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Abstract

Normalization is crucial in RNA-seq data analyses. Due to the existence of excessive zeros

and a large number of small measures, it is challenging to find reliable linear rescaling nor-

malization parameters. We propose a Zipf plot based normalization method (ZN) assuming

that all gene profiles have similar upper tail behaviors in their expression distributions. The

new normalization method uses global information of all genes in the same profile without

gene-level expression alteration. It doesn’t require the majority of genes to be not differen-

tially expressed (DE), and can be applied to data where the majority of genes are weakly or

not expressed. Two normalization schemes are implemented with ZN: a linear rescaling

scheme and a non-linear transformation scheme. The linear rescaling scheme can be

applied alone or together with the non-linear normalization scheme. The performance of ZN

is benchmarked against five popular linear normalization methods for RNA-seq data.

Results show that the linear rescaling normalization scheme by itself works well and is

robust. The non-linear normalization scheme can further improve the normalization out-

comes and is optional if the Zipf plots show parallel patterns.

Introduction

Errors are inevitable and exist in many analytical platforms, including microarray, qRT-PCR,

and next generation sequencing (NGS) technologies. Errors can be introduced in deep NGS

data from different sources including sample handling, library preparation, sequencing, and

many others. Substitution error is one type of sequencing error. It plays an important role in

low-frequency genetic variant detection and can be corrected experimentally and computa-

tionally [1]. NGS data often come with measurement errors. For example, gene expressions

can be length-biased. Measures of weakly expressed genes are often truncated to zeros due to

sequencing depth or detection limits with the current technologies. When done appropriately,

normalization can remove the unwanted artificial variations and hence improve the down-

streaming data analyses such as differentially-expressed gene detection. Meanwhile, the nor-

malization procedure by itself can introduce new errors to the analyses. Sometimes, it removes

the true variations by causes of interest. With the plummet of sequencing costs in recent years,
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massive RNA-seq gene expression data have become publicly available. As a result, it becomes

feasible to make good inferences of the weakly expressed genes via bulk RNA-seq data analysis.

However, NGS data normalization is challenging and remains a major barrier to pooling data

from different sources (by different laboratories, from different tissues, using different

sequencing technologies and others).

In general, the normalization methods for gene expression data can be classified into two

categories: linear normalization methods and non-linear normalization methods. For linear

normalization methods, a profile is rescaled by diving the expressions in the same profile by a

positive normalizing parameter so expressions from different profiles are aligned to the same

level for direct comparisons. Popular linear normalization methods include but not limited to

the following five methods:

• Total count method (TC): TC assumes that all profiles have the same number of reads. This

method is simple and easy to implement. However, the total count of a profile can be greatly

impacted by the extremely large measures and the performance of TC can be negatively

affected by outliers [2, 3].

• Median normalization method (MED): MED assumes that the gene expression distributions

of all profiles have the same center and the median expression of a profile is used as its nor-

malizing parameter [4, 5]. MED is easy to implement and works well when the majority of

genes are strongly expressed. However, In cancer related genome data analysis, the common

median assumption is very likely to fail. In whole genome sequencing, a lot of genes are not

expressed and many genes are weakly expressed. When the next generation sequencing tech-

nologies are used, the not expressed genes and the genes expressed below the detectable lev-

els (due to the limits of technologies or experimental settings) have zero measures. MED is

not applicable for the zero-inflated gene profiles. MED has been implemented within the

DESeq Bioconductor package.

• Upper quartile method (UQ): Similar to MED, UQ assumes that the expression distributions

of the two profiles to be normalized have the same upper quartile. UQ has been used as a

remedy for gene profiles with excessive zeros or weakly expressed genes. However, UQ is

not applicable if the proportions of zero counts are higher than 75%. In microarray or RNA-

seq gene expression data, it is not uncommon that the vast majority of genes are weakly or

not expressed. When the proportion of weakly or not expressed genes is below but close to

75%, the performance of UQ can be poor as the sample upper quartiles can be small and the

variation can be dominated by the measurement errors. UQ has been implemented within

the edgeR Bioconductor package.

• Trimmed mean of M-values method (TMM): TMM assumes that the majority of genes are

not DE across all profiles. It computes the fold changes (ratios of expressions) of genes in a

pair of profiles and excludes the extremely large or small fold changes. The mean fold

changes of the remaining genes in a profile is computed as its normalization parameter [4, 6,

7]. TMM works well when the number of genes are large and the majority of genes are

strongly expressed. However, when the amount of weakly or not expressed genes is large, the

fold changes can be greatly impacted by the measurement errors and hence the performance

of TMM will be negatively affected. Also, such an approach can be problematic when only a

subset of selected genes are profiled, as there is no guarantee that the majority of the genes

are not DE. The performance of TMM also depends on the percentage of values trimmed at

the two ends. TMM has been implemented within the edgeR Bioconductor package.
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• Relative log expression method (RLE): RLE is similar to TMM. It also assumes that the

majority of genes are not DE and the normalizing parameters are determined by using the

median fold changes instead of the trimmed means [8–10]. RLE is less sensitive to extreme

gene expressions than TMM. However, its performance may not be good when there are

excessive weakly or not expressed genes in the profiles. RLE has been implemented in the

DESeq and DESeq2 Bioconductor packages.

The non-linear normalization methods are usually based on stronger assumptions and are

used for special purposes. For example, reads per kilo-base per million mapped reads (RPKM),

fragments per kilo-base per million mapped reads (FPKM), and transcripts per million (TPM)

methods are commonly used to correct the length biases for genes of different sizes. The nor-

malization steps of these three methods are similar to TC except an extra adjustment step to

correct the biases under an assumption that the expression measures are proportional to the

lengths of the genes. The quantile normalization (QN) is another widely used non-linear

method which assumes that all profiles follow similar distributions and allows gene-level

expression modifications so that all profiles have the same distribution after normalization

[11–14].

In this study, we propose a novel normalization method designated for RNA-seq data with

excessive zeros and a large number of small counts (� 10). With the new normalization

method, we perform linear and/or non-linear normalization so that the normalized profiles

have similar upper tail behaviors as revealed in the Zipf plots.

Materials and methods

RNA-seq data for lymphoblastoid cell lines

As part of the International HapMap project, a total of 52,580 RNAs were sequenced from

lymphoblastoid cell lines (LCLs) derived from 69 Nigerian individuals generated using Illu-

mina Genome Analyzer II (Homo sapiens) in a study by Pickrell and et al [15]. The reads are

either 35 or 46 base pairs (bp) and are mapped using MAQ v0.6.8. The datasets are counts

based without normalization, and are publicly available to download on Gene Expression

Omnibus (GEO) by NIH NCBI (accession number “GSE19480”).

Table 1 shows some summaries of the gene expression measures. The smallest percentage

of zero measures among the 129 gene expression profiles is 83.2% and the largest is 86.37%.

Table 1. Frequency distribution of small counts for the LCL RNA-seq data.

Count Mean (%) Median (%) Min (%) Max (%)

0 44469 (84.57) 44289 (84.23) 43744 (83.2) 45412 (86.37)

1 803 (1.53) 805 (1.53) 385 (0.73) 1165 (2.22)

2 426 (0.81) 419 (0.8) 294 (0.56) 596 (1.13)

3 292 (0.56) 288 (0.55) 236 (0.45) 395 (0.75)

4 225 (0.43) 223 (0.42) 182 (0.35) 288 (0.55)

5 185 (0.35) 183 (0.35) 139 (0.26) 240 (0.46)

6 158 (0.3) 158 (0.3) 117 (0.22) 210 (0.4)

7 139 (0.26) 139 (0.26) 102 (0.19) 182 (0.35)

8 123 (0.23) 124 (0.24) 92 (0.17) 159 (0.3)

9 111 (0.21) 110 (0.21) 79 (0.15) 146 (0.28)

10 104 (0.2) 102 (0.19) 79 (0.15) 135 (0.26)

The values in the parentheses are the percentages of the corresponding counts.

https://doi.org/10.1371/journal.pone.0230594.t001
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That says, if a positive quantile needs to be used as the normalizing parameter to linearly

rescale the expressions in a profile, the quantile level cannot be lower than 86.37%. Hence

MED and UQ won’t work for this data without special handling. In addition, the average per-

centage of counts with measures less than 10 across all profiles is 89.46% with standard devia-

tion 0.92%. If we simply choose a high level quantile, say the quantile qα with level α = 0.90 or

lower, as the normalizing parameter, many profiles may have the same quantile values of qα
due to the existence of the large amounts of tied small counts. As a result, either no normaliza-

tion will be performed, or small adjustments will be applied to correct the artificial variations

in these profiles. In addition, when the normalization parameter is small, the measurement

errors or other types of errors can play important roles in the estimated normalizing parame-

ters and hence bias the normalized data. On the contrary, if we choose very high level quantiles

as normalizing parameters, the variances of the estimated normalization parameters tend to be

large.

The Zipf plot for NGS gene expression data

Plots (a) and (b) in Fig 1 show the empirical cumulative distribution functions (ECDFs) of the

raw gene expressions and the log-transformed gene expressions, respectively. In plot (a), the

ECDFs of different profiles are hard to discern due to the wide range of the gene expressions

and the large amount of small measures (including the excessive zeros). After the logarithm

transformation, the ECDFs in plot (b) show similar patterns for all profiles. However, the

upper tails of the ECDFs are still hard to discern.

The Zipf plot is a powerful graphical method to visualize the upper tail behaviors of right-

skewed distributions. Let X = {X1, X2, . . ., Xn} be a profile with n gene expression measures.

Also, let z1 > z2 > . . .> zm be the m distinct values of X and f1, f2, . . ., fm be the corresponding

frequencies. We assume that the actual gene expression level of a gene is no smaller than the

observed count and compute the rank of zi as follows:

ri ¼ RankðziÞ ¼
Xn

j¼1

IðXj � ziÞ ¼
Xi

j¼1

fj: ð1Þ

The plot of the logarithms of ranks versus the logarithms of zi’s is the so-called Zipf plot. Plot

(c) of Fig 1 shows the Zipf plots of all LCL profiles. Due to the Zipf plots in plot (c) being

densely packed, the profiles can hardly be distinguished from each other. However, the few

isolated Zipf plots at the lower part demonstrate obvious patterns of parallel curves.

The Zipf plot has been widely used to check whether a distribution follows the power law.

For any xmin> 0, if X� xmin follows a power law distribution, the density function and distri-

bution function of X are

f ðxÞ ¼
k � 1

x1� k
min

x� k and FðxÞ ¼ 1 �
x
xmin

� �1� k

; ð2Þ

where κ> 1 is the parameter of the power law distribution. In the Zipf plot, rank ri can be well

approximated by ri� n[1 − F(zi)] when n is sufficiently large, which is often the case for high-

throughput RNA-seq data. Now we have

logðriÞ � logðnÞ � ð1 � kÞlogðxminÞ þ ð1 � kÞlogðziÞ: ð3Þ

For a power law distribution, we expect its Zipf plot to demonstrate a straight line pattern with

slope 1 − κ< 0. Plot (c) reveals that expressions of the highly expressed genes in the LCL pro-

files approximately follow power law distributions. A modified version of the Zipf plot is
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displayed in plot (d) by replacing log(ri) with log(S(zi)) = log(1 − F(zi))� log(ri) − log(n),

which only results in a downward shift of log(n) in the y-axis.

Normalizing NGS gene expression data

For illustration purposes, we choose two profiles whose Zipf plots are far apart. Fig 2 shows the

Zipf plots of profile 47 (solid curve) and profile 107 (dashed curve). For convenience, we reuse

the notation X and denote a pair of profiles to be normalized as X and Y, respectively. Let zx ¼
fzx

1
; zx

2
; . . . ; zxmx

g be the mx distinct measures of X and rx ¼ frx
1
; rx

2
; . . . ; rxmx

g be the correspond-

ing ranks. Similarly, we denote the distinct measures and ranks of profile Y as zy ¼

fzy1; z
y
2; . . . ; zymy

g and ry ¼ fry1; r
y
2; . . . ; rymy

g, respectively. When both profiles follow power law

Fig 1. Similarity comparisons of LCL profiles. (a) ECDFs of the raw gene expressions; (b) ECDFs of log-transformed gene expressions (zeros not shown); (c) Zipf

plots of the gene expressions; (d) Revised Zipf plots by replacing the logarithms of ranks with the logarithms of the approximated survival functions.

https://doi.org/10.1371/journal.pone.0230594.g001
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distributions for X� xmin and Y� ymin, we have

logðrxi Þ ¼ logðnÞ � ð1 � kxÞlogðxminÞ þ ð1 � kxÞlogðz
x
i Þ; ð4Þ

logðryi Þ ¼ logðnÞ � ð1 � kyÞlogðyminÞ þ ð1 � kyÞlogðz
y
i Þ: ð5Þ

If the highly expressed genes in both profiles follow the same or similar power law distribu-

tions, the right ends of the two Zipf plots are expected to show straight line patterns, and the

slopes of the fitted least squares lines should be close or the same. In Fig 2, the slope of the fit-

ted least squares line of profile X (solid line) is very close to that of profile Y (dashed line).

Without loss of generality, let X be the reference profile and Y be the profile to be normal-

ized. We normalize profile Y so that the two Zipf plots stay as close as possible after normaliza-

tion. Graphically, we keep the Zipf plot of profile X unchanged and shift the Zipf plot of profile

Y in the x-axis then rotate it, which can be implemented using the following two normalization

schemes:

Fig 2. Normalizing profiles 47 and 107. Profile 47 has the smallest mean expression (solid curve) and profile 107 has the largest mean expression (dashed curve).

The dash-dotted curve shows the Zipf plot of profile 107 after normalization (with both rescaling and power transformation). The solid and dashed straight lines

are the fitted least squares lines of log(Rank) against log(X) based on genes with log(Rank)<6) for profiles 47 and 107, respectively. The dash-dotted straight line

shows the fitted least squares line for profile 107 after rescaling but before power transformation.

https://doi.org/10.1371/journal.pone.0230594.g002
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• Rescaling: shifting in the x-axis is equivalent to linear rescaling. Let σ be the linear normaliz-

ing parameter. We have logY0 = log(Y/σ) = logY − logσ. Here logσ is the distance that the

Zipf plot of Y needs to move towards the Zipf plot of X in the x-axis.

• Power transformation: let g ¼ ð1 � k̂xÞ=ð1 � k̂yÞ be the non-linear normalizing parameter,

which is the ratio of the slopes of the two least squares lines for profiles X and Y. We can

apply a power transformation Y0 = Yγ so the two least squares lines have the same slope.

In summary, profile Y is normalized with respect to reference profile X as

Y 0 ¼
Y
s

� �g

; ð6Þ

where σ and γ are the two normalizing parameters. We divide the expressions in the profile to

be normalized by σ to rescale the expressions so the two profiles will be normalized to close lev-

els. The power transformation with parameter γ further improves the similarity between the

upper-tail behaviors of the two distributions.

It is worth pointing out that estimating the power law distribution parameters κx and κy
using the ordinary least squares regression with pre-specified values of xmin and ymin might not

be efficient. We can consider estimating κx, κy, xmin and ymin altogether based on the highly

expressed genes in the two profiles using the Hill estimator [16], or a maximum likelihood esti-

mator as in [17].

As shown in Fig 2, the Zipf plot of profile Y after linear normalization (the dash-dotted

curve) is almost identical to the Zipf plot of profile X (solid curve). The slopes of the two fitted

least squares lines are very close, which suggests that a non-linear normalization might not be

necessary.

Results

An example to normalize two gene profiles

Fig 3 shows the MA-plots of profile 47 versus profile 107 before and after normalization in

plot (a) and (b), respectively. The MA plot is a commonly used graphical tool to visualize high-

throughput sequencing analysis. It first transforms the data in the two profiles onto M (log

ratio) and A (average log-expression) scales, then visualizes the differences of the measure-

ments in the two profiles by plotting M against A. In plot (a) we take M = log(X) − log(Y) and

A = (log(X) + log(Y))/2, where X and Y are the measures in profiles 47 and 107, respectively.

In plot (b), we replace Y with the normalized value Y0. The solid curve is fitted using R function

loess with span = 0.2, while the dashed curve is the loess curve with span = 0.1. From plot

(a), we see that the majority of the points fall below the horizontal line with M = 0. This indi-

cates that most genes have larger measures in profile 107 and the expressions need to be scaled

down so the two profiles will be brought to close levels. The loess curves show straight line pat-

terns for genes satisfying A> 5, which indicates that linear scaling is appropriate for the genes

that are not weakly expressed. Meanwhile, plot (a) of Fig 3 shows that the loess curves have dif-

ferent non-linear patterns for points with A< 2, which indicates that linear rescaling normali-

zation alone may not be able to achieve good normalization results for weakly expressed genes.

In other words, a non-linear transformation is needed to further improve the normalization

outcomes.

We choose the highly expressed genes by selecting the expressions with ranks exp(6) = 403

or lower and fit least squares lines to these points in the Zipf plots. The slopes of the fitted least

squares lines are -1.734 and -1.730 for profiles 47 and 107, respectively. Hence a rough estimate

of γ is ĝ ¼ ð� 1:730Þ=ð� 1:734Þ ¼ 0:9977.
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Let Z ¼ ðlogðzx
1
Þ; logðzx

2
Þ; . . . ; logðzy1Þ; logðz

y
2Þ; . . .Þ be a vector of the log-transformed gene

expressions of the selected highly expressed genes from the two profiles. Also, let R ¼
ðlogðrx

1
Þ; logðrx

2
Þ; . . . ; logðry1Þ; logðr

y
2Þ; . . .Þ be a vector of the corresponding log-ranks, and G =

(0, 0, . . ., 1, 1, . . .) be the group identities. If a point Zi is from profile X, Gi = 0, otherwise Gi =

1. We then fit a linear model by regressing Z on R and G. The estimated coefficient of G is our

estimate of σ.

Plot (b) of Fig 3 shows the MA-plot after normalization. Many genes located above the

M = 0 line after normalization and the loess curves become more linear than the ones for the

pre-normalization data.

Performance comparison

To evaluate the performance of the proposed normalization method, we normalize all LCL

profiles with each of the following methods: TC, MED, UQ, TMM, RLE, and the Zipf plot

based normalization (ZN). For fair comparisons, we only use the linear rescaling normaliza-

tion scheme for ZN (without non-linear normalization). In Fig 1, many Zipf plots stay apart

Fig 3. Comparisons of normalization results for profiles 47 and 107.

https://doi.org/10.1371/journal.pone.0230594.g003
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from each other, which indicates that linear normalization is needed to pull the profiles to sim-

ilar levels. However, non-linear normalization may not be needed as the Zipf plots show paral-

lel curve patterns in their upper tails. This is also verified by the estimated non-linear

normalizing parameter between profiles 47 and 107, which is very close to 1.0 indicating that

the power transformation can improve the normalization results but not much.

To reduce the numerical difficulties caused by the zeros, we exclude 39,596 (75.31%) genes

with zero across all profiles. A total of 12,984 genes remain in the new dataset, where profile 58

has the smallest number of zeros (20.79%). To improve the performances of MED, UQ, TMM

and RLE, we choose profile 58 as the reference profile.

• TC: this method applies to all profiles without any numerical difficulty.

• MED: among all profiles to be normalized, four profiles (3.13%) have zero median. Three of

them are normalized using MED after removing all genes with zero counts in both profiles.

One profile has zero median after we filter out the genes with zero in both profile. Therefore,

all genes with zero in either profile are removed to apply the MED.

• UQ: all profiles have positive upper quartiles in the new dataset. UQ works with no numeri-

cal difficulty.

• TMM: to avoid numerical difficulties, genes with zero measures in both profiles are filtered

out. We first compute the ratio of expressions in the profile to be normalized and the refer-

ence profile for each gene. Then we calculate the M-values by taking the logarithm of the

ratios. A total of 15 profiles (11.72%) have infinite means after trimming 30% M-values from

both ends. Genes with zeros in either profiles are removed for these 15 profiles to apply

TMM.

• RLE: similar to TMM, genes with zero measures in both profiles are removed to compute

valid M-values. After that, only one profile doesn’t have valid median M-value and genes

with zeros in either profile are removed to apply RLE.

• ZN: this method applies to all profiles without any numerical difficulty.

Table 2 shows the summaries of the estimated normalizing parameters for the six selected

normalization methods. Results show that MED has overall larger estimated normalizing

parameters than the other methods. As a result, only 14.1% of the profiles are upward rescaled

with MED while the percentages for the other methods are at least 50%. This is mainly because

the reference profile has the smallest number of zeros and the calculation of the median is

closely associated with the number of zeros in a profile. In terms of the number of zeros, the

selected reference profile has overall strong signals and therefore most of the other profiles are

downward rescaled if we use median to compute the normalizing parameter. There are a cer-

tain number of profiles not normalized with MED, UQ and RLE. This is because these three

methods use a single quantile estimate for each profile to compute the normalizing parameter.

Due to the existence of large numbers of small counts in the profiles, tied quantile estimates

are likely to be found between a pair of profiles which ultimately results in normalizing param-

eter estimates of 1.0.

To further benchmark the performances of the six normalization methods, we identify and

compare a set of “invariants” based on the normalized data. The idea is as follows: if the major-

ity of genes are not DE and if a normalization method works well, we expect to be able to iden-

tify a subset of genes that are strongly expressed with small deviations, namely, the invariants.

To take both the deviation and expression level into consideration, we use the coefficient of

variation (CV) to determine whether a gene is an invariant. Genes with 50% or more zeros will
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not be considered as invariants because most of them are weakly expressed and can be signifi-

cantly impacted by measurement errors. Because the CVs are severely skewed to the right, we

perform logarithm transformation to the CVs and show the distributions. In Fig 4, the two

curves for TMM (short dash-dotted) and RLE (long dashed) are similar, while the other four

methods show similar patterns. The distribution of TC (solid) is very similar to the distribution

of UQ (dotted). MED (short dashed) and ZN (long dash-dotted) have similar distributions

Table 2. Comparisons of estimates of normalizing parameter.

Method Min. 1st Qu. Median Mean 3rd Qu. Max. SD Scal Up No Chng

TC 0.476 0.627 0.764 0.956 1.165 3.430 0.498 0.664 0.000

MED 0.667 1.000 1.500 1.798 3.000 6.000 1.062 0.141 0.227

UQ 0.459 0.622 0.814 1.028 1.340 4.250 0.586 0.609 0.008

TMM 0.278 0.552 0.862 0.861 1.123 1.601 0.357 0.578 0.000

RLE 0.182 0.500 0.841 0.858 1.154 1.667 0.388 0.562 0.031

ZN 0.421 0.778 0.993 1.192 1.411 4.296 0.617 0.500 0.000

https://doi.org/10.1371/journal.pone.0230594.t002

Fig 4. Distributions of coefficient of variations after logarithm transformation.

https://doi.org/10.1371/journal.pone.0230594.g004
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and ZN has larger overlaps with TMM and RLE than TC, UQ and MED. It is not surprising

that TMM and RLE are close, as both are based on the fold changes and the small counts play

important roles in computing the normalizing parameters. TC, UQ and ZN give more weights

to the observations to the upper tails and therefore they show similar patterns. If a small cutoff

of log-CV is chosen, say -0.4, no gene can be identified as invariants by TMM or RLE.

Table 3 compares the agreement among different normalization methods. The diagonal

cells show the cutoff CVs used to identify 1000 invariants with each normalization method.

TMM and RLE have much larger cutoff CVs than the other four methods. The numbers in the

lower triangular matrix show the number of genes identified by both methods. For example,

among the 1000 invariants identified by TC, 850 are also identified by ZN. TMM and RLE

have the largest overlap of 911 common invariants. The values in the upper triangular matrix

show the Spearman correlation coefficients of the CVs computed based on data normalized

using two different methods. The coefficient between TMM and RLE is 0.989, and 0.987

between ZN and TC. The overall agreement among the six normalization methods is good.

We also check the similarity of the upper-tails of all profiles by comparing the slopes of the

least square lines fitted on genes with log(Rank)<6 in their Zipf plots. The 95% confidence

interval of the estimated slopes is (−1.745, −1.713), which confirms that all profiles have similar

patterns of upper-tail behaviors and the non-linear normalization can be optional.

Discussion

The estimates of the two normalization parameters, σ and γ, can be further improved. To find

the optimal estimates of (σ, γ) jointly, we search over a fine grid in the neighborhood of the

OLS estimates based on the Zipf plots as in Fig 2. We define the optimal estimates as a pair of

values of (σ, γ) that minimize the the following objective function:

Dðs; gÞ ¼ max
t
jFx

nðtÞ � Fy
nðtÞj: ð7Þ

The rationale that we choose the above Kolmogorov–Smirnov statistic to measure the distance

between the distribution functions of the two profiles after normalization is its simple form

and the good performance of the empirical distribution function in approximating the true

distribution functions for large samples.

Fig 5 shows the perspective plot of the surface of D over the σ-γ plane for profiles 47 and

107. It shows that D doesn’t change much as γ varies. However, D changes greatly if we fix γ
and change the value of σ alone. Fig 6 shows the MA-plot after normalization using the optimal

estimates of (σ, γ) = (4.6261, 0.9874). There are very small differences between the two loess

curves fitted to data normalized using the OLS estimates and the optimal estimates, respec-

tively. Due to the lack of ground truth about the gene expressions in different profiles, it is

hard to tell which estimate works better.

Table 3. Agreement among different normalization methods.

Method TC MED UQ TMM RLE ZN

TC 0.298 0.917 0.981 0.892 0.879 0.987

MED 490 0.402 0.955 0.739 0.711 0.918

UQ 754 654 0.314 0.829 0.812 0.982

TMM 470 144 303 0.727 0.989 0.861

RLE 455 119 285 911 0.749 0.846

ZN 850 522 787 417 396 0.356

https://doi.org/10.1371/journal.pone.0230594.t003

PLOS ONE A Zipf-plot based normalization method for high-throughput RNA-seq data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230594 April 9, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0230594.t003
https://doi.org/10.1371/journal.pone.0230594


For genes expressed at very low levels, say A< 2, a more aggressive normalization strategy

to manipulate the expressions at gene-level is not necessary. The low measures tell us whether

the genes are detectable in an experiment and we shall not emphasize too much on their abso-

lute expressions. In DE gene detection analysis, the expressions of the weakly expressed genes

need to be modeled differently to appropriately calibrate the impacts of the measurement

errors.

Conclusion

The proposed normalization method assumes that the distributions of the gene expressions in

different profiles have similar upper tail behaviors, which is a reasonable assumption in

Fig 5. Optimal estimates of (σ, γ).

https://doi.org/10.1371/journal.pone.0230594.g005
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practice. Although we derive the normalization algorithms via an example using power law

distributions, the expressions of the highly expressed genes don’t have to follow power law dis-

tributions. In case the Zipf plots don’t show straight line patterns, we can find rough estimates

of the normalization parameters and refine the normalization by searching for optimal esti-

mates numerically. As a by-product, the Zipf plots can be used to visually check the normaliza-

tion results.

The selection of normalization method depends on the quality of the data. When the mea-

sures are overall large with the majority genes being not DE, TMM and RLE are expected to

have good performances. On the contrary, if most of the genes are weakly or not expressed,

ZN and TC are reliable and work well. In addition, the proposed normalization method can be

used together with the other normalization methods. For example, we can first normalize the

RNA-Seq tag counts using the FPKM or RPKM to correct the length-bias, then apply ZN for

further improvements. Though, ZN won’t be applicable to the data that have already been nor-

malized using QN because the QN-normalized gene profiles have the same distribution.

Fig 6. MA-plot after normalization with optimal estimates of (σ, γ). The solid curve shows the loess curve based on the data normalized with the optimal

estimates, while the dashed curve is the loess curve based on data normalized using the OLS estimates. A smoothing parameter span = 0.2 is used for both curves.

https://doi.org/10.1371/journal.pone.0230594.g006
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If a conservative normalization strategy is preferred, we can choose to perform the linear

rescaling normalization without non-linear normalization using ZN. Our method works pretty

well in finding reliable normalizing parameters, especially for NGS data with excessive zeros

and/or large numbers of small counts.

All the algorithms have been implemented in R and collected in function Zipf.Normal-
ize in package bda.
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