3 
Outcomes of Cf for variation of α,β,P,Fr ,and M.  

Parameters Default values Changing values Cf 

a 1.0 0.4 2.6429418 
0.6 3.0268964 
0.8 3.5100369 
1.0 4.0862779 

β 0.5 0.1 7.9690160 
0.2 5.8023112 
0.3 4.9174625 
0.4 4.4154024 

P 0.5 0.5 4.0862779 
1.0 4.4255247 
1.5 4.7438369 
2.0 5.0440732 

Fr 0.5 3 5.1212013 
6 6.1595133 
9 7.0551948 
12 7.8530529 

M 0.5 0.5 4.0862779 
1.0 4.4255247 
1.5 4.7438369 
2.0 5.0440732  
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Table 4 
Outcomes of Nu for variation of QT ,Rd,Γ,Nt and Nb.  

Parameters Default values Changing values Nu 

QT 0.1 0.0 1.9005521 
0.2 1.4623862 
0.4 0.9658089 
0.6 0.3843624 

Γ 0.2 1.5 4.9529724 
2.0 6.3147552 
2.5 7.5585171 
3.0 8.5754714 

Rd 1.0 0.5 1.1395850 
1.0 1.6876221 
1.5 2.1661628 
2.0 2.5904744 

Nt 0.7 0.1 2.5025047 
0.2 2.3454271 
0.3 2.1973219 
0.4 2.0578496 

Nb 0.5 0.8 1.2237162 
1.0 0.9667158 
1.2 0.7484198 
1.4 0.5656155  

Table 5 
Outcomes of Sh for variation of Nb,Nt,Sc,Λ and E.  

Parameters Default values Changing values Sh 

Nt 0.7 0.1 0.6313299 
0.2 0.5487959 
0.3 0.4845293 
0.4 0.4366774 

Nb 0.5 0.8 0.6374989 
1.0 0.7121742 
1.2 0.7541228 
1.4 0.7780140 

Sc 0.5 5 3.0088390 
7 3.5651424 
10 4.2479096 
13 4.8242156 

Λ 0.5 0.5 0.3748096 
1.0 0.6342345 
1.5 0.8448276 
2.0 1.0221547 

E 0.5 0.1 0.4999604 
0.4 0.4031337 
0.7 0.3236885 
1.0 0.2596537  
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