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Abstract

Species are shifting their ranges due to climate change, many moving to cooler and higher

locations. However, with elevation increase comes oxygen decline, potentially limiting a

species’ ability to track its environment depending on what mechanisms it has available to

compensate for hypoxic stress. Pikas (Family Ochotonidae), cold-specialist small mammal

species, are already undergoing elevational range shifts. We collected RNA samples from

one population of Ochotona roylei in the western Himalaya at three sites– 3,600, 4,000, and

5,000 meters–and found no evidence of significant population genetic structure nor positive

selection among sites. However, out of over 10,000 expressed transcripts, 26 were signifi-

cantly upregulated at the 5,000 m site and were significantly enriched for pathways consis-

tent with physiological compensation for limited oxygen. These results suggest that

differences in gene expression may play a key role in enabling hypoxia tolerance on this

local scale, indicating elevational flexibility that may facilitate successful range shifts in

response to climate change.

Introduction

Current climate trends indicate a continued increase in global mean temperature to as much

as 4˚C above present temperatures by 2100 [1]. Many species are already shifting their ranges

in order to follow their preferred climate [2], with flatland species generally shifting north-

ward, and mountainous species moving to higher elevations [3]. However, moving up in eleva-

tion to escape warmer temperatures comes with new environmental stressors, including

oxygen deprivation, or hypoxia [4]. Limitations that hypoxia may place on an animal’s imme-

diate ability to move upslope as it responds to warmer conditions have not been explored and

likely depend on what hypoxia-compensation mechanisms a population has at its disposal.

Pikas (Order Lagomorpha, Family Ochotonidae) are an ideal model system with which to

address this question. Pikas are small mammals related to rabbits and hares. At least 28 extant
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pika species (Ochotona spp.) are known [5]: 2 in North America and the rest in Asia. As many

as 15 pika species are found in the Himalayas and/or Tibetan Plateau region [6] which is

thought to be the center of origination for the genus [7]. Pikas have a low tolerance for heat [8]

and are generally restricted to high latitudes, high elevations, and/or habitats that have cool

microclimates. When exposed directly to heat without options for behavioral adaptation, indi-

viduals of the American pika (O. princeps) perish from even brief exposure to temperatures

between 25.5–29.4˚C [9].

Due to their thermal sensitivity, pikas are expected to be one of the first mammals to

respond to climate change, and indeed, the American pika is already showing rapid range

shifts in parts of its distribution [10]. As ambient temperatures have warmed, the lower-eleva-

tion range margins of American pika populations in the Great Basin have moved up at an aver-

age rate of 145 m per decade [10]. Himalayan pika species are at even greater risk of range

retraction because the Himalayas are already subjected to rates of temperature change three

times the global average [11]. Additionally, the Himalayas are the lowest latitude at which

pikas are found.

Many pika species occupy vast elevational ranges. Some species’ elevational ranges span

more than 4,000 m and some species live well above 5,000 m [12]. Warming temperatures are

likely to continue to make lower-elevation locations within current ranges uninhabitable.

Within a species, the ability of lower-elevation pikas to join their higher-elevation neighbors in

cooler refugia over a few decades will likely depend on what ‘preadaptive’ mechanisms are

already used to tolerate hypoxic stress at different elevations within that species.

Genetic adaptations are known to likely generate variable hypoxia tolerance among pika

species. Previous studies assessing genetic adaptations in candidate genes such as hemoglobin

[13] and cytochrome c oxidase [14] indicate that lower-elevation pika species do not share

many of the unique genotypes that are characteristic of high-elevation species. In fact, not only

pikas, but all Himalayan vertebrates studied to date, including indigenous humans [15], yaks

(Bos grunniens) [16], bar-headed geese (Anser indicus) [17], domestic dogs (Canis lupus famil-
iaris) [18], snow leopards (Panthera uncia) [19], Tibetan grey wolves (Canis lupus chanco)

[20], and Tibetan wild boars (Sus scrofa) [21] display adaptations to tolerate the physiological

stress of low-oxygen conditions characteristic of their high-elevation range that are not found

in their lower-elevation relatives. However, genetic adaptations occur on an evolutionary time

scale that is likely much too slow to keep pace with anthropogenic climate change [22].

Alternatively, alterations in gene expression is a mechanism capable of compensating, at

least partially, for the stresses of hypoxia [23,24], and is a mechanism that can occur within

hours or days [23,24], easily keeping up with anthropogenic climate change. Plasticity in gene

expression in response to chronic hypoxia has been assessed in model organisms such as rats

and mice [25,26], and has also been evaluated in a few non-model organisms—deer mice (Per-
omyscus maniculatus) [27–30], rufous-collared sparrows (Zonotrichia capensis) [24], Andean

human populations [23], and Tibetan pigs (Sus scrofa) [31]. In these previous studies of non-

model organisms, many significant differences in gene expression between high and low-ele-

vation individuals from distant locations were identified; however, no attempt was made to

sample from the same population in order to try to disentangle genetic adaptions, which

should be minimal within a population, and gene expression.

In order to get at what is differentiating individuals along an elevational transect at a local

level, we targeted the species Ochotona roylei, which occurs at elevations from 2,400–5,200 m

across the Himalayas (Fig 1) [32]. By spanning such a wide elevational range in sometimes

very small geographic areas, this species offered the opportunity to assess differences in hyp-

oxia tolerance at a geographically local scale. Thus we collected samples from pikas across the
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broadest elevational range possible on one mountain in the Western Himalayas (Fig 1) to

quantify genetic structure, genetic adaptation, and gene expression.

In comparing pikas along an elevational transect we expected four possible, non-mutually

exclusive, outcomes. Pikas from different elevations could exhibit 1) population structure

because they have undergone genetic drift due to a lack of gene flow; 2) differential adaptation

at each location apparent through outlier loci under positive selection; 3) differences in gene

expression; and 4) no detectable differences at the genetic or transcriptomic levels.

In this study, we address each of these possibilities to determine the relative role of each in

generating tolerance to hypoxia in pikas living in this extreme environment. Each mechanism

has different implications concerning the response of pikas to climate change. Genetic isola-

tion between elevations (outcome 1) would indicate barriers to dispersal. Genetic adaptations

(outcome 2) generally occur much slower than the time frame on which pikas are currently

shifting their ranges [22]. If high-elevation individuals within this species have evolved unique

genetic adaptations for hypoxia tolerance, then lower-elevation individuals may be genetically

unfit to live in high-elevation environments (and vice-versa). Modulation of gene expression

(outcome 3) on the other hand, a mechanism that has not yet been explored in pikas, can act

on a much shorter time scale [23,24]. Phenotypic plasticity is likely to be one of the most pow-

erful tools that an animal species can have at its disposal to successfully respond to rapid cli-

mate change [33]. If high-elevation pikas are dependent on alterations in gene expression to

compensate for additional oxygen stress, then this is a mechanism that lower-elevation

Fig 1. Sampling localities. (a) The complete IUCN distribution of O. roylei is shown in grey [32]. (b) The three

sampling locations are indicated. Reprinted from ArcGIS under a CC BY license, with permission from Esri, original

copyright 2009.

https://doi.org/10.1371/journal.pone.0207936.g001
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individuals could potentially be capable of quickly replicating to facilitate range shifts. No

detectable differences (outcome 4) would indicate that pikas in this species across this gradient

are confronting the challenges of elevation equally, or that the responses to elevation were not

detectable at the genomic or transcriptomic level with the samples we collected.

Materials and methods

Sample collection

Blood samples were collected from 24 pikas between September 24, 2013 and October 17, 2013

at three different locations along the Southwest side of Mount Kanamo in Spiti Valley, Hima-

chal Pradesh, India (Fig 1). All samples were collected between 32.246˚ – 32.349˚ North and

78.000˚ – 78.056˚ East (Table 1). Permission to conduct research in this location was granted

by the Chief Wildlife Warden of the Himachal Pradesh Forest Department Wildlife Wing

under Wildlife Research Study 3853. All samples were obtained by live-trapping using baited

Tomahawk traps baited with local red berries and greens as well as fresh fruits and vegetables,

such as apples, carrots and corn. Pikas self-transferred from the trap into an anesthetizing

chamber through a flexible funnel. Approximately 1 ml of isoflurane was applied to a cotton

ball and held in a separate perforated container within a larger anesthetizing chamber. The

larger chamber was also perforated in a design that allows adequate air exchange with the out-

door environment. The pika was observed through the clear walls of the chamber and removed

for sampling when unresponsive. If the pika became physically active during sampling, it was

returned to the chamber for further anesthesia. 500 μL of blood was collected by retro-orbital

abrasion using a 100 μL non-heparinized capillary tube. Blood was collected directly into Qia-

gen RNAprotect animal blood tubes for RNA stabilization. After blood collection, pikas were

transferred to an open mesh bag for weighing via a hanging scale and monitored in the bag

until they had made a full recovery. Pikas were then released at their point of capture. We

Table 1. Pika sample localities.

Sample Collection date Weight (g) Elevation (m) North East SRA Accession

BK4 9/25/13 164 3,948 32.34609 78.00051 SAMN06697631

BK1.1 9/25/13 154 4,011 32.34267 78.00072 SAMN06697632

BK1.2 9/25/13 162 4,011 32.34267 78.00072 SAMN06697633

BK1.3 9/25/13 184 4,011 32.34267 78.00072 SAMN06697634

BK8.3 9/26/13 154 3,978 32.34896 77.99937 SAMN06697635

BK6.1 9/24/13 144 3,969 32.34681 78.00021 SAMN06697636

BK6.2 9/24/13 140 3,969 32.34681 78.00021 SAMN06697637

BK6_7 9/26/13 138 4,028 32.3483833 77.9996167 SAMN06697638

BK3_4 9/27/13 - 3,928 32.3445 78.0008167 SAMN06697639

AT1 10/1/13 129 4,931 32.3126667 78.0545 SAMN06697640

AT8.1 10/9/13 124 4,997 32.3178167 78.0536667 SAMN06697641

AT7.1 10/11/13 124 4,978 32.3170667 78.0537833 SAMN06697642

AT7.2 10/11/13 132 4,978 32.3170667 78.0537833 SAMN06697643

AT7.3 10/11/13 124 4,978 32.3170667 78.0537833 SAMN06697644

AT13 10/12/13 141 4,954 32.3168 78.0532167 SAMN06697645

K2 10/15/13 131 3,649 32.2488 78.0520833 SAMN06697646

K1 10/15/13 141 3,643 32.2469833 78.0529333 SAMN06697647

K3.1 10/17/13 110 3,651 32.2572333 78.0553333 SAMN06697648

K3.2 10/17/13 117 3,663 32.2561 78.05525 SAMN06697649

K4.1 10/17/13 149 3,643 32.2563667 78.05595 SAMN06697650

https://doi.org/10.1371/journal.pone.0207936.t001
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experienced no complications during live-trapping and all pikas were successfully sampled

and released alive. This study and all procedures described were approved by the Stanford Uni-

versity Administrative Panel on Laboratory Animal Care (APLAC protocol 27547). Using the

methods described above, blood collection was performed under isoflurane anesthesia and all

efforts were made to minimize discomfort.

Pikas were visually located at the lowest elevations they occurred and the highest elevations

they occurred on the accessible parts of the mountain. Pikas were then sampled from three

locations within 12.5 km of each other. Five samples were collected from around 3,600 m near

the town of Kaza (~65% oxygen compared to sea-level). Twelve samples were collected from

around 4,000 m near Kibber village (~63% oxygen compared to sea-level), approximately 12

km from the 3,600 m site. Seven samples were collected from around 5,000 m near Tinum

(~55% oxygen compared to sea-level), approximately 6 km from the 4,000 m site and 7 km

from the 3,600 m site (Fig 1). Studies of American pikas show that the microclimates that

pikas experience in their underground talus habitat are often significantly different from ambi-

ent temperatures and depend on factors such as shade, vegetation, and rock ice features and

can also be highly heterogeneous within one talus patch [34,35]. Additionally, pikas are known

to use these microclimates to employ precise behavioral thermoregulation to avoid extreme

temperatures [36]. Due to this disconnect between the ambient temperature and that experi-

enced by pikas, the role of ambient temperature in gene expression was believed to be negligi-

ble compared to that of hypoxia.

Blood was targeted because it is a tissue that could be collected with minimal harm to the

animals, and is biologically relevant for responses to limited oxygen. Blood is spread through-

out the body and has a relatively quick turnover rate, making it an ideal tissue to gain real-time

information of whole body status in response to physiological and environmental pressures

[37,38]. Previous studies indicate that 61–80% of protein-coding genes are expressed in the

blood transcriptome [37,39].

RNA-stabilized blood samples were stored in a glacier-melt river following collection and

transferred to a -80˚C freezer within 14 days of collection. Total RNA excluding miRNA (less

than 200 nucleotides in length) was extracted and purified from the RNAprotect-stabilized

blood samples using the Qiagen RNeasy Protect Animal Blood Kit following the manufacture’s

protocol. RNA concentration was assessed using Qubit RNA HS reagents (Thermo Fisher Sci-

entific). RNA integrity was assessed on a bioanalyzer.

Transcriptome data generation and processing

All samples that had an RNA integrity value greater than 6 and at least 0.5 μg of RNA were

used for library preparation. A total of 20 out of the 24 samples passed this quality step and

were used to create cDNA libraries to sequence–six samples from the 5,000 m site, nine sam-

ples from the 4,000 m site, and five samples from the 3,600 m site (Table 1). These samples

were submitted to the Centre for Cellular and Molecular Platforms (C-CAMP) for library

preparation and sequencing. Libraries were created using the Illumina TruSeq RNA sample

preparation kit. Samples were then sequenced in two 100bp paired-end lanes on an Illumina

HiSeq 1000. Twelve samples were sequenced in one lane (AT13, AT7.1, AT7.2, AT8, BK1.3,

BK3_4, BK4, BK6.1, K1, K2, K3.1, and K3.2) and eight samples were sequenced in the other

(AT1.1, AT7.3, BK1.1, BK1.2, BK6_7, BK6.2, BK8.3, and K4). All raw RNASeq data is

available at NCBI Sequence Read Archive (SRA) under accession codes SAMN6697631-

SAMN6697650.

Demultiplexed Illumina sequencing reads were corrected for random Illumina sequencing

errors using Rcorrector with a k-mer size of 31 [40]. Ochotona spp. and Microtus oeconomus
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hemoglobin mRNA sequences were downloaded from Genbank (Accession numbers:

XM_004589962.1, XM_004589963.1, XM_004596585.1, XM_004596781.1, XM_004589960.2,

XM_004589961.2, XM_004596586.2, KC886314.1, KC886313.1, KC886312.1, KC886310.1,

JX827174.1, JX827173.1, JQ968413.1, JQ968412.1, DQ839484.1, EF429202.1, JX827171.1, and

JX827170.1) and made into a reference file using Bowtie2 [41]. We then aligned the sequence data

for each individual to this hemoglobin mRNA reference using Bowtie2 and reads that successfully

mapped were removed from the sequence dataset. Reads were treated as single-end to remove

adapter sequences and low-quality reads were then removed using Trimmomatic [42]. Reads

were then sorted and paired using custom python scripts. Paired reads were then sorted again.

Read quality was checked before and after each filtering step using FastQC [43]. The O. princeps
annotated genome and transcriptome were downloaded from NCBI (GCF_000292845.1_Och-

Pri3.0 with 26,240 transcripts). Ochotona princeps is the closest relative to O. roylei with an anno-

tated genome and is approximately 15 million years diverged [44].

Species verification

The identity of our samples as O. roylei were confirmed by aligning MT-CYB gene sequence from

our samples to voucher specimen MT-CYB sequence available on Genbank for species in the Con-
othoa subgenus—O. roylei (JX682573.1), O. macrotis (JX682574.1), O. rutila (JX682566.1), O. rufes-
cens (JF911811.1), O. ladacensis (JX682569.1), O. forresti (AF272998.1), O. erythrotis (AF272999.1),

O. koslowi (AF272993.1)—and O. curzoniae (JN165307.1) from the Ochotona subgenus as an out-

group. Partial MT-CYB sequence was recovered from our transcriptomic dataset and sequences

were aligned to published sequences using Geneious v7.1.4. We identified the best nucleotide sub-

stitution model for our alignment using jModelTest [45] and created a phylogeny using MrBayes

[46,47] run for 1 million generations with a sampling frequency of 200 trees and a burn in of 10%.

The phylogeny with posterior probabilities was visualized using Geneious v7.1.4

Variant identification

Variant identification was conducted by following the Broad Institute best practices for variant

discovery in RNAseq using GATK [48]. Paired reads for each sample were mapped to the

annotated O. princeps reference genome (GCF_000292845.1_OchPri3.0_genomic.fna) using

multi-sample two-pass mapping in STAR aligner [49]. We then used picard tools (http://

picard.sourceforge.net) to add read group information, sort, mark duplicates, and index the

data for each sample. GATK was used to split reads into exons, trim off any intron sequence,

call haplotypes for each sample, and perform joint genotyping of all of the samples together.

Base recalibration was not performed because known SNPs are not available for our data; how-

ever, variants were filtered using GATK VariantFiltration following GATK recommendations

for hard-filtering. GATK VariantFiltration was used to remove variants with a Phred-scaled

probably of strand bias (FS) greater than 30, variant quality score normalized by depth of cov-

erage (QD) less than 17, a measure of strand bias (SOR) greater than 3, averaged root mean

square mapping quality (MQ) less than 40, read position rank sum (ReadPosRankSum) less

than -4, and a depth of coverage (DP) less than 5. We then used VCFtools [50] to remove

indels, SNPs missing data for any of the 20 samples, SNPs that were different from the refer-

ence but identical across all samples, and singletons. GATK VariantFiltration was then used to

remove SNPs in a cluster of three or more within a 30bp window.

Tests for population structure and selection

SNPs were used to investigate population structure using two Bayesian clustering programs,

fastStructure [51] and Admixture v1.3.0 [52] using K = 1 to K = 10. In fastStructure, the
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optimal K was identified using the “chooseK” script that is part of the fastStructure program.

In Admixture, the best K value was determined using cross validation scores. Pair-wise Fst val-

ues and confidence intervals were calculated using the StAMPP package [53] in R [54] by boot-

strapping across loci with 1,000 replicates. We calculated the number of shared and private

SNPs in each sampling location using Arlequin 3.5.2.2 [55]. Additionally, we used MT-CYB
sequences in order to calculate pair-wise Fst between sites also using Arlequin 3.5.2.2 [55]. We

assessed diversifying selection among the sampling sites using BayeScan v2.1 [56] with a prior

odds of 100. PGDSpider v2.1.0.3 [57] was used to create our BayeScan input file.

Gene expression analysis

The O. princeps annotated mitochondrial genome was downloaded from Genbank (AJ537415.1)

and the 14 annotated mitochondrial genes were extracted and added to the O. princeps reference

transcriptome (GCF_000292845.1_OchPri3.0_rna.fna). This reference transcriptome was indexed

and paired reads for each individual were pseudoaligned to this reference using Kallisto v0.42.5

[58]. Kallisto output transcript abundances in transcripts per million (TPM). Sequence based bias

correction was implemented and 100 bootstraps were performed on each sample to measure

uncertainty in the abundance estimates. Bootstrapping in Kallisto allows us to estimate the proba-

bility that a read is assigned to the correct transcript by accounting for technical variance. Tran-

script abundances and bootstrap values were analyzed in R v.3.2.3 [54] using the package Sleuth

v.0.28.0 [59] to identify differentially expressed genes using the Wald test.

Transcripts identified as differentially expressed were run through DAVID v.6.8 [60] where

enriched GO categories or KEGG pathways were identified. A heat map summarizing the rela-

tive expression and average TPM of each transcript identified as differentially expressed was

made using the package gplot v.3.0.1 in R v.3.2.3 [54].

Hemoglobin mRNA sequences were removed to allow for accurate sample quality assess-

ment and data analyses. However, we also performed gene expression analyses on hemoglobin

transcripts independently by performing the same procedure described above without the ini-

tial removal of hemoglobin transcripts.

Results

Species verification

In this study, RNA-stabilized blood samples were successfully collected and sequenced from

20 pikas, representing three collection sites of varying elevations (3,600 m, 4,000 m, and 5,000

m) (Fig 1 and Table 1). We confirmed the species identification of our samples by aligning 664

bp of MT-CYB that we recovered sequence for in each of our samples to that of voucher speci-

mens available on Genbank. The favored model for nucleotide substitution in our alignment

was TIM2+G based on AIC and TPM2uf+G based on BIC. As in Lecocq et al. [61], models

that could not be implemented in MrBayes were replaced by the most similar supported

model. In this case, GTR+G was the most similar supported model for both TIM2+G and

TPM2uf+G. The phylogeny output from MrBayes with posterior probabilities show that our

samples group with O. roylei (S1 Fig). The MT-CYB sequences for all our samples were

between 98.3–99.8% identical to the O. roylei voucher specimen sequence (JX682573.1) and

were less than 89.5% identical to any other species in the subgenus to which O. roylei belongs,

the Conothoa subgenus.

Sequencing results

Illumina sequencing resulted in 18.44–55.14 (average 30.81) million reads per sample.
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Between 67–89% of the reads for each sample mapped to the hemoglobin mRNA reference

and were removed from the sequence dataset. After all filtering steps, between 2.9–14.7 (aver-

age 6.3) million paired reads per sample remained.

Variant identification

Between 65–74% of the final reads for each sample mapped to the reference genome using

STAR aligner two-pass mapping [49]. The original variant file contained 2,004,114 sites; how-

ever, Genome Analysis Tookit (GATK) filtration steps, indel removal, and the removal of sin-

gle nucleotide polymorphisms (SNPs) with missing data left 68,788 sites. The reference

genome is from a different pika species (O. princeps), so most of these SNPs were differences

between the reference and all of our samples but were not variable within our samples. Once

removing these SNPs and singletons, 5,038 SNPs remained and were used in population struc-

ture and selection analyses.

Tests for population structure and selection

Both fastStructure [51] and Admixture v1.3.0 [52] found one population (K = 1) to be the best

fit for our SNP dataset. We calculated Weir and Cockerham [62] pairwise Fst between each of

the three sampling locations based on SNP data and found the Fst between the 3,600 m site

and the 5,000 m site to be 0.0007 (95%CI: -0.0047–0.0057), between the 4,000 m site and 5,000

m site to be 0.0149 (95%CI: 0.0107–0.0192) and between the 3,600 m site and 4,000 m site to

be 0.0184 (95%CI: 0.0135–0.0230). The number of private and shared SNPs between each site

showed that the 4,000 m site contained the most unique SNPs and also shared more SNPs with

each of the other sites than they did with each other (S2 Fig). We also calculated pairwise Fst

between each of the three sampling locations based on 664 base pairs of MT-CYB using Arle-

quin 3.5.2.2 [51] and found no evidence of genetic subdivision between the sampling sites

(3,600 m vs. 5,000 m Fst = -0.058, p = 0.54; 4,000 m vs. 5,000 m Fst = -0.024, p = 0.32; 3,600 m

vs. 4,000 m Fst = -0.068, p = 0.59). Our BayeScan analysis showed no evidence of diversifying

selection among our three sampling sites in any of these SNPs, with no SNPs displaying a q-

value less than 0.936 (S3 Fig).

Gene expression analysis

In each sample, 45–58% (55% average) of all reads mapped to the reference transcriptome

with reads mapping to 10,704 of the 26,254 transcripts. After accounting for the false discovery

rate, when comparing the sample from the 5,000 m site to samples from the two other loca-

tions, 26 transcripts were significantly upregulated in the 5,000 m individuals and 40 tran-

scripts were significantly down-regulated in the 5,000 m individuals (q-value < 0.05) (Fig 2).

Our heat map (Fig 3), which also displays transcripts per million (TPM) for each of these tran-

scripts, indicates that transcripts upregulated in the high-elevation group also generally have

much higher TPM than the down-regulated transcripts. The set of upregulated and down-reg-

ulated genes were each queried in DAVID v.6.8 [60]. The set of upregulated genes (Table 2),

23 of which were successfully annotated with the human genome through DAVID, displayed

enrichment for numerous gene ontology (GO) categories and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways (Table 3). The oxidative phosphorylation KEGG pathway

showed the most significant enrichment (Benjamini-Hochberg multiple test correction (BH)

p-value = 4.66E-09). DAVID identified six GO categories as being significantly over repre-

sented in our list of upregulated genes with BH p-value of< 0.05 (Table 3) all of which are

related to the mitochondrial respiratory chain, also known as the mitochondrial electron trans-

port chain. The set of down-regulated genes (Table 4), 39 of which were successfully annotated
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with the human genome through DAVID, had no enrichment for any GO category or KEGG

pathway (BH p-value > 0.27).

We also conducted a literature search on significantly upregulated genes that were not iden-

tified in DAVID as playing a role in the over representation of any GO category or KEGG

pathway. Interestingly, GSTA1 plays a role in breaking down toxic products resulting from

oxidative stress [63]. As such, the increased expression of this gene is considered to be an adap-

tation to oxidative stress [63]. The cold-inducible RNA binding protein (CIRBP), as evident by

its name, displays upregulation in response to mild hypothermia, but is also known to be upre-

gulated in response to hypoxia in human cells [64]. The most significantly upregulated gene,

insulin-like growth factor binding protein 4 (IGFBP4), regulates growth and development of

tissues by negatively regulating insulin-like growth factors (IGFs) and has been seen to be sig-

nificantly upregulated in response to hypoxia in experiments using human brain cancer cell

lines [65].

While there were no enriched GO categories or KEGG pathways in the down-regulated

gene set, we also further investigated these genes through a literature search. We found that a

number of these genes are known to be down-regulated in response to hypoxia in human cells,

such as PLA2G4C [66] and MACF1 [67]. We also found that some of these genes are poten-

tially related to immune response such as HNRNPR which positively regulates MHC class 1

expression [68], DOCK8 which is important in the functioning of natural killer cells and

Fig 2. Volcano plot of differential expression between the 5,000 m site and the two lower-elevation sites. Each point is

a transcript. The x-axis is the beta value which is the natural log of the fold difference and the y-axis is the–log10(qval). The

q-value is the multiple test corrected p-value. Colored points are significantly differentially expressed between the high-

elevation group and the other locations at a q-value of< 0.05. Transcripts falling above zero on the x-axis (green) are

upregulated in the 5,000 m samples and transcripts falling below zero (blue) are down-regulated. Transcripts driving the

enrichment of the OXPHOS pathway are shown in dark green circles. Transcripts identified in the text to be of particular

interest based on our literature search are also shown with a dark green or dark blue point, with different shapes

indicating what each gene is related to.

https://doi.org/10.1371/journal.pone.0207936.g002
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receptor-γt-positive innate lymphoid cells [69,70], and ELF1 which plays a role in the function-

ing and development of lymphocytes [71]. Additionally, the second most down-regulated

gene, GGNBP2, is believed to play a role in spermatogenesis [72], and another significantly

down-regulated gene, ARID4B, is a positive regulator of male fertility [73].

Analyses were also run comparing low-elevation samples to all other samples, as well as

mid-elevation samples to all other samples. The low-elevation samples showed no significantly

differentially expressed genes (all q-values > 0.91). The mid-elevation samples displayed one

transcript that was marginally significantly different (transcript ID: XM_012929922.1, gene:

ADGRE3, beta value = 1.18, q = 0.052) with all other transcripts displaying q> 0.33. Addition-

ally, gene expression analysis of the data with hemoglobin transcripts included showed that

none of the hemoglobin transcripts were significantly differentially expressed between the

5,000 m site sand the two lower-elevation sites (S1 Table).

Discussion

Our results indicate that differences in gene expression is likely an important mechanism facil-

itating hypoxia-tolerance in pikas along the elevational gradient we sampled. After testing for

evidence of population structure, differential selection, and differences in gene expression

between the sites, we only found evidence of significant differences in gene expression.

We performed multiple analyses to determine if there was any evidence in our data that

these three sites could be considered discrete populations. Our SNP analyses indicate that indi-

viduals from these three sampling locations are not structured and thus can be considered one

population, indicating no substantial barriers to gene flow across this steep elevational gradi-

ent. While our results suggest that elevation is not an effective barrier to gene flow, nothing is

known about the dispersal distance or effective dispersal barriers for O. roylei, which has a

home range of at least 42 m in diameter [74]. However, in the American pika, dispersal

Fig 3. Heat map of transcripts that were significantly differentially expressed in the 5,000 m samples. Each row is an individual, with

individuals from the 5,000 m site indicated in blue, the 4,000 m site indicated in teal, and 3,600 m site indicated in black. Each column is a

transcript and the mean number of transcripts per million (TPM), a measure of expression level, for each transcript is indicated. In the heat

map itself, lower expression is indicated in blue and higher expression is indicated in green.

https://doi.org/10.1371/journal.pone.0207936.g003
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distances of 3 km have been observed for individual pikas [75] and dispersal distances have

been estimated with genetic data to be up to 5 km [76] with home ranges of up to about 32 m

in diameter [8]. In this study, our three sampling sites are between 6–12 km from each other

(Fig 1).

Our SNP analyses also show no signs of differential selection between the sampling loca-

tions consistent with the absence of population structure, which implies that gene flow

between the sites would be acting against the accumulation of any local adaptations. However,

as these transcriptome data are limited to expressed genes, we cannot say for sure that there is

not selection occurring in other non-coding regions or in genes that were not captured in our

dataset. Further studies assessing selection across the entire genome are necessary to conclu-

sively address differential selection between elevations. Additionally, our limited sample size

makes it difficult to estimate the proportion of private vs. shared SNPs and future studies with

more samples, and thus more power, could add to our understanding of the mechanisms at

play.

The only significant difference between the sampling sites was found in our gene expression

analyses. In a field study such as this, we are unable to control for all variables between sites

Table 2. Genes upregulated in the 5,000 m samples.

Transcript ID Official gene IDa q-valueb beta valuec

XM_004591175.2 IGFBP4 3.98E-5 1.97

XM_004593437.2 PHPT1 6.11E-4 0.90

XM_004599911.2 ATP5I 0.005 0.69

XM_004586401.2 UQCRQ 0.006 0.60

XM_004594778.2 NAA38 0.006 0.85

XM_004595121.1 ABP homolog 0.006 2.04

XM_004599151.2 KRT19 0.010 2.71

AJ537415.1_cytb MT-CYB 0.011 0.74

XM_004584265.2 C14orf2 0.014 0.61

XM_004594967.2 GSN 0.015 1.07

XM_004595601.2 NDUFA11 0.015 0.71

XM_004595838.1 NDUFB7 0.015 0.92

XM_004599448.2 GSTA1 0.015 2.79

XM_004591806.2 CTSL1-like 0.018 1.81

XM_004579086.2 CLU 0.021 2.57

AJ537415.1_ND4 MT-ND4 0.022 0.87

XM_012928253.1 CHPT1 0.023 0.53

XM_004595778.1 C19orf60 0.023 0.64

XM_004598226.1 NDUFS8 0.023 0.77

XM_004595916.2 NDUFS7 0.023 0.53

XM_004589519.1 H1F0 0.025 0.62

XM_004589460.2 SMDT1 0.034 0.51

XM_004591201.1 LPO 0.034 2.81

XM_012931068.1 CD99-like 0.035 0.51

XM_004595641.2 CIRBP 0.037 0.79

XM_012927406.1 HINT1 0.048 0.49

aItalicized genes could not be annotated to the human genome in DAVID and are thus not part of the DAVID analysis.
bThe q-value is the multiple test corrected p-value.
cThe beta value is the natural log of the fold difference.

https://doi.org/10.1371/journal.pone.0207936.t002
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that could impact gene expression; however, confounding environmental variables have been

minimized by the proximity of our sampling sites. Additionally, our results show that the func-

tions of the genes undergoing changes in gene expression are consistent with what we would

expect in an organism compensating for limited oxygen. We found significant upregulation of

genes involved in oxidative phosphorylation and mitochondrial electron transport in the high-

est elevation individuals. The process of oxidative phosphorylation (OXPHOS) creates 95% of

the cell’s energy [77] through the electron transport chain and is an essential cellular process

for maintaining the health of the cell and survival of the organism. This process depends on

the availability of oxygen, which is used as a terminal electron acceptor; thus limited oxygen,

or hypoxia, directly affects cellular viability [78]. Due to the direct effect that hypoxia has on

this vital pathway, there have been numerous examples of genes in this pathway undergoing

selective pressure in hypoxia-adapted species [14,17,79,80]. Specifically in pikas, Lemay et al.

[81] compared the transcriptome of American pikas along an elevational gradient and found

different haplotypes of ND5, a mitochondrial gene important to the OXPHOS process, fixed at

different elevations.

In fact, similar differences in expression of genes in the OXPHOS pathway have been iden-

tified in other species in response to hypoxic stress, however, these studies compared geo-

graphically distant high and low-elevation populations. When comparing the gene expression

of rufous-collared sparrows living at 2,000 m to those living at 4,100 m in the Peruvian Andes,

Table 3. GO terms and KEGG pathways significantly enriched in genes upregulated in the 5,000 m individuals.

Category Term Genes Fold

enrichment

Bonferroni p-

value

BH

p-

valuea

FDRb

KEGG_PATHWAY Oxidative phosphorylation (hsa00190) NDUFS7, NDUFB7, MT-ND4, NDUFS8,

MT-CYB, ATP5I, UQCRQ, NDUFA11

34.64 4.66E-09 4.66E-

09

1.91E-

07

KEGG_PATHWAY Parkinson’s disease (hsa05012) NDUFS7, NDUFB7, MT-ND4, NDUFS8,

MT-CYB, UQCRQ, NDUFA11

28.39 5.18E-07 2.59E-

07

2.12E-

05

KEGG_PATHWAY Non-alcoholic fatty liver disease

(NAFLD) (hsa04932)

NDUFS7, NDUFB7, NDUFS8, MT-CYB,

UQCRQ, NDUFA11

22.88 3.49E-05 1.16E-

05

1.43E-

3

KEGG_PATHWAY Alzheimer’s disease (hsa05010) NDUFS7, NDUFB7, NDUFS8, MT-CYB,

UQCRQ, NDUFA11

20.57 5.91E-05 1.48E-

05

2.42E-

3

GOTERM_CC_DIRECT mitochondrial respiratory chain

complex I (GO:0005747)

NDUFS7, NDUFB7, MT-ND4, NDUFS8,

NDUFA11

84.43 1.85E-05 1.85E-

05

2.77E-

04

KEGG_PATHWAY Huntington’s disease (hsa05016) NDUFS7, NDUFB7, NDUFS8, MT-CYB,

UQCRQ, NDUFA11

18.00 1.14E-04 2.28E-

05

4.67E-

3

GOTERM_BP_DIRECT mitochondrial electron transport,

NADH to ubiquinone (GO:0006120)

NDUFS7, NDUFB7, MT-ND4, NDUFS8,

NDUFA11

81.57 5.07E-05 5.07E-

05

3.65E-

04

GOTERM_BP_DIRECT mitochondrial respiratory chain

complex I assembly (GO:0032981)

NDUFS7, NDUFB7, MT-ND4, NDUFS8,

NDUFA11

63.44 1.41E-04 7.05E-

05

1.02E-

3

GOTERM_CC_DIRECT mitochondrial inner membrane

(GO:0005743)

NDUFS7, NDUFB7, MT-ND4, MT-CYB,

ATP5I, UQCRQ, NDUFA11

13.13 5.37E-04 1.79E-

04

8.04E-

3

GOTERM_CC_DIRECT mitochondrion (GO:0005739) SMDT1, NDUFB7, MT-ND4, NDUFS8, CLU,

MT-CYB, ATP5I, C14ORF2, UQCRQ,

NDUFA11

6.22 5.27E-04 2.63E-

04

7.88E-

3

KEGG_PATHWAY Metabolic pathways (hsa01100) NDUFS7, NDUFB7, MT-ND4, NDUFS8,

MT-CYB, ATP5I, UQCRQ, CHPT1,

NDUFA11

4.22 0.00173715 2.90E-

04

0.07

GOTERM_MF_DIRECT NADH dehydrogenase (ubiquinone)

activity (GO:0008137)

NDUFS7, NDUFB7, MT-ND4, NDUFS8 67.97 0.001209625 1.21E-

3

0.02

aTerms are listed in order of BH (Benjamini-Hochberg multiple test correction) p-value.
bFDR is the false discovery rate

https://doi.org/10.1371/journal.pone.0207936.t003
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187 annotated transcripts were upregulated in the high-elevation individuals and these tran-

scripts were enriched for genes involved in oxidative phosphorylation, oxidative stress

response, protein biosynthesis and signal transduction [24]. Cheviron et al. (2008) also found

Table 4. Genes down-regulated in the 5,000 m samples.

Transcript ID Official gene IDa q-valueb beta valuec

XM_004578553.1 PIP4K2A 0.004 -0.72

XM_012928659.1 GGNBP2 0.005 -3.08

XM_012931178.1 P2RY13 0.005 -2.39

XM_012928505.1 HERC6 0.006 -1.21

XM_004576767.2 DOCK10 0.010 -0.60

XM_004592269.2 HNRNPR 0.010 -3.14

XM_004591790.2 TLE4 0.011 -3.39

XM_012930323.1 PLA2G4C 0.011 -1.53

XM_004587867.1 SLC9A7 0.011 -2.29

XM_012929186.1 RIPOR2 0.014 -0.58

XM_012931298.1 SON-like 0.014 -0.85

XM_004580288.2 USP34 0.014 -0.57

XM_004591811.2 FBP1 0.015 -1.93

XM_012926508.1 FYB 0.015 -0.67

XM_012928864.1 DOCK8 0.018 -0.54

XM_004587095.2 RRN3 0.021 -2.84

XM_004590564.2 SMARCAD1 0.022 -2.09

XM_004595200.2 MSN 0.023 -0.71

XM_004584170.2 DPEP2 0.023 -1.35

XM_004577918.1 CRTC3 0.025 -1.75

XM_004577448.1 ELF1 0.025 -1.97

XM_004597630.2 PRKCH 0.025 -0.60

XM_004598359.2 SYNE1 0.026 -0.59

XM_004591553.2 MACF1 0.028 -0.53

XM_004578559.2 PLXDC2 0.029 -2.42

XM_004590865.1 SRP72 0.030 -1.94

XM_004577920.2 IQGAP1 0.030 -0.53

XM_004577846.2 PARP14 0.031 -0.74

XM_004577958.1 SMAD3 0.031 -2.00

XM_004594833.1 ALOX15 0.034 -2.12

XM_004578525.2 ARID4B 0.034 -2.35

XM_004583634.2 MTMR12 0.034 -2.47

XM_004587183.2 SERPINE1 0.034 -1.82

XM_004593693.1 NUP188 0.035 -0.71

XM_004578698.1 RASSF5 0.036 -0.66

XM_004591618.2 BSDC1 0.036 -2.92

XM_004582637.2 ITSN2 0.039 -0.52

XM_012930339.1 MIA3 0.039 -0.52

XM_004592246.1 RCAN3 0.045 -1.89

XM_004582218.1 IKZF1 0.048 -2.38

aItalicized genes could not be annotated to the human genome in DAVID and are thus not part of the DAVID analysis.
bThe q-value is the multiple test corrected p-value.
cThe beta value is the natural log of the fold difference.

https://doi.org/10.1371/journal.pone.0207936.t004
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that when high-elevation individuals were brought to low elevation none of these transcripts

remained differentially expressed [24], suggesting a within-individual plasticity in gene expres-

sion to compensate for elevational stress. Similarly, when comparing gene expression in deer

mice from high and low elevations, 221 genes were found to be significantly differentially

expressed, with many genes in the OXPHOS pathway upregulated in the high-elevation indi-

viduals and linked to elevated oxidative capacity and thermogenic capacity [27,28]. However,

in the deer mouse, these changes in gene expression persisted even in a low-elevation common

garden but were lost in the F1 generation [27]. The current study does not address whether

changes in gene expression can occur within an individual, as in the rufous-collared sparrow

[24], or if these expression profiles are hardwired within an individual and can only be reset in

their progeny, as seen in the deer mouse [27], perhaps indicating genetic or epigenetic regula-

tion of gene expression [82,83].

Our study adds to the evidence that genes in the OXPHOS pathway are upregulated in

response to hypoxia and validates the value of utilizing blood in such a study, a tissue that does

not require sacrificing specimens as in similar studies. We hope that the methods outlined

here may broaden the options available for gene expression studies without requiring lethal

sampling and yet still yield rich, biologically meaningful, data.

Additionally, there was no enrichment for any pathways or GO categories in the set of

genes significantly down-regulated in the 5,000 m group; however, we did identify a few genes

in which down-regulation may indicate a down-regulation of parts of the immune system and

fertility. It is physiologically costly to compensate for increased hypoxia, and further explora-

tion of genes identified here may provide insight as to what trade-offs may be taking place.

Previous studies have shown that gene expression profiles can be very different between

geographically distant and genetically distinct populations [24,27,28,84]; however, divergence

in gene expression increases with greater genetic distance [85]. Our study capitalized on the

uniquely precipitous mountains of the Himalayan massif to draw both high and low-elevation

samples from one area and has allowed us to begin to tease apart the role of genetic differences

versus expression differences in response to hypoxia.

The results of our study indicate that plasticity in gene expression may be a key mechanism

in allowing this pika species to live at 5,000 m versus 4,000 or 3,600 m. Changes in gene expres-

sion, unlike genetic adaptations, occur on a time scale that can keep pace with rapid climate

change [23,24]. Other studies indicate that different pika species have evolved unique adapta-

tions to hypoxia, perhaps specializing each species for the elevational range that it occupies

and potentially limiting range movement outside of that elevational range [13,14]. However,

this study suggests that, within a species, plasticity in gene expression may also facilitate range

movement at a finer scale. We have not investigated the trade-offs that might be involved in

this plasticity, however. Thus, while each species, or even populations, may be ideally suited to

its general elevational range through genetic adaptations, within a population, plasticity in

gene expression may be responsible for facilitating movement within the species’ elevational

envelope. This flexibility in elevation is likely to be an important source of resilience for lower-

elevation pika populations impacted by climate change, helping to facilitate successful range

shifts to higher, cooler, elevations within their species’ elevational range.

Supporting information

S1 Fig. Bayesian phylogenetic hypothesis based on 664bp of MT-CYB. Posterior probability

of each node is indicated. Scale bar represents substitutions per nucleotide site.

(TIF)
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S2 Fig. Venn diagram of shared versus private SNPs for each sampling location. The num-

ber of total SNPs found in each site is given next to the site elevation. The number of SNPs in

each section is indicated in bold. The percentage of the total SNPs for each site that a section

makes up is indicated. The 5,000 m site is shown in light blue, the 4,000 m site is shown in teal,

and the 3,600 m site is shown in grey.

(TIF)

S3 Fig. Detection of SNPs under selection using Bayescan. Each point corresponds to a SNP

in our dataset. Fst is plotted against the q-value, where the q-value is the minimum False Dis-

covery Rate at which the SNP would become significant.

(TIF)

S1 Table. Results of differential expression analysis of hemoglobin transcripts between the

5,000 m site and the lower-elevation sites.
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