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Autoimmune Neurology 

Introduction
Autoimmune disorders are caused by a break-
down of immune tolerance, which results in a 
misdirected response to self-antigens. Complex 
interactions between genetic, immunological, and 
environmental factors contribute to this loss of 
tolerance.1 Infectious pathogens are an important 
environmental trigger in the pathogenesis of auto-
immunity, as demonstrated by the strong associa-
tion between certain autoimmune disorders with 
specific microorganisms (e.g., the association of 
Streptococcus and rheumatic fever).2,3 For most 
autoimmune disorders, the correlation with infec-
tion is more nuanced. A variety of pathogens have 
been implicated in the development of any single 
autoimmune disorder (Table 1), suggesting that 
infections may trigger autoimmunity through 
mechanisms beyond molecular mimicry.4 The 
cumulative exposure to infections during child-
hood has also been proposed as an important fac-
tor in autoimmunity in adulthood.2

The role of infections in the pathogenesis of ‘clas-
sic’ neuroimmunological disorders such as multi-
ple sclerosis and Guillain–Barre syndrome (GBS) 
has been studied extensively.5,6 Recent break-
throughs in biomarker discovery have led to the 
recognition of new antibody-mediated neurologi-
cal disorders targeting neuronal and glial proteins. 
Infections are emerging as an important trigger for 

these novel autoimmune disorders, though the 
mechanisms behind loss of tolerance remain poorly 
understood. Here, we review the current landscape 
of post-infectious neurological autoimmunity, dis-
cuss proposed immunological mechanisms, high-
light specific disorders strongly associated with 
pathogens, and review treatment considerations.

Proposed mechanisms of pathogen-induced 
autoimmunity and their association with 
neuroimmunological conditions

Molecular mimicry
Molecular mimicry (Figure 1) was initially described 
in 1964 as a mechanism through which pathogens 
evade the immune system, thus gaining evolutionary 
advantage.7 Epitopes present on microorganisms 
may share marked similarity in peptide sequence or 
three-dimensional structure to host antigens, allow-
ing a pathogen to establish immune tolerance. In 
susceptible hosts, homologous antigens on a patho-
gen may illicit an immune response; as a conse-
quence, activated lymphocytes may aberrantly 
cross-react with self-antigens. Evidence suggests this 
misdirected response contributes to the pathogenesis 
of several systemic autoimmune disorders.8

Molecular mimicry contributes to the breakdown 
of self-tolerance in certain neuroimmunological 
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disorders, and may play a role in the pathogenesis 
of diseases such as multiple sclerosis and myasthe-
nia gravis (MG).9 Acute rheumatic fever serves as 
a classic example of mimicry-induced autoim-
munity, and homology between epitopes on 
Group A Streptococcus (GAS) and brain ganglio-
sides are believed to contribute to neurological 
sequelae of the disorder.3 Mimicry is also impor-
tant in axonal variants of Guillain-Barre syndrome 
(GBS), where similarities between a carbohydrate 
moiety on strains of Campylobacter jejuni result in 
autoantibodies targeting the human GM1 gangli-
oside (see section on GBS for details).6,10

Epitope spreading
The initial immune response to an antigen (host or 
non-host) is highly specific – typically limited to 
specific peptide sequences on the targeted protein. 
This response can gradually broaden to include 
different epitopes on the inciting antigen, or to new 
antigens altogether, a process known as epitope 
spreading (Figure 1). Mechanisms resulting in 

epitope spreading include post-translational modi-
fication of epitopes (such as substitution of argi-
nine to citrulline), the release and presentation of 
‘hidden’ antigens encountered during tissue injury, 
and somatic hypermutation.11,12 Epitope spreading 
may be an important mechanism in propagating 
neurological autoimmunity. The work of Miller 
and colleagues demonstrated evidence of myelin 
reactive T cells in the weeks following infection 
with Theiler’s murine encephalomyelitis virus (a 
mouse model of multiple sclerosis), demonstrating 
that viral infections may trigger autoimmunity via 
antigen release.13

Bystander activation
While several mechanisms exist to maintain self-
tolerance, evidence suggests that considerable 
numbers of autoreactive lymphocytes enter the 
periphery.14 During an immune response to a 
highly virulent pathogen, lymphocytes may be 
activated via antigen-independent mechanisms. 
The concept of bystander activation maintains 

(a) (b)

(c) (d)

Figure 1.  Mechanisms for loss of immune tolerance. (a) Molecular mimicry: an antigen present on a pathogen has a homologous 
structure to a self-antigen, resulting in loss of immune tolerance and inflammatory response to host antigens. (b) Epitope spreading: 
the initial response to acute infection is highly specific, but can broaden to other epitopes on the pathogen. This may eventually 
include self-antigens, resulting in autoreactive lymphocyte activation and autoimmunity. (c) Bystander activation: in response to an 
infectious pathogen, APCs, cytotoxic T Cells and helper T cells produce inflammatory mediators, which can activate autoreactive 
lymphocytes. Systemic inflammation can also cause blood-brain barrier disruption, granting autoreactive lymphocytes access to the 
CNS. (d) Persistent infection and polyclonal expansion: chronic infections, such as Epstein–Barr virus, may cause polyclonal B-cell 
expansion. A subset of these B cells may produce antibodies that react to self-antigens.
APC, antigen presenting cell; CNS, central nervous system.

https://journals.sagepub.com/home/tan


K Blackburn and C Wang

journals.sagepub.com/home/tan	 3

that such an inflammatory cascade may stimulate 
autoreactive immune cells, resulting in autoim-
munity.14,15 Systemic inflammation can also 
result in dysfunction of the blood brain barrier, 
granting autoreactive cells access into the nervous 
system.16 Bystander mechanisms (Figure 1) may 
play an important role in the development of 
CNS autoimmunity. A ‘dual signal’ hypothesis 
for the pathogenesis of MS proposes that autore-
active cells may be primed via mimicry or epitope 
spreading, but that a second inflammatory event 
results in lymphocyte activation and migration 
into the CNS. These complex interactions may 
explain why different pathogens have been impli-
cated in the development of autoimmune disor-
ders such as MS.17,18

Persistent infection and polyclonal B-cell 
activation
Certain infectious pathogens, such as herpesvi-
ruses or hepatitis C, are able to evade immune 
clearance and persist in the host indefinitely. A 
chronic inflammatory response resulting from 
persistent infection mediates a polyclonal prolif-
eration of B and T cells (Figure 1). This process 
may result in the production of autoantibodies or 
immune complexes which contribute to the devel-
opment of autoimmunity.4,19 Such mechanisms 
could explain the high prevalence of autoimmune 
disorders in patients with chronic hepatitis C 
infection.20

Post-infectious autoimmune neurological 
disorders

Guillain–Barre syndrome
GBS is an immune-mediated polyradiculoneu-
ropathy, and the most common cause of acute 
flaccid weakness worldwide.21,22 GBS typically 
presents with ascending limb weakness, sensory 
symptoms, and hyporeflexia, though other clinical 
features (such as cranial neuropathies, ataxia, or 
autonomic dysfunction) may be present. There 
are several recognized GBS “variants”, including 
acute inflammatory demyelinating polyradiculo-
neuropathy (AIDP), acute motor/sensory axonal 
neuropathy (AMAN or AMSAN) and Miller 
Fisher syndrome (with prominent ophthalmople-
gia and ataxia), among other less common 
forms.21,22 GBS is a prototypical post-infectious 
neurological syndrome, with up to 70% of patients 
recognizing a preceding respiratory or gastroin-
testinal illness within 2 weeks of neurological 
symptom onset.21–23 Furthermore, serologic evi-
dence of antecedent infection is found in a high 
proportion of GBS patients in case-control stud-
ies.24,25 Viruses frequently associated with the 
development of GBS include cytomegalovirus 
(CMV), Epstein–Barr virus, influenza, human 
immunodeficiency virus (HIV), and hepatitis A 
and E. GBS-associated bacterial infections include 
Campylobacter jejuni, Chlamydia pneumonia, 
Mycoplasma pneumonia, and Haemophilus 
influenzae.21,24–26 Recent outbreaks of arboviral 

Table 1.  Autoimmune neurological disorders and their associations with infections.

Disorder Associated infections

Guillain–Barre syndrome Campylobacter jejuni, Cytomegalovirus, Epstein–Barr virus, Influenza, HIV, 
Hepatitis A, E. Chlamydia pneumonia, Mycoplasma pneumonia, Haemophilus 
influenzae, Zika virus, SARS-CoV-221,24–26,79,129,130,132

Autoimmune encephalitis Herpes simplex virus, Japanese encephalitis virus, West Nile virus,  
SARS-CoV-2, Mycoplasma pneumoniae44,53,90,138

Myasthenia gravis West Nile Virus84

Neuromyelitis optica 
spectrum disorders

Varicella Zoster Virus174

Acute disseminated 
encephalomyelitis

Measles, Mumps Coxsackie B, Varicella Zoster virus, HIV, Mycoplasma 
pneumonia, Legionella66,67

Sydenham’s chorea Group A Streptococcus58

Stiff person syndrome West Nile virus89

HIV, human immunodeficiency virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2.
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infections and novel respiratory viruses have also 
resulted in an increased incidence of GBS in 
affected nations (see section on post-outbreak 
neurological complications for details).

Evidence suggests that GBS is predominantly an 
antibody-mediated disorder. Serum from 
patients with AIDP can cause demyelination of 
peripheral nerves and dorsal root ganglia in ani-
mal models. Furthermore, histologic investiga-
tion from patients with GBS has demonstrated 
the presence of antibodies and membrane attack 
complex on peripheral nerves, though to date  
the specific target of antibodies and their role in 
AIDP remain poorly understood.22,27,28 Antibodies 
targeting gangliosides on peripheral nerves (e.g., 
GM1, GD1a, GQ1b) have been identified in up 
to 80% of patients with axonal GBS and Miller 
Fisher syndrome.21,27,29 Animal studies have 
demonstrated pathogenic potential of these anti-
bodies, with GM1/GD1a antibodies resulting in 
axonal damage, with GQ1b causing conduction 
block.27,30–32

Campylobacter jejuni is the organism most fre-
quently associated with GBS, most commonly  
the AMAN and Miller Fisher variants. The rela-
tionship between this bacterium and GBS dem-
onstrates a classic example of mimicry-induced 
autoimmunity.21,22,27 Certain strains of C. jejuni 
carry a sialtransferase gene, which is responsible 
for the expression of lipooligosaccharides (LOS) 
present on the bacterial cell wall.33–35 Portions of 
this LOS are homologous to human ganglio-
sides, and substitutions within specific loci result 
in antigens that mimic GM1, GD1a, or GQ1b.33–35 
In animal models, immunization with C. jejuni 
LOS mimicking GM1 or GD1b LOS produced 
an axonal neuropathy.6,33 Evidence of mimicry-
induced axonal GBS in human was discovered 
inadvertently when injections containing gangli-
osides were administered for neuropathic pain, 
resulting in an acute axonal neuropathy with 
GM1 autoantibodies.36

Mimicry-induced autoimmunity may play an 
important role in GBS cases associated with severe 
acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) infection.37 The characteristic “spike” pro-
tein present on coronaviruses is capable of binding 
to receptors on the surface of respiratory cells, facil-
itating viral infection. While much attention is 
given to the role of the angiotensin-converting 
enzyme 2 (ACE-2) receptor in coronavirus 

transmission, the spike protein also interacts with 
cell-surface glycoproteins and gangliosides, includ-
ing the GalNAc moiety on GM1.37 Antibodies to 
GM1 and GD1b have been reported in cases of 
SARS-CoV-2 associated GBS, suggesting potential 
cross-reactivity between the spike protein and 
human gangliosides.37–39

Post-infectious autoimmune encephalitis
Herpes simplex virus encephalitis.  Herpes Sim-
plex Virus Encephalitis (HSE) remains a promi-
nent cause of encephalitis worldwide, with high 
mortality despite early recognition and treatment 
with acyclovir.40 Patients with HSE have a high 
rate of delayed neurological exacerbations within 
the first 8 weeks of treatment. In some cases, 
active viral replication is confirmed in the cere-
brospinal fluid (CSF), consistent with recurrent 
HSE; however, a significant proportion of cases 
have negative viral testing and do not improve 
with antiviral agents.41,42 It was observed that 
some patients with post-HSE worsening improved 
with corticosteroids, suggesting that the underly-
ing process may be immune-mediated. Further 
support for a post-infectious autoimmune 
encephalitis was discovered when neuronal auto-
antibodies were detected in the serum and CSF 
of post-HSE patients.43

Among post-HSE patients, studies suggest up to 
27% will subsequently develop autoimmune 
encephalitis.44 Symptoms generally develop 
within 60 days of HSE, but cases occurring 
2 years following initial infection have been 
reported. Two age-related clinical phenotypes 
have been identified in post-HSE autoimmune 
encephalitis. Children less than 4 years of age 
develop prominent choreoathetosis, often 
accompanied by impaired sensorium. Frequent 
seizures are also observed in this population, 
including infantile spasms, which may occur 
acutely or at later stages. Older children and 
adults experience prominent neurobehavioral 
manifestations (including psychosis) as an early 
manifestation, which may initially be attributed 
to residual deficits from HSE.44

Neuronal antibodies are frequently detected in 
patients with post-HSE autoimmune encephalitis. 
Antibodies to the N-methyl-d-Aspartate receptor 
(NMDA-R) are the most prevalent, and are com-
monly associated with hyperkinetic movements 
and psychosis post HSE.44 Antibodies targeting 
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alpha-amino-3-hydroxy-5-methyl-4- isoxazolepro-
pionic acid (AMPA), dopamine-2 receptors, glial 
fibrillary acidic protein (GFAP), gamma-amin-
obutyric acid (GABA)-A, and GABA-B have also 
been reported in cases of post-HSE autoimmune 
encephalitis, while a high proportion of cases have 
had antibodies to yet unidentified antigens.44–48

Mechanisms underlying the development post-
HSE AE remain debated. One study identified 
high rates of serum HSV positivity among patients 
with NMDA-R encephalitis that did not have 
clinical HSE, leading the authors to conclude that 
molecular mimicry may lead to the production of 
autoantibodies.49 However, as HSV-positive 
patients may develop antibodies to antigens other 
than NMDA-R, an aberrant immune response 
may result from antigens being released during 
the inflammatory phase of HSE. In one longitudi-
nal study, approximately half of post-HSE 
patients produced autoantibodies; however, only 
56% percent of antibody positive patients went 
on to develop autoimmune encephalitis.44,46 
Further study is needed to understand host and 
environmental risk factors that result in encepha-
litis in post-HSE patients with autoantibodies.

Japanese encephalitis.  Japanese encephalitis (JE) 
virus is an important cause of encephalitis in Asia, 
with an estimated incidence of 69,000 cases per 
year.50 JE is typically a monophasic disease, with 
headaches, fever, seizures, and altered sensorium, 
but rare cases of early relapse have been reported.51 
Similar to HSE, patients with post-JE worsening 
were noted to experience prominent dyskinesias 
and significant behavioral changes, leading inves-
tigators to explore an immune-mediated etiology 
in such cases. Further evidence emerged from a 
single-center analysis of three cases of post-JE 
relapse, and all had NMDA-R antibodies present 
in CSF. A follow-up study examined 65 JE 
patients prospectively, identifying relapse in five 
cases (7.9%). NMDA-R antibodies were present 
in three of these cases, while the other two were 
felt to have autoimmune encephalitis based upon 
negative JE virus testing and improvement with 
immunotherapy.52,53 Larger, multi-center studies 
of JE patients are needed to determine the inci-
dence of post-JE autoimmune encephalitis, and 
to identify other autoantibodies that may be asso-
ciated with the disorder.

Epstein–Barr virus and post-transplant autoim-
mune encephalitis.  Rare cases of autoimmune 

encephalitis associated with solid organ and 
hematopoietic stem cell transplant have been 
reported in the literature. Reported cases have 
been associated with NMDA-R, AMPA, and 
myelin oligodendryocyte glycoprotein (MOG) 
antibodies. The mechanisms behind loss of toler-
ance despite immunosuppression associated 
with transplant are poorly understood, but an 
association with Epstein–Barr virus (EBV) has 
been proposed, with a few cases reporting posi-
tive EBV testing in the CSF corroborating an 
association.54–56

Sydenham’s chorea
Acute rheumatic fever (ARF) is a multifocal 
inflammatory condition that presents in the weeks 
following GAS infection. Sydenham’s chorea 
(SC) is a neurological manifestation of ARF, with 
an estimated prevalence ranging from 10% to 
50%, which can present between 1 and 8 months 
following infection.57,58 SC is characterized by 
hyperkinetic, adventitious movements of the 
trunk and extremities, frequently occurring bilat-
erally. Other features, such as motor persistence, 
motor/vocal tics, and decreased tone have also 
been associated with the disorder.58,59 Behavioral 
alterations were previously underappreciated in 
the disorder, but recent studies have reported fre-
quent emotional lability and obsessive compul-
sive behaviors.60 SC was previously thought to be 
a self-limited disorder, but recent reports suggest 
a relatively high rate of recurrent chorea, many in 
the setting of acute streptococcal infection.61

The first antineuronal antibodies isolated from 
individuals with SC were noted to react with cau-
date and subthalamic nucleus. Moreover, the 
presence of antineuronal antibodies correlated 
with the severity and duration of chorea.62 Similar 
findings were reported with children diagnosed 
with SC at the National Institutes of Mental 
Health (NIMH) in whom anti-neuronal antibod-
ies directed against human caudate tissue were 
demonstrated in 10 of the 11 patients.63 In another 
study conducted by the NIMH, 24 patients were 
compared with age-matched controls and were 
found to have increased volume of caudate, puta-
men, and globus pallidus on brain magnetic reso-
nance imaging, which may relate to acute 
inflammatory changes.64

Treatment of suspected SC is multifaceted, and 
includes both symptomatic management and 
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prophylaxis for the non-suppurative neurologi-
cal and systemic sequelae of GAS. Recurrent 
ARF can lead to worsening of rheumatic heart 
disease; thus, prophylactic antibiotics are rec-
ommended in children with manifestations of 
ARF even in the absence carditis. Intramuscular 
Benzathine Penicillin G, administered every 
4 weeks, is considered first-line for prophylaxis 
given long-standing efficacy and relatively nar-
row spectrum of activity.65 Symptomatic treat-
ment of chorea is necessary if they cause 
difficulty with activities of daily living, and gen-
erally involves the use of dopamine receptor 
blockers or anticonvulsants. In cases of severe 
or refractory disease, immunotherapies, includ-
ing glucocorticoids, intravenous immunoglobu-
lins, and plasmapheresis, have reportedly led to 
improvement.3

Acute disseminated encephalomyelitis
Acute disseminated encephalomyelitis (ADEM) 
is an inflammatory CNS demyelinating disorder 
predominantly affecting children. The disorder 
is characterized by encephalopathy, typically 
with additional neurological features (e.g., 
ataxia, cranial neuropathies, optic neuritis), and 
evidence of multifocal demyelination on neuro-
imaging. ADEM is classically considered a 
monophasic illness, though other relapsing 
demyelinating disorders may initially present 
with an ADEM phenotype.66,67 As children 
commonly present with antecedent infection 
prior to signs of neurological dysfunction, it is 
believed that ADEM is a post-infectious auto-
immune disorder. Several pathogens have been 
associated with the disorder, with reports of 
ADEM-like illness during measles outbreaks 
dating back to the 18th century.66 Antibodies 
targeting myelin oligodendrocyte glycoprotein 
are found in up to 60% of children with ADEM, 
and are frequently associated with relapses in 
other areas of the nervous system.68,69 To date, 
the role of infections in the development of 
these antibody-associated demyelinating disor-
ders is poorly understood.

Narcolepsy
Beginning in the 1990s, researchers have suspected 
that certain forms of narcolepsy are caused by an 
autoimmune process. Narcolepsy type 1 (NT1), 
previously termed narcolepsy with cataplexy, was 

found to have a strong association with the human 
leukocyte antigen (HLA) DQB1*06:02, which 
was present in approximately 90% of this subgroup 
of narcolepsy patients.70 Subsequently, the discov-
ery of autoreactive CD4+ T cells leading to selec-
tive loss of hypocretin/orexin-producing neurons 
in the hypothalamus highlighted this as a possible 
mechanism for developing narcolepsy.71 Additional 
support for the role of T cells in the disease include 
narcolepsy patients having polymorphisms in the 
T-cell receptor alpha locus.72 In contrast, humoral 
mechanisms for narcolepsy have also be proposed 
with several groups reporting that individuals with 
narcolepsy have antibodies against Tribbles 
homolog 2 (anti-TRIB2) – a protein enriched in 
hypocretin neurons.73,74 Seropositivity was 
observed most frequently in narcolepsy with cata-
plexy near onset of disease, but rarely found in 
those without cataplexy and in those with more 
chronic disease.

Epidemiological studies have demonstrated that 
the incidence of narcolepsy fluctuates with sea-
sonal infections such as influenza and strep throat. 
In 2009–2010, a striking increase in narcolepsy 
type I cases was seen in European countries, coin-
ciding with a vaccination campaign against pan-
demic H1N1 Influenza A. The highest risk groups 
consisted of DQB1*0602 children and adoles-
cents who had received the Pandemrix version of 
the H1N1 influenza vaccine. In 2010, increased 
narcolepsy cases in China were observed to peak 
about 6 months following winter H1N1 infections 
in a large retrospective study of patients with nar-
colepsy75; 86% of the cohort was children and 
only 5.6% of the cohort recalled receiving a H1N1 
vaccination.

Neurological syndromes in the setting of 
recent epidemics

Zika virus
Zika Virus was initially discovered in Uganda in 
the 1940s. In the 21st century, Zika virus man-
aged to spread to the Pacific Islands in 2007, 
eventually reaching several countries in Central 
and South America starting in 2013.76,77 Prior to 
2007, reports of human infection with Zika virus 
were reported only rarely, but its recent dissemi-
nation has seen outbreaks of a febrile illness with 
macular rash, arthralgias, and conjunctivitis.78 
Accompanying these outbreaks was an increase 
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in GBS cases, which had an incidence up to 5.6 
per 100,000.77,79,80 Initial reports from an out-
break in French Polynesia identified high rates 
of AMAN in post-Zika patients, though ganglio-
side antibodies were only identified in less than 
50% of cases.79 Among subsequent outbreaks in 
other nations, AIDP has been the most common 
GBS phenotype reported, with other GBS vari-
ants reported anecdotally.81 Clinically, Zika-
associated GBS tends to reach nadir much more 
rapidly than typical GBS (median 6 days), have 
shorter plateau, and present with more frequent 
facial weakness.79 Other possible post-infectious 
presentations, including myelitis, meningoen-
cephalitis, and chronic inflammatory demyeli-
nating polyneuropathy, have also been reported 
in patients with confirmed or suspected Zika 
infections.81

West Nile virus
West Nile Virus (WNV) is another important 
arboviral infection, responsible for epidemics in 
Europe and North America, starting in the late 
20th century. While the majority of infections 
are asymptomatic, approximately 20% of indi-
viduals develop a mild febrile illness (West Nile 
Fever).77 Approximately 1 in 150 infected indi-
viduals develop neuroinvasive WNV infections. 
Clinical manifestations of neuroinvasive WNV 
include aseptic meningitis, encephalitis (typi-
cally with prominent extrapyramidal symptoms), 
or a gray matter-centric myelitis with flaccid 
paralysis.77,82,83 Immune-mediated neurological 
complications have been reported in patients 
with confirmed WNV infection, suggesting the 
virus can trigger loss of tolerance. Leis and col-
leagues reported a series of patients that devel-
oped acetylcholine receptor antibody positive 
MG in the months after neuroinvasive WNV 
infection.84 Further evidence of a possible asso-
ciation comes from a small, single-center study 
that identified serologic evidence of previous 
WNV infection in 17% of patients with MG, all 
of whom were asymptomatic.85 Larger studies 
are needed to confirm an association between 
MG and WNV. Other neuromuscular presenta-
tions reported post-WNV include GBS, brachial 
plexopathies, multifocal motor neuropathy, and 
myositis.86–88 Among CNS disorders, a case of 
autoimmune encephalitis with glycine antibod-
ies and a case of stiff person syndrome have also 
been reported.89,90

Chikungunya
Chikungunya is a mosquito-borne alphavirus that 
causes a systemic illness with myalgia, headache, 
fever, and debilitating arthralgia. The virus 
became a major public health concern starting in 
2004, when a new strain began to spread across 
island nations in Asia, then to the Americas, 
infecting millions.91 Neurological sequelae of chi-
kungunya infection are increasingly recognized, 
and are strongly associated with the need for 
intensive care.92 Encephalopathy is the most com-
mon neurological symptom reported, with some 
publications providing supporting evidence of 
encephalitis in subjects with chikungunya infec-
tion.93 Spinal cord syndromes with evidence of 
myelitis have also been frequently reported, either 
in isolation or in conjunction with other manifes-
tations. Cases of acute neuropathic presentations 
consistent with GBS are also recognized.94,95 
Evidence supports the possibility of neurotropism 
for the virus, though the description of ADEM 
and GBS raise the possibility of post-infectious 
mechanisms for certain chikungunya-associated 
presentations.

Coronaviruses
Coronaviruses have emerged as an important 
pathogen in humans in the 21st century, with 
two novel coronaviruses [severe acute respiratory 
syndrome coronavirus 1 (SARS-CoV-1) and 
Middle East Respiratory Syndrome (MERS)], 
resulting in epidemics of pulmonary disease with 
high mortality.96 During outbreaks of these 
viruses, potential neurological manifestations 
were reported. Seizures, rhabdomyolysis, stroke, 
and acute neuropathy were reported in patients 
with SARS-CoV-1, with possible neurotropism 
suggested by the detection of viral RNA in CSF 
and tissue specimens.97–102 Similarly, diverse 
manifestations (mostly encephalopathy and sei-
zures) were reported in patients with MERS, 
though evidence of neurotropism has not been 
reported to date.102–105

Recently, a novel coronavirus (SARS-CoV-2) 
causing the respiratory illness Coronavirus 
Disease -2019 (COVID-19) was discovered in 
the Hubei province in China. The virus quickly 
spread globally and was declared a pandemic by 
the World Health Organization on 11 March 
2020.106 To date, there have been over 10.5 mil-
lion confirmed COVID-19 cases worldwide, with 
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over 500,000 deaths.107 Diverse neurological 
complications are being reported in the literature, 
though pathophysiologic mechanisms are still 
poorly understood. Manifestations such as 
encephalopathy or cerebrovascular complications 
may be due to dysregulated homeostatic func-
tions or a coagulopathy, rather than direct neu-
rotropism or targeted inflammatory response.108 
However, reports of neurological symptoms 
weeks after infection suggest a subset of neuro-
logical presentations result from post-infectious 
autoimmunity.

Central and peripheral nervous system complica-
tions of COVID-19 infection have been reported. 
Anosmia and dysgeusia are the most common 
neurological symptom, recognized in up to 60% 
of hospitalized COVID-19 patients.109 The 
pathophysiologic mechanisms for anosmia are 
unclear, but in a case report demonstrating neu-
roimaging abnormalities within the posterior 
gyrus rectus, direct viral invasion of the olfactory 
cortex was postulated.110 Cases of GBS associ-
ated with COVID-19 are also emerging in  
the literature, with 40 cases reported to date. 
Reported phenotypes have predominantly 
included demyelinating polyneuropathies, though 
cases of Miller Fisher syndrome and axonal neu-
ropathies has been reported.39,111–132 Molecular 
mimicry is suspected in association with SARS-
CoV-2 associated GBS, given interactions 
between the spike protein and cell-surface gan-
gliosides, and the presence of antiganglioside 
antibodies in reported cases.37

Possible cases of meningoencephalitis, with 
neuropsychiatric features, altered mental sta-
tus, and seizures, have been reported in hospi-
talized COVID-19 patients. While case 
descriptions are highly variable, some reports 
provide evidence of inflammation on neuroim-
aging and CSF analysis, fulfilling criteria for 
encephalitis.133,134 Few reports have identified 
SARS-CoV-2 RNA in the CSF, and a single 
post-mortem study identified the virus in neu-
ral tissue on electron microscopy, suggesting 
these cases may be due to direct viral invasion 
of the CNS.135–137 The virus may be capable of 
triggering antibody-mediated encephalitis, as 
suggested in a recently reported case of 
NMDA-R encephalitis in a COVID-19 patient 
hospitalized with acute psychiatric disturbance 
and hypoxia.138 Other CNS manifestations, 

including ADEM and an acute myelitis, have 
been reported in COVID-19 patients.139,140

Post-vaccination neurological syndromes

Acute disseminated encephalomyelitis
The first reports of neurological syndromes being 
temporally associated with immunizations 
occurred in the 19th century following the intro-
ductions of smallpox (cowpox) and rabies vac-
cines.141,142 Initially, post-vaccination ADEM was 
thought to be caused by the vaccine’s viral com-
ponents, but later studies suggest that contamina-
tion with CNS tissue, particularly in the case of 
the rabies vaccine, was felt to be the antigenic 
trigger. This hypothesis is substantiated by 
reduced incidence of post-vaccination ADEM 
following changes in vaccine development that 
utilized recombinant proteins, rather than in vivo 
infected animal tissue.

Numerous other vaccines have been implicated 
including diphtheria–tetanus–polio, measles, mumps, 
rubella, Japanese B encephalitis, pertussis, influ-
enza, and hepatitis B.143 In actuality, post-
vaccination encephalomyelitis is extremely rare, 
with an incidence of 0.1–0.2 per 100,000 vacci-
nated individuals and accounts for less than 5% 
of ADEM cases. Past studies suggest that ADEM 
is significantly more likely to occur following 
infection rather than immunization, with an inci-
dence of ADEM as high as 1 in 1000 cases of 
measles virus infection versus 1–2 million per live 
measles vaccine.141

Guillain–Barre syndrome
In 1976, the incidence of GBS increased to 1 in 
100,000 in the weeks following the release of an 
H1N1 influenza A vaccination.144 The stark 
increase resulted in a recall of the vaccine, and 
raised concern about the role of influenza immu-
nization in the pathogenesis of GBS. Intensive 
epidemiologic study of GBS with subsequent 
influenza vaccines (including a subsequent H1N1 
vaccination in 2009) have demonstrated a small 
increases in incidence with vaccination,22,145 with 
some studies have demonstrated a protective 
effect of flu vaccination for preventing GBS.146 
Furthermore, evidence suggests patients with a 
history of GBS do not experience recurrence fol-
lowing influenza vaccination.147
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Diagnostic and treatment considerations

Initial evaluation
The initial evaluation and treatment of a sus-
pected post-infectious neurological disorder mir-
rors that of other neuroimmunological disorders. 
Presentations with severe or progressive symp-
toms require close monitoring, and intensive care 
may be necessary for refractory seizures, auto-
nomic dysfunction, and or signs of increased 
intracranial pressure.148,149 Neuroimaging and 
CSF analysis are important parts of the diagnostic 
evaluation as they help identify evidence of 
inflammation and rule out alternate etiologies. 
Cancer screening is commonly recommended in 
many antibody-associated disorders given the 
possibility of a paraneoplastic etiology.150 While 
many of the disorders in this article are not com-
monly associated with a neoplasm, anti-NMDA-
R encephalitis has an association with ovarian 
teratoma, typically in young women with the dis-
order.151 Screening should be considered on a 
case-by-case basis, based primarily upon risk fac-
tors and clinical context.

Antibody testing
Many autoimmune disorders discussed in this 
review are associated with antibodies targeting 
glial or neuronal antigens. Testing is available 
through several commercial laboratories. As 
different autoantibodies can be associated with 
overlapping clinical presentations, it is generally 
advised to send a “panel” of antibodies.152 
Presentations with classic demyelinating features 
(optic neuritis, transverse myelitis) should strongly 
consider testing for aquaporin-4 and MOG anti-
bodies. Patients with clinical features consistent 
with a GBS variant, particularly AMAN or Miller 
Fisher syndrome, should undergo testing for gan-
glioside antibodies. Several antibodies targeting 
cell-surface proteins or intracellular antigens have 
been associated with autoimmune encephalitis 
(please see the review on Autoimmune Encephalitis 
in this edition for details). In the evaluation for 
autoimmune encephalitis, it is generally recom-
mended that samples from both serum and CSF 
should be submitted for testing, as detection for 
certain antibodies (e.g., NMDA-R) is more sensi-
tive in CSF.151

The presence of an autoantibody on testing may 
indicate an autoimmune disorder, but it is 
important to consider the clinical context when 

interpreting results. Low titers of certain anti-
bodies may have limited clinical significance; for 
example, low titers of GAD65 antibodies can be 
present in the general population and in individ-
uals with type 1 diabetes mellitus.153,154 
Commercial laboratories may also report values 
for voltage-gated potassium channel antibodies, 
though the importance of this antibody in the 
absence of LGI1 or Caspr2 antibodies has been 
called into question.155 Diagnostic criteria for 
many autoimmune disorders incorporate clinical 
imaging and CSF findings to facilitate early treat-
ment in high probability cases, or in instances 
where antibody testing is unavailable.152,156 
Antibody negative presentations of disorders 
such as autoimmune encephalitis are increasingly 
reported in the literature, highlighting the impor-
tance of clinical context in decision making for 
autoimmune neurological disorders.157

Treatment considerations
While disorders such as SC may be managed with 
symptomatic therapies in milder cases, the treat-
ment of most neuroimmunological disorders 
relies on the use of immunomodulating or immu-
nosuppressive measures. Developing an immuno-
therapy plan for a patient is multifaceted, taking 
into account patient comorbidities, clinical phe-
notype and presumed pathophysiology of the 
neuroimmunological disorder. Monophasic dis-
orders such as GBS may only require one-time 
intervention with immunotherapy, whereas disor-
ders with high risk of relapse may require further 
immunosuppressive agents. Clinical trial data is 
lacking for many of the antibody-mediated CNS 
disorders, and experience from other neurological 
or systemic autoimmune disorders is often uti-
lized to guide management.150,158,159

Guillain–Barre syndrome
Strong evidence suggests immunotherapy plays 
an important role in the management of GBS. 
IVIG and plasmapheresis have both demon-
strated efficacy in trials at improving outcomes at 
6 months, with comparative studies of the two 
interventions finding similar efficacy.160–163 
Furthermore, the administration of IVIG follow-
ing a course of plasmapheresis did not confer any 
additional benefit.164 Studies assessing the role of 
corticosteroids failed to demonstrate improve-
ment in GBS patients, with one small study of 
oral steroids suggesting deleterious effects.165 
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Other treatments, including interferon beta and 
eculizumab, have been studied in small trials of 
GBS patients, but larger studies are needed to 
investigate their role in management.166 After ini-
tial treatment, approximately 10% of patient with 
GBS will experience worsening of symptoms, 
typically within 8 weeks of initial presentation. A 
second round of treatment is often considered in 
these instances. In patients with a relapse several 
months from the initial presentation, or with a 
reported slower progression atypical for GBS, a 
broadened differential diagnosis and treatment 
approach should be strongly considered.21,167

Autoimmune encephalitis
The decision to initiate immunotherapy in sus-
pected post-infectious autoimmune encephalitis 
can be challenging. When faced with a patient 
with recent HSE presenting with new neurological 
symptoms, clinicians may hesitate to start immu-
nosuppressive treatment due to concerns that it 
may blunt the antimicrobial immune response or 
promote viral replication. Experimental models 
suggest that treatment with glucocorticoids does 
not exacerbate active herpes simplex infec-
tion.168,169 Furthermore, a recent systematic 
review determined that, among 43 post-HSE 
cases, no patients had experienced recurrence of 
herpes simplex following treatment for autoim-
mune encephalitis, despite the use of first and 
second-line immunotherapy.168 Clinical features 
may also serve to guide treatment decisions, as 
features like psychosis and hyperkinetic move-
ments are more frequent in NMDA-R encephali-
tis than in HSE.44 This constellation of evidence 
has led authors to conclude that, after an expedi-
tious evaluation for recurrence in the setting of 
HSE, the treatment of post-infectious autoim-
mune encephalitis should mirror that of cases 
without a known infectious trigger.168,170

High dose corticosteroids, intravenous immuno-
globulin (IVIG), and plasmapheresis have all been 
utilized as first-line agents for autoimmune 
encephalitis.150,171 Treatment response is gener-
ally assessed based upon clinical improvement in 
symptoms, though repeat imaging or spinal fluid 
analysis may be useful in certain instances. In 
cases of NMDA-R encephalitis that fail to improve 
with first-line immunotherapy, second-line ther-
apy (typically with cyclophosphamide or rituxi-
mab) have demonstrated improvement long-term 
functional outcomes. Evidence also suggests 

rituximab may reduce the risk of clinical relapse.151 
Tocilizumab and bortezomib have also been 
reported to be beneficial in refractory cases.172,173

Conclusion
Infections represent an important risk factor for 
the development of neuroimmunological disor-
ders. Certain autoimmune neurological disorders 
have a close association with specific infectious 
pathogens, which likely arise through diverse 
immunological mechanisms. A post-infectious 
autoimmune disorder is an important considera-
tion in the setting of new neurological symptoms 
temporally associated with infectious symptoms. 
Prompt recognition and treatment of autoim-
mune neurological disorders can lead to favorable 
outcomes.
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