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Abstract: The triboelectric nanogenerator (TENG) has emerged as a novel energy technology that
converts mechanical energy from surrounding environments to electricity. The TENG fabricated from
environmentally friendly materials would encourage the development of next-generation energy
technologies that are green and sustainable. In the present work, a green triboelectric material has
been fabricated from natural rubber (NR) filled with activated carbon (AC) derived from human hair.
It is found that the TENG fabricated from an NR-AC composite as a tribopositive material and a poly-
tetrafluoroethylene (PTFE) sheet as a tribonegative one generates the highest peak-to-peak output
voltage of 89.6 V, highest peak-to-peak output current of 6.9 µA, and can deliver the maximum power
density of 242 mW/m2. The finding of this work presents a potential solution for the development of
a green and sustainable energy source.

Keywords: triboelectric nanogenerator; natural rubber; activated carbon; human hair

1. Introduction

The triboelectric nanogenerator (TENG) is emerging as an energy-harvesting device
that converts mechanical energy into electricity based on a combination of the effects of
contact electrification and electrostatic induction [1]. Mechanical energy is one of the most
abundant forms of energy that exists in many different forms in our living environment. To
harvest these mechanical energies, the concept of environmental friendliness is regarded
as one of the most important aspects for the development of a clean and sustainable
energy source.

The commonly used materials for the TENG fabrication are polymers, such as poly-
dimethylsiloxane (PDMS) [2,3], poly-vinylidenefluoride (PVDF) [4,5], poly-tetrafluoroethylene
(PTFE) (or Teflon) [6,7], polyimides (or Kapton) [8,9], and polymethyl methacrylate
(PMMA) [10,11]. Most of them are synthetic polymers [12], which have high costs and
non-degradable environments. Many efforts have been made to develop biodegradable
and environmentally friendly triboelectric materials. These include plant-based materials,
such as wood [13], leaves [14], and cellulose [15] and animal-based degradable materials,
such as chitosan [16], silk fibroin [17], and gelatin [18].

Natural rubber (NR) is a natural polymer, and its chemical structure is cis-1,4-polyisoprene,
which is typically extracted from the tree Hevea brasiliensis [19]. Natural rubber latex has
been widely used as raw material for manufacturing a wide range of industrial prod-
ucts [20]. The majority of NR products are utilized in kinetic environments that involve
motions and vibrations. In this respect, NR is a crucial candidate for biodegradable tribo-
electric materials to harvest large-scale mechanical energy. Moreover, NR has the feasibility
to form composite materials by adding nanoparticles or filler materials and to modify its
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internal and surface structure to intensify triboelectric charges in order to boost the energy
conversion performance of the TENG. Recently, there were a few studies on NR-based
TENGs, including silica-based rubber compounds for harvesting mechanical energy from
car tires [21], stretchable rubber-based TENGs as self-powered body motion sensors [22],
and NR nanocomposite TENGs for energy-harvesting applications [23,24].

Regarding the realization of the practical uses, many approaches have been proposed
to enhance the electrical output power of TENGs. Extensive studies have been focusing
on the promotion of triboelectric charge quantities in triboelectric materials. This can
be done by increasing the surface areas and charge retention abilities or capacitances of
the triboelectric materials [25,26]. There are many different ways to modify triboelectric
materials for enhancing the power output of the TENG, including surface modification,
such as plasma etching [27], micro/nano-patterning [28,29], soft lithography [30], and
internal structure modification into porous or sponge structures [31–33].

Porous-structured materials have been employed to improve the TENG performance.
This contributes to the increased electrification in the internal structure, which promotes
triboelectric charge generation and accumulation [34,35]. Activated carbon (AC) is a
carbonaceous material with a high porosity and surface area, which can be derived from
natural carbon sources, such as plants, animals, and minerals [36]. Human hair is a bio-
waste with a high carbon content [37], which is attractive to be used as a starting material
for producing activated carbon. With AC’s high specific surface area, ACs derived from
human hair (ACH) were found in a variety of applications, such as electrode materials for
super-capacitors [38] and batteries [39], gas adsorption [40], and wastewater treatment [41].

In this work, AC derived from human hair was introduced as a filler material for NR,
which was employed as a triboelectric material for TENG. This work was the first report on
using human bio-waste and natural products to fabricate a biodegradable TENG with a high
energy-conversion performance. The effect of ACH filler content in an NR-ACH composite
on TENG performance was investigated. The microstructural characterizations of ACH
and NR-ACH composites were performed to explain their contribution to the enhancement
of energy conversion performance. In addition, the energy-harvesting applications of the
fabricated TENG to charge a capacitor and to power a small electronic device and motion
sensing application were demonstrated.

2. Materials and Methods
2.1. Preparation of ACH

Human hair was collected from barber shop; it was initially cut into small pieces with
lengths of 2–3 mm. Then the hair was washed with iso-propanol and acetone and dried
in oven at 80 ◦C for 2 h. The dried hair was then pre-carbonized in the presence of Ar at
300 ◦C for 90 min. The pre–carbonized product was left in 2M KOH (KemAus, New South
Wales, Australia) for 48 h and then dried at 80 ◦C for 6 h. After that, the powders were
carbonized at 800 ◦C for 2 h in an Ar atmosphere. The obtained product was washed with
hot DI water and followed by using a 1M HCl (RCI Labscan, Bangkok, Thailand) solution
several times to remove any trace of potassium. The activated carbon product was obtained
after the product dried overnight at 80 ◦C.

2.2. Preparation of NR-ACH Composite Film

The commercial NR latex used in this work was purchased from the Thai Rubber Latex
Group Public Co., Ltd. (Samut Prakan, Thailand) with dry rubber content of 61%. Sodium
dodecyl sulfate (SDS, Ajax Finechem, Thai Rubber Latex Group Public Co., Ltd., Samut
Prakan, Thailand) was used as a dispersing agent. 10 mL of NR latex was mixed with ACH
at 0.3, 0.6, 0.9 wt% and 0.5 mL of 20 mM SDS by using magnetic stirring for 10 min to ensure
a homogeneous mix. A total of 2 mL of the mixture was cast on an indium tin oxide (ITO)
substrate with an area of 4 × 4 cm2 to obtain film thicknesses of approximately 0.5 mm. A
set of three specimens was prepared for each experimental condition. The specimens were
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left dry at room temperature for 2 days and then cured at 80 ◦C for 6 h. The samples were
then ready for TENG performance tests.

2.3. Material Characterizations

ACH was characterized by using Raman spectroscopy (SENTERRA, Bruker, Billerica,
MA, USA), scanning electron microscopy (SEM, Helios Nanolab, FEI, Lausanne, Switzer-
land), transmission electron microscopy (TEM, TECNAI G2 20, FEI), and an X-ray diffrac-
tion (XRD) analysis (PANalytical EMPYREAN, Malvern, UK). The morphologies and
crystal structures of NR-ACH composite films were studied using a SEM and XRD, respec-
tively. Dielectric constants were measured using an impedance analyzer (Keysight E4990A,
Santa Rosa, CA, USA) at room temperature.

2.4. TENG Fabrication and Output Measurement

The TENG was assembled by using an NR-ACH film on ITO glass (Figure 1) as a
bottom tribopositive material and a PTFE as a top tribonegative material using a single
electrode configuration with the contact area of 4 × 4 cm2 as schematically illustrated in
Figure 2 and Supplementary Video S1. The energy conversion performance of the fabricated
TENG was examined by measuring output voltage and current using an oscilloscope (Tek-
tronix DPO2002B, Tektronix China Ltd, Shanghai, China) and a digital ammeter (Kiethley
DMM6500, Tektronix China Ltd, Shang Hai, China), respectively. The TENG performance
was tested under a vertical contact-separation mode. The voltages and current output
signals were acquired under the mechanical impact force of 10 N with impact frequency of
5 Hz, which was driven by a DC motor (24 V with 2500 rpm maximum speed).

Polymers 2022, 14, x 3 of 13 
 

 

tin oxide (ITO) substrate with an area of 4 × 4 cm2 to obtain film thicknesses of approxi-
mately 0.5 mm. A set of three specimens was prepared for each experimental condition. 
The specimens were left dry at room temperature for 2 days and then cured at 80°C for 6 
h. The samples were then ready for TENG performance tests. 

2.3. Material Characterizations 
ACH was characterized by using Raman spectroscopy (SENTERRA, Bruker, Biller-

ica, MA, USA), scanning electron microscopy (SEM, Helios Nanolab, FEI, Lausanne, Swit-
zerland), transmission electron microscopy (TEM, TECNAI G2 20, FEI), and an X-ray dif-
fraction (XRD) analysis (PANalytical EMPYREAN, Malvern, UK). The morphologies and 
crystal structures of NR-ACH composite films were studied using a SEM and XRD, re-
spectively. Dielectric constants were measured using an impedance analyzer (Keysight 
E4990A, Santa Rosa, CA, USA) at room temperature. 

2.4. TENG Fabrication and Output Measurement 

The TENG was assembled by using an NR-ACH film on ITO glass (Figure 1) as a 
bottom tribopositive material and a PTFE as a top tribonegative material using a single 
electrode configuration with the contact area of 4 × 4 cm2 as schematically illustrated in 
Figure 2 and Supplementary Video S1. The energy conversion performance of the fabri-
cated TENG was examined by measuring output voltage and current using an oscillo-
scope (Tektronix DPO2002B, Tektronix China Ltd, Shanghai, China) and a digital amme-
ter (Kiethley DMM6500, Tektronix China Ltd, Shang Hai, China), respectively. The TENG 
performance was tested under a vertical contact-separation mode. The voltages and cur-
rent output signals were acquired under the mechanical impact force of 10 N with impact 
frequency of 5 Hz, which was driven by a DC motor (24 V with 2500 rpm maximum 
speed). 

 
Figure 1. Digital image of the fabricated triboelectric electrodes, including NR and NR-ACH 0.3, 0.6, 
and 0.9% composites coated on ITO substrates. 

  

Figure 1. Digital image of the fabricated triboelectric electrodes, including NR and NR-ACH 0.3, 0.6,
and 0.9% composites coated on ITO substrates.

Polymers 2022, 14, x 4 of 13 
 

 

 

Figure 2. Working mechanism of the NR-ACH TENG. 

3. Results 
The triboelectric electrodes fabricated from the NR and NR-ACH composite films 

coated on ITO substrates as presented in Figure 1 were used as bottom electrodes for the 
TENG device. The TENG device configuration for performance testing and the TENG’s 
working mechanism are illustrated in Figure 2. The NR and NR-ACH composite films 
were tribopositive materials, and a PTFE sheet was used as a paired tribonegative mate-
rial. The electricity generated upon the contact electrification and electrostatic induction 
effects are described as follows. When the surfaces of the PTFE and NR-based materials 
are in contact, surface charges with different signs are formed on the two surfaces; nega-
tive surface charges form on the PTFE and positive ones form on the NR-based material. 
The separation of the two surfaces causes a potential drop, which induces free electrons 
to flow from the ground to the conductive ITO to balance the potential. The flow of elec-
trons in this state generates a positive current signal. When the two surfaces return to 
contacting again, the potential drop is reduced and disappears. This causes electrons to 
flow back to the ground, generating a negative current signal. 

The electrical outputs of the NR-ACH TENGs fabricated from NR-ACH composites 
at ACH concentrations of 0, 0.3, 0.6, 0.9%wt are presented in Figure 3. The electrical out-
puts were found to increase with increasing ACH concentrations and reach a maximum 
peak-to-peak voltage (Vpp) of 90 V and current (Ipp) of 6.6 µA in the NR-ACH 0.6% TENG 
as shown in Figure 3a,b. These outputs were higher than those of the unmodified NR, 
which were 53 V and 4.5 µA. However, at the ACH concentration of 0.9%, the electrical 
outputs of the NR-ACH TENG were dropped. The transferred charges derived from the 
current output signals of all TENGs are plotted along with Vpp and Ipp as presented in Fig-
ure 3c. It was found that the transferred charges of all the fabricated NR-ACH TENGs 
exhibited the same trend with their voltages and current outputs, and the maximum trans-
ferred charges of 35 nC were achieved from the NR-ACH 0.6% TENG. 

It was seen that the improvement in TENG performance was due to the presence of 
ACH. In order to explain the contribution of ACH to the electrical output performance of 
the TENG, dielectric properties and microstructural characterizations were performed 
and described in the following section. 

  

PTFE 

NR-ACH 
ITO 

Figure 2. Working mechanism of the NR-ACH TENG.



Polymers 2022, 14, 1110 4 of 11

3. Results

The triboelectric electrodes fabricated from the NR and NR-ACH composite films
coated on ITO substrates as presented in Figure 1 were used as bottom electrodes for the
TENG device. The TENG device configuration for performance testing and the TENG’s
working mechanism are illustrated in Figure 2. The NR and NR-ACH composite films
were tribopositive materials, and a PTFE sheet was used as a paired tribonegative material.
The electricity generated upon the contact electrification and electrostatic induction effects
are described as follows. When the surfaces of the PTFE and NR-based materials are in
contact, surface charges with different signs are formed on the two surfaces; negative
surface charges form on the PTFE and positive ones form on the NR-based material. The
separation of the two surfaces causes a potential drop, which induces free electrons to flow
from the ground to the conductive ITO to balance the potential. The flow of electrons in
this state generates a positive current signal. When the two surfaces return to contacting
again, the potential drop is reduced and disappears. This causes electrons to flow back to
the ground, generating a negative current signal.

The electrical outputs of the NR-ACH TENGs fabricated from NR-ACH composites
at ACH concentrations of 0, 0.3, 0.6, 0.9 wt% are presented in Figure 3. The electrical
outputs were found to increase with increasing ACH concentrations and reach a maximum
peak-to-peak voltage (Vpp) of 90 V and current (Ipp) of 6.6 µA in the NR-ACH 0.6% TENG as
shown in Figure 3a,b. These outputs were higher than those of the unmodified NR, which
were 53 V and 4.5 µA. However, at the ACH concentration of 0.9%, the electrical outputs
of the NR-ACH TENG were dropped. The transferred charges derived from the current
output signals of all TENGs are plotted along with Vpp and Ipp as presented in Figure 3c. It
was found that the transferred charges of all the fabricated NR-ACH TENGs exhibited the
same trend with their voltages and current outputs, and the maximum transferred charges
of 35 nC were achieved from the NR-ACH 0.6% TENG.
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Figure 3. (a) Output voltage, (b) output current, and (c) transferred charges of NR and NR-ACH 0.3,
0.6 and 0.9% TENGs.
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It was seen that the improvement in TENG performance was due to the presence of
ACH. In order to explain the contribution of ACH to the electrical output performance of
the TENG, dielectric properties and microstructural characterizations were performed and
described in the following section.

The dielectric constants of the NR-ACH composites were probed. The plots of dielec-
tric constants as functions of electric field frequency are shown in Figure 4. It was found
that the addition of ACH with increasing concentrations resulted in the reduction of the
dielectric constants of the NR composites. This indicated that the percolation point (fc) of
the conductive filler material was achieved, leading to the increased electrical conductivity
of the composites. This also suggested that ACH was electrically conductive. The electrical
conductivity of the composite (σc) is proportional to the filler conductivity (σfil) and filler
concentration (f ), which is described by the following expression,

σc ∝ σf il( f − fc)
t (1)

where t is the critical exponent (>1.0) [42].
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3.1. Microstructural Characterization

The microstructures and morphologies of the synthesized ACH were investigated.
The SEM image in Figure 5a revealed that the ACH had a predominantly porous structure
with a relatively large pore size. The TEM image in Figure 5b showed nanosheet structures
distributed across the porous structure, and the inset selected area diffraction (SAED)
suggested that ACH has an amorphous structure. The XRD pattern of the as-received ACH
in Figure 5c showed two broad peaks at around 23◦ and 43◦, which corresponded to the (002)
and (100) planes of amorphous carbon, which were similar to those in previously reported
activated carbons derived from human hair [38] and any other activated carbons [43].

Raman spectroscopy was performed to investigate the structures of carbon materials,
which are presented in Figure 5d. The peaks observed at wave numbers of 1330, 1583,
and 2662 cm−1 are called D, G, and 2D bands, respectively. The intensity of the G band
indicates the presence of sp2 carbon in a graphitic structure, and that of D band corresponds
to the vibrations of disorder sp3 carbon. The IG/ID indicates the graphitic degree of carbon
material. This suggested that the ACH contained a reasonable amount of sp2 carbon. The
presence of sp2 carbon accounts for the electrical conductivity of carbon materials. This
contributes to the reduction of the dielectric constant when adding increasing amounts of
ACH in NR composites.
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Figure 5. (a) SEM image, (b) TEM image, (c) XRD pattern, and (d) Raman spectrum of activated
carbon derived from human hair (ACH).

The improved electrical output of the TENG was ascribed to the presence of porous
ACH that had a high surface area [44] and the additional free electrons of the sp2 carbon
structure, which acted as charge trapping sites for the generation of triboelectric charges
during electrification events [3,45,46]. The enhancement of triboelectric charge density
(σ) gave rise to the improved TENG electrical outputs. For the contact-mode TENG, the
open-circuit voltage (Voc) and short-circuit current (Isc) are given by using Equations (2)
and (3), respectively [47]:

Voc =
σx(t)

ε0
(2)

Isc =
Sσd0v(t)

(d0 + x(t))2 (3)

where S, x(t), v(t), d0, and ε0 are the contact area size, separation distance, contact electrode
velocity, effective thickness constant, and electrical permittivity of free space, respectively.

Generally, the TENG performance can be improved by magnifying the triboelectric
charge density, which can be done by increasing the size of the contact area and the dielectric
constant of triboelectric materials. However, our results showed that the TENG output
increased while the dielectric constant decreased with increasing ACH concentrations. This
suggested that contact area played a major role in controlling TENG performance in our
case. The surface morphologies of the NR and NR-ACH composite films were therefore
investigated by using SEM imaging as displayed in Figure 6. The surface morphologies of
the composite films changed with the increasing ACH content, as seen by the increasing
number of particles observed, which was different from the plain NR, which had a surface
that was flat and clean without any particles observed. It was noticed that a high ACH
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content in the NR-ACH 0.9% caused a predominant presence of ACH on the film surface,
and the agglomeration of the ACH was observed. This change in surface morphology
adversely affected the TENG output performance.
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3.2. TENG Working Condition and Applications

The TENG performance was found to be dependent on the operation frequency as
shown in Figure 7a. The Vpp and Ipp increased with increasing working frequencies from
33 V and 3 µA at 2 Hz to 232 V and 16 µA at 10 Hz. The relation of Vpp and Ipp as a function
of working frequencies was plotted as presented in Figure 7b. The increased TENG output
with working frequency was attributed to the short contact-separation cycle leading to the
retention and accumulation of tribo-charges on the surfaces [48].

The electrical power of the fabricated NR-ACH TENG was measured to determine the
highest electrical energy that delivered to an external load. The power output measurement
was performed under an applied mechanical force of 10 N at a 5 Hz frequency. The plots
of output voltages and currents measured at various load resistances and the delivered
power densities are shown in Figure 7c,d, respectively. The highest power density of
242 mW/m2 was achieved at the matched load resistance of 10 MΩ, which was almost
three times higher than that of the plain NR TENG (92 mW/m2). In addition, the power
density reported in this work was larger than that of other biodegradable TENGs, such as
bacterial nanocellulose TENGs (4.8 mW/m2) [49], wood-based TENGs (57 mW/m2) [13],
chitosan TENGs (15.7 mW/m2) [50], and the stretchable TENGs made from a conductive
composite and an elastomer (23 mW/m2) [51].

The electricity generated by the NR-ACH TENG was able to be charged or stored in
commercial capacitances as illustrated by the voltage charging profiles of the 10, 22, 33, and
47 µF capacitors in Figure 8a. The 47 µF capacitor was charged to 3 V in 550 s. In addition,
the electrical power was demonstrated to instantaneously light up 44 green LEDs as shown
in Figure 8b and Video S1. Furthermore, the motion sensing application of the NR-ACH
TENG was demonstrated. A single-electrode mode TENG was tested using bare fingers as
contact electrodes as presented in Figure 9 and the Video S2 in Supplementary Material.
The electrical signal was instantaneously generated when the fingers touched the NR-ACH
surface, which is shown in Figure 9. This signal can be applied as a motion sensor that can
detect any movement, such as that of the human body or an object on the film surface.
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Figure 9. The demonstration of motion sensing application of the fabricated NR-ACH TENG under a
single electrode configuration using finger taps and the inset of the generated voltage signal.

4. Conclusions

The biodegradable NR-ACH composite was synthesized and used to fabricate a TENG
to convert mechanical energy into electricity. The addition of ACH was found to improve
the electrical output performance of the TENG due to the high surface areas of the porous
structures of ACH filler materials, which also acted as charge trapping sites to intensify
triboelectric charges generated during electrification events. The NR-ACH TENG with
the optimum ACH concentration of 0.6% generated the highest electrical power density
of 242 mW/m2, which was almost three times larger than that of the unmodified NR
TENG. The generated electrical power was able to charge the commercial capacitors to
power small electronic devices. In addition, the NR-ACH TENG, with a single electrode
configuration, was able to detect the movement of the human body, which could be applied
to a motion-sensing application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14061110/s1, Video S1: Lighting up green LEDs by using
the TENG, Video S2: Motion sensing application.
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