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How are words connected to the thoughts they help to express? Recent brain imaging

studies suggest that word representations are embodied in different neural systems

through which the words are experienced. Building on this idea, embodied approaches

such as the Concept Attribute Representations (CAR) theory represents concepts as a

set of semantic features (attributes) mapped to different brain systems. An intriguing

challenge to this theory is that people weigh concept attributes differently based on

context, i.e., they construct meaning dynamically according to the combination of

concepts that occur in the sentence. This research addresses this challenge through

the Context-dEpendent meaning REpresentations in the BRAin (CEREBRA) neural

network model. Based on changes in the brain images, CEREBRA quantifies the effect

of sentence context on word meanings. Computational experiments demonstrated

that words in different contexts have different representations, the changes observed

in the concept attributes reveal unique conceptual combinations, and that the new

representations are more similar to the other words in the sentence than to the original

representations. Behavioral analysis further confirmed that the changes produced by

CEREBRA are actionable knowledge that can be used to predict human responses.

These experiments constitute a comprehensive evaluation of CEREBRA’s context-based

representations, showing that CARs can be dynamic and change based on context.

Thus, CEREBRA is a useful tool for understanding howwordmeanings are represented in

the brain, providing a framework for future interdisciplinary research on themental lexicon.

Keywords: concept representation, embodied cognition, fMRI data analysis, multimodal representation, neural

networks, semantic spaces, sentence meaning

INTRODUCTION

Many experimental studies suggest that there are two types of semantic knowledge: linguistic and
experiential (Vigliocco and Vinson, 2007; Vigliocco et al., 2009; Meteyard et al., 2012). Humans
acquire linguistic knowledge through a lifetime of linguistic exposure, and experiential knowledge
is acquired through their perception and interaction with the physical world. Experiential
knowledge denotes the visual, motor, somatosensory, auditory, spatial, cognitive, emotional, and
many more attributes of the experienced objects (the referents of words). For example, the word
dog refers to an entity in the world whose perceived attributes or properties include having four legs,
a waggy tail, barks, and so on. Linguistic knowledge includes (spoken and/or written) words defined
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by their relations to other words in the sentence and in the
context in which they are expressed. This knowledge provides
individuals with the capacity to communicate about history,
scientific terms, ideas, plans, emotions, objects, everything.
For example, the word dog is defined as a domestic animal,
carnivorous, subspecies of the gray wolf, etc.

Further, for each type of semantic knowledge, word meanings
arise differently. For linguistic-based knowledge, meaning comes
from what people know about the world. For example, for the
sentence He bought the newspaper, different meanings associated
with a single word such as newspaper could refer to the printed
item bought from a newsstand, or the publishing company.
On the other hand, for experiential-based knowledge, meaning
comes from the word itself. In this case, there are context-
dependent interpretations arising from the same underlying
meaning. For example, the meaning of the word book for the
sentences The book is heavy, and The book is long, one sentence
refers to the weight and the other to the duration in regard to the
reader’s perception and interaction with a book. This is themental
representation of how people perceive and interact with objects,
and this is the type of word meaning addressed by this research.

Although humans have a remarkable ability to form new
meanings, modeling this process is challenging (Murphy, 1988;
Hampton, 1997; Wisniewski, 1997, 1998; Janetzko, 2001; Sag
et al., 2001; Middleton et al., 2011). The same concept can be
combined to produce differentmeanings: corn oilmeans oil made
of corn, baby oilmeans oil rubbed on babies, and lamp oilmeans
oil for lighting lamps (Wisniewski, 1997). Since lamp is an object,
oil is likely to be a member of the inanimate category. However,
corn and baby are living things, which suggests otherwise. How
do language users determine the category membership structure
of such combinations of concepts, and how do they deduce their
interpretation? As this example illustrates, there are no simple
rules e.g., for how oil combines with other concepts. Uncovering
these mechanisms is the main scientific goal of this paper.

Computational models of such phenomena can potentially
shed light into human cognition and advance AI applications
that interact with humans via natural language. Such applications
need to be able to understand and themselves form novel
combinations of concepts. Consider for example virtual assistants
such as Siri, OK Google, or Alexa. These applications are built to
answer questions in natural language. All of them have natural
language processing software to recognize speech and to give a
response. However, whereas humans process language at many
levels, machines process linguistic data with no inherent meaning
(i.e., not connected to the physical world). Their linguistic
interactions with users are therefore limited to simple responses.
Given the ambiguity and flexibility of human language, modeling
human conceptual representations is essential in building AI
systems that effectively interact with humans. This is the practical
motivation for the work described here.

The work is based on two foundations. The first is a
grounding in brain activations. Although early efforts of
understanding word meanings were restricted to behavioral
observations (Anderson and Ortony, 1975; Potter and Faulconer,
1979; Greenspan, 1986; Medin and Shoben, 1988; Murphy,
1988, 1990; Wisniewski, 1997, 1998), experimental methods

have made possible to study the brain mechanisms underlying
the semantic memory system. For instance, neuroimaging
technology (functional Magnetic Resonance Imaging, or fMRI)
provides a way to measure brain activity during word and
sentence comprehension.When humans listen or read sentences,
they are using several brain systems to simulate seeing the scenes
and performing the actions that are described. As a result, parts of
the brain that control these actions are activated during the fMRI
experiments. Hence, semantic models have become a popular
tool for prediction and interpretation of brain activity using fMRI
data. This approach will be used in this paper as well.

The second foundation is embodied vector representations.
Recently, machine learning systems in vision and language
processing have been proposed based on single-word vector
spaces. They are able to extract low-level features in order to
represent concepts (e.g., cat), but such representations are still
shallow and fall short from symbol grounding. In most cases,
these models build semantic representations from text corpora,
where words that appear in the same context are likely to
have similar meanings (Harris, 1970; Landauer and Dumais,
1997; Burgess, 1998; Mikolov et al., 2013; Devlin et al., 2018;
Peters et al., 2018). However, such representations lack inherent
meaning (Baroni et al., 2014; Erk, 2016; Bender and Koller, 2020),
and therefore sometimes even different concepts may appear
similar (Andrews et al., 2009; Bruffaerts et al., 2019; Kiefer,
2019; e.g., night and day). This problem has driven researchers
to develop new componential approaches, where concepts are
represented by a set of basic features, integrating textual and
visual inputs. (Silberer and Lapata, 2012, 2014; Anderson et al.,
2013; Silberer et al., 2013, 2017; Bruni et al., 2014; Vinyals et al.,
2015). Still, even with these multimodal embedding spaces, such
vector representations fall short of symbol grounding. A truly
multimodal representation should account for the full array
of human senses (Bruni et al., 2014). To meet this challenge,
embodiment theories of knowledge representation (Barsalou,
1987, 1999, 2008; Regier, 1996; Landau et al., 1998; Binder
et al., 2009) provide a direct analysis in terms of sensory, motor,
spatial, temporal, affective, and social experience. Further, these
theories can be mapped to brain systems. Recent fMRI studies
helped identify a distributed large-scale network of sensory
association, multimodal and cognitive regulatory systems linked
to the storage and retrieval of conceptual knowledge (Binder
et al., 2009). This network was then used as a basis for Concept
Attribute Representation (CAR) theory, a semantic model that
represents concepts as a set of features that are the basic
components of meaning, and grounds them in brain systems
(Binder et al., 2009, 2016; Binder and Desai, 2011). Thus, CAR
theory will be used to model neural representations of word
meaning in this paper.

A particularly intriguing challenge to semantic modeling is
that people weigh word attributes differently based on context
and recent experiences (Pecher et al., 2004). For example,
a pianist would invoke different aspects of the word piano
depending on whether he will be playing in a concert or moving
the piano. When thinking about a coming performance, the
emphasis will be on the piano’s function, including sound and
fine hand movements. When moving the piano, the emphasis
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will be on shape, size, weight, and other larger limb movements
(Barclay et al., 1974). The unique focus of this research is to
understand this phenomenon, i.e., how word meanings change
in the context of a sentence.

The approach is based on the idea that words in different
contexts have different representations. Therefore, different
features in CARs should be weighted differently depending on
context, that is, according to the combination of concepts that
occur in the sentence (Anderson and Ortony, 1975; Greenspan,
1986; Medin and Shoben, 1988; Murphy, 1988;Wisniewski, 1997;
Potter and Faulconer, 1979). To address this challenge, three
central issues on semantic representation are considered: (1)
How are concepts represented in the brain? (2) How do word
meanings change in the context of a sentence? and (3)What tools
can be used to quantify such changes? The first two are addressed
using the CAR theory. The approach to the third challenge
consists of developing a neural network model called CEREBRA,
or Context-dependent mEaning REpresentation in the BRAin,
based on CAR theory and constrained by fMRI observations of
word meaning. This model is then used to study how the brain
constructs sentence-level meanings from word-level features.

Below the CAR theory is first reviewed. After that, sentence
and word collections are described, and the CEREBRA
framework presented. Computational experiments then
demonstrate that (1) words in different contexts have different
representations, (2) the changes observed in the concept
attributes reveal unique conceptual combinations, and (3)
the new representations are more similar to the other words
in the sentence than to the original representations. Further,
behavioral analysis confirms that the changes produced by
CEREBRA are actionable knowledge that can be used to predict
human responses.

THE CAR THEORY

While there are many computational models of word meaning in
the literature, most of them fall into two general classes: relation-
based, i.e., those in which a word’s meaning is represented
through its relations to other words (Harris, 1970; Landauer and
Dumais, 1997; Burgess, 1998; Mikolov et al., 2013; Devlin et al.,
2018; Peters et al., 2018), and feature-based, i.e., those in which it
is represented as a set of individual features (attributes). Feature-
based models further differ in the way the features are defined,
i.e., whether they are abstract (Cree and McRae, 2003; Vigliocco
et al., 2004; Vigliocco and Vinson, 2007; McRae and Jones, 2013),
or embodied (Binder et al., 2009; Binder and Desai, 2011).

CAR theory (a.k.a. the experiential attribute representation
model) is an embodied approach supported by evidence on
how humans acquire and learn concepts through sensory-motor,
affective, social, and cognitive interactions with the world (Binder
et al., 2009; Binder and Desai, 2011). The central axiom of this
theory is that conceptual knowledge is built from experience.
Particularly, humans learn concepts from birth on through
their senses and mental states and these concepts are encoded
according to the way they are experienced (e.g., seeing a dog
is a visual experience). Since each person’s experiences involve

different times, locations, cultures, and people, concepts are not
static but change throughout lifetime.

In CAR theory, neurobiologically defined “experiential
attributes” form a set of primitive features representing the basic
components of meaning. This set of features (e.g., Vision, Color,
Temperature, Speech, Scene) capture aspects of experience that
are central to the acquisition of event and object concepts, both
abstract and concrete. Themain idea is that people weigh concept
features differently based on context, i.e., they construct meaning
dynamically according to the combination of words that occur in
the sentence (Binder and Desai, 2011). In particular, the features
are weighted according to statistical regularities. The semantic
content of a given word is estimated from ratings provided by
human participants. For example, words referring to things that
make sounds (e.g., explosion, thunder) receive high ratings on
features representing auditory experience (i.e., Loud, Sound),
relative to things that do not make a sound (e.g.,milk, flower).

An important aspect of CAR theory is that its features
correspond to the brain systems as listed in Table 1. This
approach establishes a connection between conceptual content
and neural representations, known as Conceptual Grounding
(Harnad, 1990). CAR theory is based on these assumptions:
(1) recalling a concept stimulates the features that were active
when the concept was first experienced; (2) concepts with similar
features produce similar neural patterns; and (3) context modifies
the baseline meaning of a concept. The last assumption is the
focus of this research. CEREBRA will test such an assumption
by characterizing how CARs can be modified to account for the
changes in the neural activation pattern of the concept.

The terms concept, word and word meaning have specific
instantiation in CAR theory, and this instantiation is used
throughout this paper. The relation of thought to language is
seen as the relation of concepts to meanings. Concepts are seen
as a collection of individual features encoded in different neural
systems according to the way they are experienced.Words are the
symbolic names of concepts, and word meanings are generated
when a word is recognized in interaction with its context (Ogden
and Richards, 1923). CAR theory thus integrates concepts and
wordmeanings in the same semantic representation. The weights
given to the different features of a concept collectively convey the
meaning of a word. (Binder et al., 2009, 2016; Binder and Desai,
2011; Binder, 2016; Yee and Thompson-Schill, 2016).

More specifically, CAR theory models each concept as a
collection of 66 features that captures the strength of association
between each neural attribute and word meaning. Specifically,
the degree of activation of each attribute associated with the
concept can be modified depending on the linguistic context,
or combination of words in which the concept occurs. As an
example Figure 1, shows the weighted CARs for the concrete
concepts bicycle (Figure 1A) and table (Figure 1B). The weight
values represent average human ratings for each feature. Given
that both concepts are objects, they get low weighting on animate
attributes such as Face, Body, Speech, Human, Communication,
and emotions such as Sad, Angry, Disgust and Fear, and
high weighting on attributes like Vision, Shape, Touch, and
Manipulation. However, they also differ in expected ways,
including stronger weightings for bicycle on Motion, Biomotion,
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TABLE 1 | The twelve brain systems and the 66 features used as the basis for the CAR theory.

Brain

systems

Features Explanation Brain

systems

Features Explanation

Vision Something that you can easily see S Landmark Having a fixed location, as on a map

Bright Visually light or bright P Path Showing changes in location along a particular

direction to path

V Dark Visually dark A Scene Bringing to mind a particular setting or physical

location

I Color Having a characteristic or defining color T Near Often physically near to you (within easy reach) in

everyday life

S Pattern Having or defining visual texture or surface pattern Toward Associated with movement toward or into you

I Large Large in size Away Associated with movement away from or out of you

O Small Small in size Number Associated with a specific number or amount

N Motion Showing a lot of visually observable movement Time An event that occurs at a typical or predictable time

Biomotion Showing movement like that of a living thing E Duration An event that has a predictable duration, whether

short or long

Fast Showing visible movement that is fast V Long An event that lasts a long period of time

Slow Showing visible movement that is slow E Short An event that lasts a short period of time

Shape Having a characteristic or defining visual shape or

form

N Caused Caused by some clear preceding event, action, or

situation

Complexity Visually complex T Consequential Likely to have consequences (cause other things to

happen)

Face Having a human or human-like face Social An activity or event that involves an interaction

between people

Body Having a human or human-like body parts C Human Having human or human-like intentions, plans, or

goals

S Touch Something that you could easily recognize by touch O Communication A thing or action that people use to communicate

O Temperature Hot or cold to the touch G Self Related to your own view of yourself, part of your

self-image

M Texture Having a smooth or rough texture to the touch Cognition A form of mental activity or a function of the mind

S Weight Light or heavy in weight E Benefit Someone or something that could help or benefit

you or others

Pain Associated with pain of physical discomfort V Harm Someone or something that could cause harm to

you or others

Audition Something that you can easily hear A Pleasant Someone or something that you find pleasant

A Loud Making a loud sound L Unpleasant Someone or something that you find unpleasant

U Low Having a low-pitched sound Happy Someone or something that makes you feel happy

D High Having a high-pitched sound E Sad Someone or something that makes you feel sad

I Sound Having a characteristic or recognizable sound or

sounds

M Angry Someone or something that makes you feel angry

T Music Making a musical sound O Disgusted Someone or something that makes you feel

disgusted

Speech Someone or something that talks T Fearful Someone or something that makes you feel afraid

G Taste Having a characteristic or defining taste Surprised Someone or something that makes you feel

surprised

S Smell Having a characteristic or defining smell or smells DR Drive Someone or something that motivates you to do

something

M Head Associated with actions using the face, mouth or

tongue

Needs Someone or something that would be hard to live

without

O UpperLimb Associated with actions using the arm, hand or

fingers

ATT Attention Someone or something that grabs your attention

T LowerLimb Associated with actions using the leg or foot Arousal Someone or something that makes you feel alert or

excited (+/-)

O Manipulation A physical object you have personal experience

using

R Object A physical object

The first column lists the brain systems. The second column includes the list of features as basic components of meaning. The third column presents a description of each feature. List

of attributes representing the semantic system proposed by Binder et al. (2009), Binder and Desai (2011).

Frontiers in Artificial Intelligence | www.frontiersin.org 4 April 2022 | Volume 5 | Article 733163

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Aguirre-Celis and Miikkulainen Sentence Meanings From Word Features

FIGURE 1 | Bar plot of the 66 semantic features for the words bicycle and table (Binder et al., 2009, 2016; Binder and Desai, 2011). Given that both concepts are

objects, they have low weightings on animate attributes such as Face, Body, Speech, Human, and emotions including Sad, and Fear and high weighting on attributes

like Vision, Shape, Touch, and Manipulation. However, they also differ in expected ways, including stronger weightings in Motion, Fast, Lower Limb and Path for

bicycle (A) and stronger weightings in Smell, Scene, Near, and Needs for table (B). Weighted features for the words bicycle and table.

Fast Motion, Lower Limb and Path, and stronger weightings for
table on Large, Smell, Head, Scene, Near, and Needs.

In contrast to concrete concepts, abstract concepts refer
directly to cognitive events (such as adventure, marriage,
future, death), states (such as decide, judge, recall, think),
mental “products” of cognition (such as idea, memory, opinion,
thought), social cognition (such as justice, liar, promise, trust),
and affective states (such as anger, fear, sad, happy, disgust).
These concepts are learned in large part by generalization across
these cognitive experiences in exactly the same way as concrete
concepts are learned through generalization across perceptual
and motor experiences (Binder, 2016; Binder et al., 2016).

Concepts can be combined to form new concepts (e.g.,
red apple) and there are general principles that govern such
combinations as part of people’s world knowledge. Functional

groupings known as ad hoc categories (Barsalou, 1983), are
formed when concepts share the same context-related attribute
enhancement. Other types of conceptual combinations illustrate
how individual semantic factors allow words to combine. For
example, plastic bottle is a bottle made out of plastic, but baby
bottle is for babies.

In CAR theory, conceptual combination occurs when two
concepts activate a similar set of brain systems, that is, when
their features overlap (attribute congruence). These features are
mutually enhanced, altering the similarity between the concepts,
and resulting in functional groupings or categorizations. For
instance, the difference in meanings for plastic bottle vs. baby
bottle is likely due to the different degree of animacy involved.
In the case of plastic bottle, Size, Shape, Pattern, Small, Texture,
Weight, are activated. In contrast in the case of baby bottle,
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Biological Motion, Face, Body, Head, Taste, Smell, Affective,
Social Cognition, are activated, but bottle does not activate such
systems. Therefore, the meaning of the combination is strongly
determined by the degree of attribute congruence. On the other
hand, contrary to other language models that are based on word
relations to capture word meanings (Harris, 1970; Landauer
and Dumais, 1997; Burgess, 1998; Mikolov et al., 2013; Devlin
et al., 2018; Peters et al., 2018), CARs cannot capture thematic
associations (relations) between words (i.e., party, celebration,
birthday cake, candles, laugh) unless additional sources provide
it (Binder et al., 2009).

Next section discusses the processes and materials used
to instantiate the CAR theory through interviews of human
subjects. For a more detailed account of feature selection and
definition see Binder et al. (2009, 2016) and Binder and Desai
(2011).

DATA COLLECTION AND PROCESSING

The CEREBRA model is based on the following sets of data:
A sentence collection prepared by Glasgow et al. (2016), the
semantic vectors (CAR ratings) for the words obtained via
Mechanical Turk, and the fMRI images for the sentences,
collected both by the Medical College of Wisconsin (Anderson
et al., 2016, 2017, 2018, 2019; Binder, 2016; Binder et al., 2016).
Additionally, fMRI representations for individual words (called
SynthWord) were synthesized by averaging the sentence fMRI
(Anderson et al., 2016). Each data set is described next.

Sentence Collection
This collection was prepared for the fMRI study
as part of the Knowledge Representation in Neural
Systems (KRNS) project (Glasgow et al., 2016;
www.iarpa.gov/index.php/researchprograms/krns), sponsored
by the Intelligence Advanced Research Projects Activity (IARPA)
under the White House BRAIN Initiative Program (BRAIN
Initiative, 2013). The words used in the sentences stand for
imaginable and concrete words such as:

Objects
Things that exist physically, can be animate or inanimate, natural
or man-made. They are often nouns and can be count nouns or
mass nouns. Examples: ball, bicycle, dog, and water.

Actions
Things that are done or experienced by living things. They
are often verbs that describe moving, perceiving, feeling, and
creating. Examples: walked, ate, built, and drank.

Settings
Locations where or when things happen. They are often nouns
that describe indoor or outdoor locations, seasons, and time of
day. Examples: church, forest, spring, andmorning.

Roles
What people do or who they are. They are often nouns that
describe vocations, professions, and kinship. Examples: banker,
doctor,minister, and family.

State and Emotions
Descriptive and characterizing words. They are often adjectives
that portrays or typifies a noun. Examples: hot, little, old, red,
and sad.

Events
Things that take place in space and time, such as human-
organized encounters or natural incidents. They are often nouns
that describe activities or situations. Examples: party, flood,
and hurricane.

There were a total of 242 such words (141 nouns, 39 adjectives
and 62 verbs) in the sentences. A total of 240 sentences were
composed from two to five of those words. Sentences are in
active voice and consist of a noun phrase followed by a verb
phrase in past tense, with no relative clauses. Two hundred of
these sentences contain an action verb and the remaining 40
contain the verb was. Examples of the sentences include: The
family survived the powerful hurricane, The scientist spoke to the
student, The diplomat negotiated at the embassy, The reporter
interviewed the politician during the debate, The small church was
near the school.

CAR Ratings
Binder et al. (2009, 2016), Binder (2016) collected CAR ratings
for the original set of 242 words through Amazon Mechanical
Turk. In a scale of 0–6, the participants were asked to assign
the degree to which a given word is associated to a specific
type of neural component of experience (e.g., “To what degree
do you think of a chair as having a fixed location, as on a
map?”). Participants responded by selecting a number where
0 indicates “not at all” and six indicates “very much”. A “Not
Applicable” option was also available to cover cases in which
the participant felt the question has no logical relation to the
word; these responses were coded as 0. Approximately 30 ratings
were collected for each word in this manner. After averaging all
ratings and removing outliers by rejecting participant responses
that had a Pearson‘s correlation coefficient of <0.5 against the
mean for that particular word (intraclass correlation; Anderson
et al., 2016), the final attributes were transformed to unit length
yielding a 66-dimensional feature vector such as those shown in
Figure 1 for the words bicycle (Figure 1A) and table (Figure 1B).
The final collection of CAR words consists of 242 word vectors
with a 66-dimensional attribute ratings that constitute the generic
representation of the words, and is the first essential input to the
CEREBRA model: These are the CARWords used as CEREBRA’s
input (Section Mapping CARs to Synthetic Words).

Note that this semantic feature approach builds its vector
representations by mapping the conceptual content of a word
(expressed in the questions) to the corresponding neural
processes and systems for which the CAR dimensions stand
(Binder et al., 2009, 2016; Binder, 2016). This approach thus
contrasts with systems where the features are extracted from text
corpora and word co-occurrence with no direct association to
perceptual grounding (Harris, 1970; Landauer and Dumais, 1997;
Burgess, 1998; Baroni et al., 2010).
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Neural Data Collection
If indeed word meaning changes depending on context, it
should be possible to see such changes by directly observing
brain activity during word and sentence comprehension. In a
separate study Binder et al. (2009, 2016), Binder and Desai
(2011) identified a large-scale network with individual brain
systems involved in the representation of specific attributes of
conceptual knowledge (e.g., knowledge of actions, concrete and
abstract concepts). Accordingly, Binder and his team collected
brain imaging data from several subjects reading the sentences
described in Section Sentence Collection, by recording visual,
sensory, motor, affective, and other brain systems contained in
such a network. The following sections describe thematerials and
methods used.

Neural fMRI Representation of Sentences
The study population consists of 11 healthy, right-handed,
monolingual English-speaking adults, aged 20–60, with no
history of neurological or psychiatric disorders. Each participant
took part in this experiment producing 12 repetitions each.

While in the fMRI scanner, subjects viewed each sentence
on a computer screen through a mirror attached to the head
coil. To obtain the neural correlates of the 240 sentences,
the sentences were presented word-by-word using a rapid
serial visual presentation paradigm. More specifically, images
of nouns, verbs, adjectives, and prepositions were presented at
the same spatial location for 400ms each, followed by a 200ms
inter-stimulus interval. The mean sentence duration was 2.8 s.
Participants were instructed to read the sentences and think
about their overall meaning.

The fMRI patterns were acquired with a whole-body Three-
Tesla GE 750 scanner at the Center for Imaging Research of
the Medical College of Wisconsin (Anderson et al., 2016). The
fMRI data were preprocessed using standard methods, including
slice timing and head motion correction (AFNI software, Cox,
1996). The most stable, active, and discriminative voxels were
then selected, and Principal Component Analysis and zero mean
normalization were performed on them.

These transformed brain activation patterns were converted
into a single-sentence fMRI representation per participant by
taking the voxel-wise mean of all repetitions (Anderson et al.,
2016; Binder et al., 2016). The most significant 396 voxels per
sentence were then chosen. The size selection mimics six case-
role slots of content words consisting of 66 attributes each.
The voxels were further scaled to [0.2–0.8]. This collection of
11 subject images for the 240 sentences constitutes the second
essential input to the CEREBRA model: These images are the
fMRISent target representations required by CEREBRA (Section
System Design).

Synthetic fMRI Representations of Words
One of CEREBRAs task is to predict fMRI images for words
in isolation (described in Section Predicting Sentences and
Backpropagating the Error). Unfortunately, the neural data set
does not include such images. Therefore, a technique developed
by Anderson et al. (2016) was adopted to approximate them.
The voxel values for a word were obtained by averaging all

FIGURE 2 | Example of SynthWord representation for the word mouse using

the average of the two fMRI sentences where the word occurs. SynthWords

encode a combination of examples of that word along with other words that

appear in the same sentences, that is, the word mouse contains aspects of

ran, forest, man, saw, and dead, by averaging the two fMRI sentence

representations. SynthWord is derived by averaging the fMRI sentences where

the word occurs.

fMRI images for the sentences where the word occurs. These
vectors, called SynthWords, encode a combination of examples
of that word along with other words that appear in the same
fMRI sentences. Thus, the SynthWord representation for mouse
(Figure 2) contains aspects of running, forest, man, seeing, and
dead, from the sentences 56:The mouse ran into the forest and
60:The man saw the dead mouse.

The technique of averaging sentence fMRI is commonly used
in imaging studies for that reason (Anderson et al., 2016; Just
et al., 2017; Grand et al., 2018). In this case it is specifically
supported by neurological evidence suggesting that sentence
comprehension consist of a core representation of several word
meanings encoded across the brain (Gennari et al., 2007;
Anderson et al., 2016).

Due to the limited number of sentences, some SynthWords
became identical and were excluded from the dataset. Therefore,
the final collection includes 237 sentences and 236 words
(138 nouns, 38 adjectives and 60 verbs). This SynthWord
collection represents the third essential input to the CEREBRA
model: These are the SyntWord representations introduced in
System Design.

COMPUTATIONAL MODEL

CEREBRA uses sentence fMRI patterns (fMRISent; Section
Neural fMRI Representation of Sentences) and the CAR
semantic feature-based model of concept representations to
characterize how word meanings are modulated within the
context of a sentence. With CARs of words as input, the
neural network is trained to generate initial approximations of
fMRI patterns of subjects reading sentences. Then, the FGREP1

mechanism (Forming Global Representations with Extended
Backpropagation; Miikkulainen and Dyer, 1988) is used to
determine how the CARs would have to change to predict

1The FGREP mechanism is similar to a three-layer back-propagation neural

network. It follows the same dynamics to learn the task by adapting the connection

weights. However, in order to develop meaningful word representations, the error

signal is extended to the input layer.
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the fMRI patterns more accurately. These changes represent
the effect of context, and this research aims at characterizing
such changes using CEREBRA. It is thus possible to track
the brain dynamic meanings of words by tracking how the
CARs feature-weightings change across contexts. The following
sections describe the computational model and the data that
supports it.

System Design
The overall design of CEREBRA is shown in Figure 3. The
neural network model serves two main tasks: Prediction and
Interpretation. During the Prediction task, the model forms a
predicted fMRI for each sentence, without the context effects.
Each sentence is thus compared against the observed fMRI
sentence to calculate an error signal. This error signal is used
repeatedly by the Interpretation task. During the Interpretation
task, the model is used to determine how the CARs should adjust
to eliminate the remaining error. The error is used to change the
inputs (CARs) using Extended-back-propagation (which is the
FGREPmethod). The process iterates until the error goes to zero.

The following sections present a detailed description of
the architecture at each stage of the system implementation.
CEREBRA is built on several data sets described in detail
in Section Data Collection and Processing. Briefly these are:
the sentence collection of 237 sentences (Section Sentence
Collection), the CAR ratings or semantic representations of
236 words (called CARWord; Section CAR Ratings), the
fMRI images of 237 sentences (called fMRISent; Section
Neural fMRI Representation of Sentences), and the fMRI
synthetic representations for the 236 words (called SynthWord;
Section Synthetic fMRI Representations of Words). The specific
terms to the CEREBRA model are denoted by abbreviations
throughout the paper (e.g., CARWord, fMRISent, SynthWord).
For reference, they are described in the Terminology box.

Mapping CARs to Synthetic Words
The CEREBRA model is first trained to map the CARWord
representations in each sentence to SynthWords (The “forward”
side of Figure 3). It uses a standard three-layer backpropagation
neural network (BPNN). Gradient descent is performed for each
word, changing the connection weights of the network to learn
this task (Rumelhart et al., 1986).

Algorithm 1 describes the model implementation and
training in detail. A three-layer feed-forward BPNN with
66 input units, 66 hidden units and 396 output units was
implemented to map CARs of words to fMRI of words. The
training parameters included a learning rate of η = 0.3,
decreasing at a rate of 0.001 to 0.000001, to control how quickly
the weights will change and avoid converging into a suboptimal
solution; and a momentum rate of α = 0.3, to accelerate the
training process by helping guide the weights toward the right
direction (reducing oscillations). The neural network weighted
connections and the bias were randomly initialized between−0.5
and 0.5. The BPNN was trained for each of the 11 fMRI subjects
for a total of 20 repetitions each, using different random seeds.

The first part of the algorithm (Step 1 to 6) consists of
training the BPNN tomapCARWord representations (i.e., input)
to SynthWord representations (i.e., target). After training is
completed for each subject, it yields 20 different networks, plus
20 sets of 786 predicted SynthWord representations, that is, one
word representation for each sentence where the word appears.

Predicting Sentences and Backpropagating the Error
The next segment of Algorithm 1 (Steps 7 to 14) describes the
Prediction and Interpretation tasks mentioned at the beginning
of this section. For the Prediction task, the sentences are
assembled using the predicted SynthWords by averaging all the
words that occur in the sentence (Step 9), yielding the prediction
sentence called SynthSent. For the Interpretation task, in addition
to the construction of the predicted sentence, further steps are
required (Steps 10 to 14). First, the prediction error is calculated
by subtracting the newly constructed predicted SynthSent from
the original fMRISent. Then, the error is backpropagated to the
inputs CARWords for each sentence (The “backward” side of
Figure 3). The weights of the network no longer change. Instead,
the error is used to adjust the CARWords in order for the
prediction to become accurate.

This process is performed until the prediction error is small
(near zero) or cannot be modified (CARWord already met their
limits, between 0 and 1), which is possible since FGREP is run
separately for each sentence.

As a result, each SynthWord encodes the average meaning of
the word. Their combination encodes the expected meaning of
the sentence (SynthSent), and the difference of this combination
from the actual fMRI encodes the interactions between words.
The FGREP modification of the CARs then makes the effects
of those interactions explicit. Therefore, the SynthWords do not
need to equal the exact fMRI patterns for words in isolation,
as long as they carry that information consistently. This is why
synthetic fMRI words work well in CEREBRA.
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FIGURE 3 | The CEREBRA model to account for context effects. (1) Propagate CARWords to SynthWords. (2) Construct SynthSent by averaging the SynthWords

into a prediction of the sentence. (3) Compare SynthSent with the observed fMRI. (4) Backpropagate the error with FGREP for each sentence, freezing network

weights and changing only CARWords. (5) Repeat until error reaches zero or CAR components reach their upper or lower limits. The modified CARs represent the

word meanings in context. Thus, CEREBRA captures context effects by mapping brain-based semantic representations to fMRI sentence images.

These steps (7 to 14) are repeated 20 times for each subject. At
the end, the average of the 20 representations is used to represent
each of the 786 context-based words (CARWord Revised), for
every single fMRI participant.

Eventually, the Revised CARWord represents the word
meaning for the current sentence such that, when combined
with other Revised CARWords in the sentence, the estimate of
sentence fMRI becomes correct.

The Role of FGREP Training in CEREBRA
The original FGREP mechanism (Miikkulainen and Dyer, 1988)
was designed to (1) learn the processing task by adapting the
connection weights using standard backpropagation and (2)
develop meaningful distributed representations in the process. In
CEREBRA, FGREP is applied in a different manner, and it carries
different goals. CEREBRA uses (1) a neural network trained
in the task of mapping words from CARWords to SynthWord
patterns (Section Mapping CARs to Synthetic Words), and (2)
based on an error signal at sentence level, FGREP modifies the
baseline meaning of the words (CARWords Revised, Section
Predicting Sentences and Backpropagating the Error).

Therefore, in CEREBRA the neural network is not used
in the usual role of achieving general performance in the
mapping task (Section Mapping CARs to Synthetic Words).
That is, the goal is not simply to predict fMRI sentence
patterns accurately and generally; instead, the prediction serves
only as a starting point for modifying the CARs. Of course,
its performance needs to be competent; the learning curves
for each mapping task (SynthWords and fMRISent; Figure 4)
demonstrate that indeed it is. Thus, these FGREP networks form
a solid starting point for understanding how context affects
word meaning.

EXPERIMENTS AND RESULTS

CEREBRA decomposes sentence fMRI into words and
words into embodied brain-based semantic features (CARs).
Characterizing how these features change under the context
of a sentence, this research will demonstrate that context-
dependent meaning representations are embedded in
the sentence fMRI, and CAR theory can be used as a
foundation for modeling the neural representation of word
meaning. The demonstration includes several computational
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Algorithm 1 | Neural network to map CAR words to sentence fMRI and back to CARs.

experiments as well as a behavioral study. The computational
experiments characterize how the CAR representation of a
word changes in different sentences and demonstrates that
the linear regression is not powerful enough to capture these
changes – a nonlinear model like CEREBRA is needed. The
experiments further quantify such changes by correlating
them to the CAR representations of the other words in

the sentence (OWS) both through individual examples and

statistically throughout the dataset. The behavioral study

compares CEREBRA’s context-based changes to explicit human

estimate of those changes, finding that indeed they constitute

actionable knowledge.

Identifying Contrasting Words and
Sentences
The Glasgow sentence collection is not fully balanced and
systematic, but instead aims to be a natural sample. To investigate
the effect of context, finding mutual similarities between words
or sentences sounds like a good approach. However, similarity
alone is not enough, because anything is similar to anything
else to some degree. Contrasting words or sentences is a better
mechanism to address such effect. Therefore, a collection of
77 such sentences, with different shades of meaning for verbs,
nouns, and adjectives, as well as different contexts for nouns and
adjectives was assembled manually (Table 2).
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FIGURE 4 | CEREBRA learning performance on the tasks of mapping CARWords to SynthWords and SynthSents to actual fMRISents. The goal of CEREBRA is not

to predict the fMRISent patterns as accurately and generally as possible; instead, it is used as a framework to identify and measure context-dependent changes in the

CAR words. Nevertheless, it needs to be competent in this task, so these changes are meaningful. The two plots show that it indeed is: (A) shows the learning curve

on the task of mapping CAR words to Synthetic words. (B) shows the learning curve on the task of predicting fMRI sentences. Both are averages over the twenty

repetitions for the eight subjects. CEREBRA learns both tasks substantially and quickly.

These sets include differences and similarities like live mouse
vs. dead mouse, good soldier vs. soldier fighting, built hospital
vs. damaged hospital, and playing soccer vs. watching soccer.
Such list allows the computational models to evaluate distinctive
attribute representations and consequently adjust the baseline
meaning of a word to convey the effects of context and
conceptual combination.

Table 2 shows the contrasting sentences. It includes the
semantic classification, the sentence number, and the sentence
itself. For example, the verb flew in sentences 200, 204
and 207 appears in two different contexts: animate (as in
bird and duck) vs. inanimate (as in plane). Such contrasting
sentences illustrate the idea of conceptual combination and
provides the basis for computational models that characterize
the effect of context. For this collection, all content words
are used as target words for the analyses on the 8 subjects
with the most reliable fMRI data (as determined by the
fMRI team).

Multiple Linear Regression
Multiple Linear Regression (LReg) can be used to measure
how CARWord change across sentences. If the mapping of
semantic representations to fMRI sentences is linear, then LReg
will capture such changes. In this section, the LReg approach
is described; it will be evaluated in Different Contexts for the
Verb “listened”.

Multiple regression is first used to learn the mapping between
CARWord and SynthWord voxels at word level. The training

set has attribute vectors of words as independent variables and
the corresponding SynthWord vectors as the dependent variable,
predicting one voxel at the time. Subsequently, at sentence level,
the training contains assembled sentences (SynthSent) as the
independent variable and the corresponding observed fMRISent
as the dependent variable. Once the prediction error is calculated,
LReg is inverted (which is possible because it is linear), to
determine what the CARWord values should have been to make
the error zero.

The Matlab function fitml was used to run LReg to map the
CARWord to the SynthWord and the inverted linear process to
map the SynthWord-revised to produce the CARWord-revised.
It uses least squares to predict more than one dependent variable
(Y) for one or more independent variables (X).

Yi = β0 + β1 Xi1 + β2 Xi2 + . . . + βp Xi2 + ε,

where i is the number of observations (depending on the level
of process, after 236 words or 237 sentences), Yi represents the
dependent variable, Xi represents the independent variable, β0

represents y-intercept (constant term), βp is the slope coefficient
for each independent variable, and ε represents the error
or residual.

Additional processes such as assembling the sentences
(averaging all words in a sentence) and calculating the predicted
and proportional errors were implemented in Matlab scripts.

The experiment in Section Different Contexts for the Verb
“listened” tests if the LReg approach and the CEREBRA nonlinear
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TABLE 2 | Collection of 77 contrasting sentences.

Semantic contrast No. Sentences (verbs) Semantic contrast No. Sentences (adjectives)

Soccer 236 The artist kicked the football Hot air 208 The summer was hot

62 The boy kicked the stone along the street Hot liquid 224 The coffee was hot

Breaking 111 The soldier kicked the door Bad people 118 The dangerous criminal stole the television

Animal 200 The yellow bird flew over the field 151 The mob was dangerous

204 The duck flew Nature 98 The flood was dangerous

Plane 207 The red plane flew through the cloud Style of play 217 The aggressive team took the baseball

Blocking light 99 The cloud blocked the sun Anger 218 The duck was aggressive

Blocking physical object 209 The bicycle blocked the green door 185 The diplomat bought the aggressive dog

Human communication 89 The mayor listened to the voter Small object 42 The teacher broke the small camera

90 The jury listened to the famous businessman Young 55 The small boy feared the storm

24 The commander listened to the soldier Large object 57 The boat crossed the small lake

Noise from a machine 92 The lonely patient listened to the loud television 58 The army built the small hospital

Dangerous situation 81 The reporter interviewed the dangerous terrorist Yellow fur 43 The yellow dog approached the friendly teacher

Quiet situation 82 The policeman interviewed the young victim Yellow paper 68 The magazine was yellow

Information focus 77 The author interviewed the scientist after the flood Yellow metal 104 The accident damaged the yellow car

Semantic contrast No. Sentences (nouns) See-through, large 31 The window was dusty

Good 93 The soldier delivered the medicine during the flood Small 63 The dusty feather landed on the highway

Aggressive 111 The soldier kicked the door Leaves 51 The tree was green

Information 92 The lonely patient listened to the loud television Feathers 202 The green duck slept under the tree

Object 101 The dog broke the television Different contexts No. Sentences (nouns)

118 The dangerous criminal stole the television Dead 60 The man saw the dead mouse

Playing 230 The young girl played soccer Alive 56 The mouse ran into the forest

Watching 234 The businessman watched soccer Positive 5 The parent watched the sick child

Bad 29 The doctor stole the book Negative 9 The parent shouted at the child

Good 115 The doctor helped the injured policeman Positive, empathy 5 The parent watched the sick child

164 The old doctor walked through the hospital Negative, discipline 21 The angry child threw the book

Opaque 99 The cloud blocked the sun Negative 7 The priest approached the lonely family

Transparent 207 The red plane flew through the cloud Positive 2 The family was happy

Light 199 The cloud was white 3 The family played at the beach

Dark 134 The old judge saw the dark cloud Negative 218 The duck was aggressive

Blue 50 The feather was blue Active 204 The duck flew

White 62 The white feather was under the tree Peaceful 202 The green duck slept under the tree

Explosion 103 The accident destroyed the empty lab Negative 185 The diplomat bought the aggressive dog

Traffic 112 The banker was injured in the accident Positive 181 The dog ran in the park

Solid 31 The window was dusty 43 The yellow dog approached the friendly teacher

Broken 100 The baseball broke the window Active 157 The victim feared the criminal

Aggressive 102 The angry activist broke the chair Passive 82 The policeman interviewed the young victim

Passive 117 The soldier arrested the injured activist Active positive 3 The family played at the beach

Plant 51 The tree was green

Shelter 202 The green duck slept under the tree Passive, negative 27 The beach was empty

Sentence examples with differences and similarities in meaning. For instance, the verb kicked in the first two sentences, is used in two different contexts, playing with a ball (as in a

soccer game) vs. breaking the door (as an aggressive behavior). Such sentence pairs illustrate the idea of conceptual combination providing the basis for computational models that

characterize the effect of context. All content words are target words.

neural network can discriminate between sentences based on
feature weightings. The comparison will test whether CEREBRA
is a better tool than LReg in bringing out significant changes in
word representations.

Context Effects on Individual Words
This section evaluates experimentally how word meaning
changes across different sentence contexts. For conciseness, the

experiments presented here analyze example cases where word
attributes are weighted differently in various contexts for verbs,
adjectives, and nouns (for a comprehensive quantitative analysis,
see Aguirre-Celis, 2021).

Different Contexts for the Verb “Listened”
This experiment compared the contrasting meanings of
HUMAN COMMUNICATION vs. NOISE FROMAMACHINE
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for the word listened as expressed in 89: The mayor listened to
the voter, 92: The lonely patient listened to the loud television.
Figure 5A shows the results for LReg between the original and
modified CARs for subject 9322. Although the CARs adjusted in
all sentences, the changes were small and unprincipled, unable to
characterize the difference between human communication vs.
noise from a machine. In contrast, the outcome for CEREBRA
resulted in context-dependent changes as shown, for sentences
89 and 92 in Figure 5B.

CARs in Sentence 89 presented salient activations in human-
related attributes like Face, and Body, Audition, and Speech,
as well as Human, Communication, and Cognition, presumably
denoting human verbal interaction. For Sentence 92, high
activations on Vision, Bright, Color, Pattern, Large, Shape,
Complexity, Touch, Temperature, Weight, Scene, Near, Harm,
Unpleasant, Happy, and Angry describe a loud and large object
such as a television.

These and similar results from other sentences and subjects
(Aguirre-Celis, 2021) suggest that the linear mapping that LReg
performs is not powerful enough to capture context. A likely
explanation is that the relations between the concept attributes
and the voxels are too complex to be linearly separable. Indeed,
on average the new CAR values with LReg regress to the mean.
In contrast, those values in CEREBRA increase, thus gaining new
content. The nonlinear mapping provided by CEREBRA is thus
powerful enough to capture content, and therefore, subsequent
experiments focus on evaluating CEREBRA in this role.

Different Contexts for the Adjective “Dangerous”
This experiment compared the contrasting meanings of
NATURE vs. BAD PEOPLE for the word “dangerous”,
as expressed in 98: The flood was dangerous, 118: The
dangerous criminal stole the television. Figure 6 shows the
differences resulting from the CEREBRA method for subject
5051. As with the verb listened, context-dependent changes
did emerge.

CARs in Sentence 98 present changes on activation for
Large, Motion, SOMS attributes Texture and Weight, and event
attributes Time, Short, and Caused, reflecting moving water.
The attributes Toward, Harm, Unpleasant, and the emotion of
Angry, represent the experiential and personal nature of danger.
Conversely, Sentence 118 shows high activation for Vision,
Complexity, Face, and Speech, because they represent human
types and roles such as a criminal. Motor attribute Lower Limb
as well as evaluation attributes Benefit, Angry, Disgusted, and
Fearful can be associated with a dangerous act by a criminal. The
CEREBRA method, therefore, was largely able to differentiate
between the contrasting relevant dimensions of dangerous acts of
nature and humans.

Different Contexts for the Noun “Mouse”
This experiment compared the contrasting meanings of DEAD
vs. ALIVE for the word mouse as expressed in sentences 56:
The mouse ran into the forest, 60: The man saw the dead mouse.
Figure 7 shows the differences resulting from the CEREBRA
method, which are again systematic and meaningful.

CARs in Sentence 56 have increased activation for Vision,
Motion, Complexity, High, and Sound, possibly suggesting
animate properties of the live mouse. Upper Limb, spatial
attributes Path and Away, and event attributes Time, Duration,
Short, and Consequence, symbolize activity such as running.
Emotions of Fearful and Surprised may well be associated with
seeing a live mouse. In contrast, Sentence 60 shows increased
activation for Temperature, Weight, and Smell, as well as
emotions Sad, Angry, Disgusted and Fearful, which may be
associated to the dead mouse. These changes indicate different
aspects ofmouse in two contrasting contexts.

Overall, the results of the experiments in Section Context
Effects on IndividualWords suggest that different aspects of word
meaning are activated in different contexts, and it is possible to
see those changes in the corresponding fMRI images using the
CEREBRA model. The modified representations in CEREBRA
gained content, i.e., they became more descriptive and more
distinctive, which provides a good foundation for understanding
the structure of the semantic space. In the next set of experiments,
the analysis is extended to evaluate the robustness and generality
of these conclusions by analyzing combinations of words.

Conceptual Combination Effect
Earlier work (Aguirre-Celis andMiikkulainen, 2018) showed that
(1) words in different contexts have different representations, and
(2) these differences are determined by context. These effects
were demonstrated by analyzing individual sentence cases across
multiple fMRI subjects.

In this experiment, CEBRA analyzes the centrality effect on
the attributes of the adjective-noun combinations for the word
small, as expressed in Sentence 42: The teacher broke the small
camera, and Sentence 58: The army built the small hospital.
Centrality expresses the idea that some attributes are true tomany
different concepts, but they are more important to some concepts
than others (Medin and Shoben, 1988). For example, the attribute
Small, is more central for a bird than a whale.

Figure 8 shows the differences for small in these two contexts.
The top panel (Figure 8A) displays all 66 attributes for the
two sentence representations averaged across subjects, and
the bottom panel (Figures 8B,C) display the context-based
representations averaged across all eight subjects for camera
and hospital.

The size dimensions (e.g., Small and Large), demonstrated
the centrality principle for these specific contexts. Figure 8B
shows Sentence 42 (e.g., small camera) with salient activation
for the central attribute Small and low activation for the
non-central attribute Large. In contrast, Figure 8C Sentence
57 (e.g., small hospital) presents low activation on the non-
central attribute Small but high activation on the central
attribute Large.

These findings suggest that these attributes are essential to
small objects and big structures, respectively. However, the
size dimension alone cannot represent the centrality effect
completely. This type of conceptual combination requires
additional world knowledge to determine the centrality for a
particular object, and the relationships between the dimensions
of various contexts.
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FIGURE 5 | Results for the word listened in two contrasting sentences. LReg (A) did not capture context. All changes were insignificant to characterizing the

context-dependent representations. The green line shows the original CARs for comparison. CEREBRA (B) did grasp context. The CARs for Sentence 89 have

increased activations in human-related attributes like Face and Body, Auditory attributes, as well as Human, Communication and Cognition. In contrast, Sentence 92

activations on Vision, Color, Large, Shape, Complexity, Touch Temperature, High, Sound, and Unpleasant, depict a loud object such as a television.

Additionally, given that both camera and hospital are
inanimate objects, Figures 8B,C show how they share low
weightings on human-related attributes like Biomotion, Face,
Body, and Speech. However, they also differ in expected ways,

including salient activations on Darkness, Color, Small and
Large size, and Weight. As part of the sentence context, the
activations include human-like attributes such as Social, Human,
Communication, Pleasant, Happy, Sad, and Fearful. Overall, each
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FIGURE 6 | CEREBRA results for the adjective dangerous across two contrasting sentences. CARs in Sentence 98 changed activation for Large, Motion, Texture and

Weight, Time, Short, and Caused, reflecting moving water. The attributes Toward, Harm, Unpleasant, and Angry, represent the experiential nature of danger. Sentence

118 shows high activation for Vision, Complexity, Face, and Speech, because they represent human types and roles. Lower Limb, Benefit, Angry, Disgusted and

Fearful can be associated with a dangerous act by a criminal.

FIGURE 7 | CEREBRA results for the noun mouse across two contrasting sentences. CARs in Sentence 56 increased activation for Vision, Motion, Complexity, High,

and Sound, presumably to indicate the animate properties of the live mouse. Upper Limb, Path, Away, Time, Duration, Short, and Consequence, suggest activity such

as running. In contrast, Sentence 60 shows increased activation for Temperature, Weight, and Smell, as well as Sad, Angry, Disgusted and Fearful, which can be

associated with the dead mouse. These changes indicate different aspects of mouse in two contrasting contexts.
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FIGURE 8 | The effect of centrality on two contexts for the word small. (A) The average for all 8 subjects for the two sentences. Bottom figures (B,C) The new camera

and hospital representations averaged for all 8 subjects. The top part (A) shows that the new CARs for Sentence 42 have salient activations for an object, denoting

the camera properties like Dark, Small, Manipulation, Head, Upper Limb, Communication, and emotions such as Sad (e.g., broke the camera). The new CARs for

Sentence 58, has high feature activations for large buildings describing a Large, and Heavy structure such as a hospital. In the bottom part (B,C), the central attributes

are highlighted (Large, Small and Weight) for each word. These emphasize how the same dimensions are more important to some concepts than others. The

centrality effect analysis (Medin and Shoben, 1988).
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sentence representation moves toward their respective sentence
context (e.g., camera or hospital).

These observations are robust and general: analysis was done
for all 8 subjects using other types of conceptual combinations
(small bird vs. small boy; small boy vs. small lake; bird flew
vs. plane flew, kicked football vs. kicked door, etc.), producing
comparable results.

Aggregation Analysis
This experiment focuses on the conceptual combination
process such as the individual example presented in Section
Conceptual Combination Effect. It describes how such a dynamic
construction of concepts in the brain can be quantified. This idea
was presented anecdotally before, by analyzing a few example
cases of how the concept attributes are weighted differently
in various sentence contexts. This section expands on this
prior work by evaluating the robustness and generality of these
conclusions across an entire corpus of sentences and semantic
roles (i.e., Agent, Verb, Patient).

The aggregate verifies these conclusions through a statistical
analysis: It measures how the CARs of a word change in different
sentences and correlates these changes to the CARs of the other
words in the sentence. Particularly, it quantifies the conceptual
combination effect statistically across sentences and subjects.

The aggregation study hypothesis is based on the idea that
similar sentences have a similar effect, and this effect is consistent
across all words in the sentence. This effect was verified in the
following process (see Aguirre-Celis and Miikkulainen, 2019,
2020a for details):

1. For each subject, modified CARs for each word in each
sentence were formed through CEREBRA as described in
Figure 2.

2. A representation for each sentence, SynthSent, was assembled
by averaging the modified CARs.

3. Agglomerative hierarchical clusters of sentences were formed
using the set of SynthSents. The Ward method and Euclidean
metric were used to measure the distance between clusters
and observations, respectively. The process was stopped at
30 clusters, i.e., at the point where the granularity appeared
most meaningful (e.g., sentences describing open locations vs.
closed locations).

4. Each cluster of sentences is expected to reveal similar changes
in some of the dimensions. To recognize such common
patterns of changes, the next step is to calculate the average
of the changes for words with similar roles, e.g., hospital,
hotel, and embassy (within the same cluster of sentences). To
that end, the differences between the modified and original
CAR representations are measured separately for each CAR
dimension in each word semantic role, and their significance
estimated using Student’s t-test.

5. The modified CARs of the OWS were averaged.
6. Pearson’s correlations were then calculated between the

modified CARs and the average CARs of the OWS across all
the dimensions.

7. Similarly, correlations were calculated for the original CARs.

8. These two correlations were then compared. If the modified
CARs correlate with the CARs of the OWS better than
the original CARs, context effect based on conceptual
combination is supported.

Specifically, this process aims to demonstrate that changes in
a target word CAR originate from the OWS. For example,
if the OWS have high values in the CAR dimension for
Music, then that dimension in the modified CAR should be
higher than in the original CAR for such target word. The
correlation analysis measures this effect across the entire corpus.
It measures whether the word meaning changes toward the
context meaning.

The results are shown in Figure 9. The top panel (Figure 9A)
presents the correlation results per subject and word semantic
roles, and the bottom panel (Figure 9B) displays the results in
graphic form. Across all eight subjects and all three semantic
roles, the correlations are statistically significant (p < 0.05)
according to the Student’s t-test. Interestingly, the AGENT role
represents a large part of the context in both analyses. In other
words, the average correlations of the original and modified
CARs are most similar in the Agent panel suggesting that this
role encodes most of the context. It is important to note that the
clusters obtained for each subject’s sentences in the aggregation
analysis, dictates the way the correlation analysis is conducted
for the modified and the original CARs. Each subject produced
a different arrangement of sentence clusters that is why the
average correlations of the original CARs are different within
each role (i.e., they depend on the subject’s cluster organization),
even though the original CARs include a single set of 236 words
compared to the modified CARs that include eight sets of 786
context-based words, or revised CARWords.

Thus, the results indeed confirm that the conceptual
combination effect occurs consistently across subjects and
sentences, and it is possible to quantify it by analyzing the fMRI
images using the CEREBRA model on the CARs. As a summary,
the average correlation was 0.3201 (stdev 0.020) for original
CARs and 0.3918 (stdev 0.034) for new CARs.

Behavioral Study
While previous sections have shown that differences in the
fMRI patterns in sentence reading can be explained by context-
dependent changes in the semantic feature representations of
the word, the goal of this section is to show that these changes
are meaningful to humans. Therefore, human judgements were
compared against CEREBRA predictions (Aguirre-Celis and
Miikkulainen, 2020a,b, 2021).

Semantic feature theory suggests that a word meaning is
instantiated by weighting its semantic attributes according
to the context. (Barclay et al., 1974; Medin and Shoben,
1988; Murphy, 1988, 1990; Hampton, 1997; Wisniewski, 1998;
Mitchell and Lapata, 2010; Kiefer and Pulvermüller, 2012;
Pulvermüller, 2013). For example, when people think of the
word football, they heavily weigh features like Shape and Lower
Limbs and features like Smell and Size lightly. In contrast,
when they think of forest, the weighing on those features is
likely to reverse. However, when the words appear in the
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FIGURE 9 | Correlation results per subject cluster. The top part (A) displays the correlation data per subject and word semantic role, and the bottom part (B) presents

the same results in graphic form. The correlations are statistically significant according to the Student’s t-test (p < 0.05). (A) Average correlations analyzed by

semantic roles for eight subjects comparing the original and new CARs vs. the average of the other words in the sentence. A moderate to strong positive correlation

was found between new CARs and the other words in the sentence suggesting that features on one word are transferred to other words in the sentence during

conceptual combination. (B) The correlations in graphic form show how the AGENT role represents a large part of the context in both analyses. That is, the original

and new patterns are most similar in the AGENT panel, suggesting that this role encodes much of the context. The results show that the conceptual combination

effect occurs consistently across subjects and sentences.

context of a sentence such as The team lost the football in
the forest, the context might bring up more unusual features
like Landmark, Fearful, and Surprise. Thus, when words share

features, those aspects of the word representation that are
relevant to the context are strengthened (Medin and Shoben,
1988; Murphy, 1990; Hampton, 1997; Wisniewski, 1998; Mitchell
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and Lapata, 2010; Kiefer and Pulvermüller, 2012; Pulvermüller,
2013).

The hypothesis is that sentence context influences the
interpretation of target words by modifying some of their
semantic attributes. Consequently, if this attribute changes under
the context of a sentence, the fMRI images should embed those
changes. Next, the methods and results of the human subject
study are described, followed by the methods and results of the
computational study. The methods and results of comparing the
human judgements and the computational model predictions
concludes the study.

Measuring Human Judgements
In the survey, subjects were asked to judge how the words
change from their generic meaning when they are used in specific
sentences. These changes are precisely what the CEREBRA
model produces. Thus, the survey made it possible to compare
CEREBRA’s predictions directly with human judgements.

Materials and Design
The survey was constructed to make the comparison as
informative as possible based on the fMRI subject data on
sentences, words, and attributes.

First, the centroids of each cluster in the aggregation
analysis (Section Aggregation Analysis) were selected as the
example sentences. They each represent a different context that
should have a distinct effect on the words. Across the different
subjects, 64 such sentences were found to result in at least
10 statistically significant attribute changes and used for the
questionnaire. Second, words in each of the three possible roles
of Agent, Verb, and POLE (Patient/Object/Location/Event)
were included in each of these sentences, resulting
in 38 Agents, 39 Verbs, and 46 POLE words to
be tested.

Third, from the 25 attributes with the largest statistically
significant change, 10 were randomly selected for each sentence,
for four reasons: (1) there is a large number of potentially
meaningful attributes, i.e., 25 at least; (2) for simplicity, the
survey must not contain many questions; (3) the differences
among the top 25 are not considerably large; and (4) it is
necessary to get a varied selection of attributes. Choosing the
top 10 instead would have resulted in too many visual features
for most sentences, either because they frequently changed more,
or because visual attributes are more numerous (i.e., 15 out
of the 66). The statistically significant attribute changes thus
selected represent meaningful differences between the new and
the original CAR representations.

To make the questions more understandable for the
participants, the original descriptions of the 66 attributes by
Binder et al. (2016) were rephrased to make the questionnaires
easy to read and to respond to, while retaining their original
meaning. The complete survey is an array of 24 questionnaires
that include 15 sentences each. For each sentence, the survey
measures 10 attribute changes for a particular target word.
Overall, each questionnaire thus contains 150 evaluations. For
example, a questionnaire might measure changes on 10 specific
attributes such as “is visible”, “living thing that moves”, “is

FIGURE 10 | Example sentence in a questionnaire prepared to evaluate the

computational model results. The sentence is The politician celebrated at the

hotel, the target word is politician in the role of Agent. Ten different attribute

changes are measured by selecting whether the attribute increased (“more”),

decreased (“less”) or remained “neutral”. The human judgements were thus

matched with those predicted by the CEREBRA model trained with the fMRI

data.

identified by sound”, “has a distinctive taste”, for a specific
semantic role as in politician (Agent), for 15 sentences such
as The politician celebrated at the hotel. An example sentence
questionnaire is shown in Figure 10. Each questionnaire is
composed of the Introduction, an Example, and the list of
15 questions.

The entire set of questionnaires can be found
at: https://drive.google.com/drive/folders/1jDCqKMuH-
SyTxcJ7oJRbr7mYV6WNNEWH.

Participants
Human judgements were crowdsourced using Google Forms in
accordance with the University of Texas Institutional Review
Board (2018-08-0114). The experiments were completed by 27
unpaid volunteers (nine females). The participants’ ages ranged
from 18 to 64 years, with the mean of 33. Nineteen of them were
self-reported bilinguals (English as a second language) and eight
English native speakers. Four subjects were affiliated with The
University; the rest of the population consisted of working people
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residing in different parts of north and central America (Texas,
Seattle, California, Costa Rica, and Mexico). The subjects had no
background in linguistics, psychology, or neurosciences.

Procedure
The 24 questionnaires were designed using Google Forms. The
respondents were asked to think how the meaning of a specific
word changes within the context of a sentence compared to its
generic meaning, by evaluating which word attributes change
“more”, “less”, or stay the same.

Subjects were recruited by sending emails or text messages
directly along with the survey link to access their assigned
questionnaire. The data collection was done online, and the
participants responded using their cell phone or personal
computer. Each questionnaire consisted of an Introduction,
Description of the Experiment, Example, and the Survey. Each
questionnaire takes about 15min to complete.

Three of the participants responded to all of the 24
questionnaires. The entire survey consisted of a total of 3,600
questions, so it took them 4–7 days to complete this task at
a pace of approximately four questionnaires (i.e., an hour per
day). Because this task was a lot of work, the fourth set of
responses was obtained by distributing it among multiple raters:
24 additional participants were recruited to each respond to one
of the 24 questionnaires.

Results
Human responses were first characterized through data
distribution analysis. Table 3 shows the number of answers
“less” (−1), “neutral” (0), and “more” (1) for each respondent.
Columns labeled P1, P2, and P3, show the responses of the
three participants that were assigned the entire survey (24
questionnaires, 3,600 answers). Column labeled P4 shows the
combined answers of the 24 different participants responding
to one questionnaire each. The top part of the table shows
the distribution of the rater’s responses, and the bottom part
shows the level of agreement among them. As can be seen, on
average, participants agreed 47% of the time. The Fleiss’ Kappa
inter-rater analysis revealed that the kappa coefficient (k= 0.202)
is statistically significant (p < 0.05); indicating the agreement
between raters is significantly better than chance.

Although the inter-rater reliability was low, there were a lot of
questions. Thus, it was possible to perform the analysis on those
that were reliable enough. In the first such set there were 631
questions where all four participants agreed, or 18% of the total
set of questions. In the second such set there were 1,966 questions
where at least three of the four participants agreed, or about 55%.

Measuring Model Predictions
Three different approaches were designed to quantify the
predictions of the CEREBRAmodel. In order tomeasure the level
of agreement between humans and CEREBRA, a model fitting
procedure was implemented.

Quantifying the CEREBRA Predictions
The survey directly asks for the direction of change of a specific
word attribute in a particular sentence, compared to a generic
meaning. Since the changes in the CEREBRAmodel range within

(-1,1), in principle that is exactly what the model produces.
However, Aguirre-Celis and Miikkulainen (2019) found that
some word attributes always increase and do so more in
some contexts than others. This effect is related to conceptual
combination (Hampton, 1997; Wisniewski, 1998), contextual
modulation (Barclay et al., 1974), or attribute centrality (Medin
and Shoben, 1988): the same property is true for two different
concepts but more central to one than to the other (e.g., it is more
important for boomerangs to be curved than for bananas).

The direction of change is therefore not a good predictor of
human responses; instead, these changes need to be measured
relative to changes in the other words. Thus, the problem was
addressed by three different approaches:

1. What is the effect of the rest of the sentence in the target
word? This effect was measured by computing the average of
the CEREBRA changes (i.e., new-original) of the other words
in the sentence and subtracting that average change from the
change of the target word.

2. What is the effect of the entire sentence in the target word?
This effect was measured by computing the average of the
CEREBRA changes (i.e., new-original) of all the words in
the sentence including the target word and subtracting that
average change from the change of the target word.

3. What is the effect of CARs used in context as opposed to CARs
used in isolation? This effect was measured by computing the
average of the CEREBRA changes (i.e., new-original) of the
different representations of the same word in several contexts
and subtracting that average change from the change of the
target word.

The first two approaches have the advantage of being simple.
However, the third approach is motivated by neurological
evidence suggesting that sentence comprehension involves
a common core representation of multiple word meanings
combined into a network of regions distributed across the brain
(Gennari et al., 2007; Anderson et al., 2016). In line with this
view, a generic (or isolated) word representation can be formed
by averaging the activity in multiple sentence contexts.

In each of these cases, the resulting vectors are expected
to accurately represent the direction of change asked in the
questionnaires. They are the ratings used in the evaluation
procedure described in the following section.

Procedure
Starting from a different random seed, the CEREBRA model was
trained 20 times for each of the eight best fMRI subjects (i.e.,
where the fMRI data in general was most consistent). Responses
for each model were thus obtained for the 631 questions where
all four subjects agreed, and for the 1,966 questions where three
out of four agreed. In order to demonstrate that the CEREBRA
model has captured human performance, the agreements of
the CEREBRA changes and human surveys need to be at least
above chance. Therefore, a baselinemodel that generated random
changes in the same range as the CEREBRA model was created.
The chance model was queried 20 times for each of the 631
questions and for the 1,966 questions, for each of the eight
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TABLE 3 | Distribution analysis and inter-rater agreement.

Human responses Distribution

Resp/Part P1 P2 P3 P4 AVG %

−1 2,065 995 645 1,185 1,223 34.0%

0 149 1120 1895 1,270 1,109 30.8%

1 1,386 1485 1060 1,145 1,269 35.3%

TOT 3,600 3600 3600 3,600 3,600 100%

Participant Agreement analysis

P1 P2 P3 P4 Average %

P1 0 1726 1308 1650 1561 43%

P2 1726 0 1944 1758 1809 50%

P3 1308 1944 0 1741 1664 46%

P4 1650 1758 1741 0 1716 48%

TOTAL 6,751

AVG xPART 1,688

Average Particip match each other 47%

Fleiss-Kappa Error Confidence Interval Agreement Z p-value

0.202 0.0048153 0.19955 0.20446 “Fair” 41.951 0

The top part shows human judgement distribution for the three possible questionnaire responses “less” (−1), “neutral” (0), and “more” (1). The bottom part shows percent agreement

for the four raters; Fleiss’ Kappa analysis revealed that the agreement between raters is better than chance with a p<0.05. The task was difficult and the responses noisy. Thus, only

the most reliable questions were used to compare to the CEREBRA model.

subjects. In this manner, 20 means and variances for each of the
eight subjects for both CEREBRA and chance were created.

To estimate the level of agreement of CEREBRA and chance
models with humans, a single parameter in each model was fit
to human data: the boundary value above which the change
was taken to be an increase (i.e., “more”) or decrease/no change
(i.e., “less”/“neutral”). The “less” and “neutral” categories were
combined because they were much smaller than the “more”
category in human data. The optimal value for this parameter
was found by sweeping through the range (−1, 1) and finding the
value that resulted in the highest number of matching responses
with the 631 and 1,966 questions. Further, a second boundary was
introduced to capture the “neutral” responses (it was initialized
where the first boundary ended).

Results
The three approaches to measuring the predictions of the
CEREBRA model, i.e., the context effect of the rest of the
sentence, the context effect of the entire sentence, and the context
effect of the word in different contexts, were implemented and
fit to human data using two-boundary model fitting. The three
approaches produced remarkably similar results. Furthermore,
the first two approaches achieved slightly better results than the
third one (by 2%).

The match results for each set of questions are presented in
Tables 4A, 5A and the statistical significance in Tables 4B, 5B,

respectively. Table 4A shows that CEREBRA Approaches 1 and
2 match human responses in 77% and for Approach 3 in 75% of
the questions, while the chance level is 68% - which is equivalent
to always guessing “more”, i.e., the largest category of human
responses. Similarly,Table 5A shows that CEREBRAApproaches
1 and 2 match human responses in 55% and for Approach 3
in 54% of the questions, while the chance level is 45% (i.e.,
always guessing “more”). The differences shown inTables 4B, 5B,
include themeans and variances of the CEREBRA changemodels
and the chance model for each subject, and the p-values of the
Student t-test, revealing that the differences are highly statistically
significant for all of the 8 subjects for the three approaches shown.
These results indicate that the changes in word meanings due to
sentence context (observed in the fMRI and interpreted through
semantic feature representations) are real and meaningful to
the subjects.

DISCUSSION AND FUTURE WORK

Word meanings have long been known to change in the context
of a sentence (Harris, 1954; Firth, 1957). However, this research
is novel in two respects: by using CARs, i.e., brain-based word
representations (instead of text-based word representations),
and by using fMRI observations (that include word meanings)
to constrain the CARs. Despite recent success in text-based
semantic modeling and multimodal word representations, there
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TABLE 4 | CEREBRA match results and statistical significance compared with human judgements across sentences where all four subjects agreed.

(A) Matching CEREBRA predictions for approaches one to three and chance with human data

All four participants average agreement (3 ratings)

Ratings Human Cerebra#1 Cerebra#2 Cerebra#3 Chance

−1 190 145 149 134 1

0 15 0 0 0 0

1 426 341 336 339 426

Total 631 486 485 473 427

Average 77% 77% 75% 68%

(B) Statistical analyses for CEREBRA approaches and chance

Subjects Chance Cerebra #1 Cerebra #2 Cerebra #3 P-value P-value P-value

Mean Var Mean Var Mean Var Mean Var Cerebra #1 Cerebra #2 Cerebra #3

S1 427 0.91 486 46.74 486 56.42 466 152.98 5.42e-32 1.66e-30 1.17e-16

S2 427 1.10 481 32.62 480 21.54 466 105.61 1.67e-33 2.02e-36 2.30e-19

S3 426 0.57 486 42.58 485 37.85 480 39.29 6.50e-33 1.65e-33 6.22e-32

S4 427 1.69 486 21.95 486 27.73 481 32.62 1.46e-37 6.25e-36 2.55e-33

S5 427 1.71 490 57.00 488 57.09 470 89.12 3.80e-31 7.56e-31 8.82e-22

S6 427 2.87 486 44.06 484 34.04 469 80.66 6.59e-32 3.17e-33 6.29e-22

S7 427 2.77 489 24.77 489 21.21 483 54.05 3.09e-37 2.93e-38 1.62e-29

S8 427 1.67 480 75.78 480 54.22 471 92.68 1.82e-26 4.62e-29 5.56e-22

(A) The table shows the average agreement of the 20 repetitions across all 8 fMRI subjects. CEREBRA Approaches 1 and 2 agree with human responses 77%, CEREBRA Approach 3

agrees 75%, when the chance level is 68%. (B) The table shows the means and variances of the CEREBRA change models and the chance model for each subject, and the p-values

of the Student t-test, revealing that the differences are highly significant. Comparison agreement with human judgements where all four subjects agreed.

is still a great deal of disagreement about how semantic
knowledge is represented in the brain and whether these models
correlate with actual brain representations. In contrast, the
semantic model used in this research is built from interpretable
features, supported by substantial evidence on how humans
acquire and learn concepts through different modalities, spans
many aspects of experience comprehensively, and thus provide a
way to understand the semantic space of the brain (Binder et al.,
2009, 2016; Binder and Desai, 2011; Binder, 2016). Therefore,
understanding how grounded and embodied word meanings
change under the context of a sentence may be a useful starting
point for studying the mental lexicon.

The CEREBRA model built on this theory generates good
interpretations of word meanings especially considering
that the dataset was limited and was not originally designed
to address the dynamic effects of meaning. It would be
interesting to replicate the studies on a more extensive
data set. A fully balanced stimuli including sentences with
identical contexts (e.g., The yellow bird flew over the field
vs. The yellow plane flew over the field) and contrasting
contexts (e.g., The aggressive dog chased the boy vs. The
friendly dog chased the boy), could help characterize the
effects in detail. The context-based changes should be
even stronger, and it should be possible to uncover more
refined effects.

Similarly, it would be desirable to extend the fMRI data
with images for individual words. The CEREBRA process
of mapping semantic CARs to SynthWords and further
to sentence fMRI refines the synthetic representations by
removing noise. However, such representations blend together
the meanings of many words in many sentences. Hence,
by acquiring actual word fMRI, the observed effects should
become sharper.

Given how noisy human response data is, the 7%, 9%, and 10%
differences between CEREBRA and chance are strong results.
Human raters do not often agree; their judgement is influenced
by experience and uncertainty, in addition to factors such as age,
language, and education. Inter-rater reliability could be improved
by training the raters so that they become comfortable with the
concepts of “generic meaning” and “variable meanings”. It may
also be possible to design the questions such that they allow
comparing alternatives, which may be easier for the participants
to respond.

CAR theory has already been validated in many studies
(Fernandino et al., 2015; Anderson et al., 2016, 2018; Binder
et al., 2016). Therefore, this research took it as a starting
point in building CEREBRA. However, whereas the original
CAR concerns static representations, CEREBRA extends it to
dynamic representations, and shows how they can change based
on context.
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TABLE 5 | CEREBRA match results and statistical significance compared with human judgements across sentences where at least three of the four subjects agreed.

(A) Matching CEREBRA predictions for approaches one to three and chance with human data

Three of four participants average agreement (3 ratings)

Ratings Human Cerebra#1 Cerebra#2 Cerebra#3 Chance

−1 618 478 484 463 8

0 456 2 2 3 0

1 892 608 599 587 886

Total 1966 1088 1085 1053 894

Average 55% 55% 54% 45%

(B) Statistical analyses for CEREBRA approaches and chance

Subjects Chance Cerebra #1 Cerebra #2 Cerebra #3 P-value P-value P-value

Mean Var Mean Var Mean Var Mean Var Cerebra #1 Cerebra #2 Cerebra #3

S1 894 6.01 1,082.5 149.0 1,083 131.32 1,033 707.25 2.94E-41 2.99E-42 3.92E-24

S2 894 7.21 1,076.8 199.0 1,073 128.31 1,035 233.91 2.15E-38 1.80E-41 6.10E-33

S3 894 11.52 1,089.4 186.6 1,086 166.91 1,063 224.41 8.89E-40 2.48E-40 5.22E-36

S4 894 7.21 1,086.7 39.0 1,087 36.64 1,077 94.79 1.51E-51 5.06E-52 3.89E-44

S5 895 12.03 1,099.1 183.8 1,097 157.71 1,048 252.79 1.19E-40 1.12E-41 1.83E-33

S6 894 4.62 1,088.0 179.5 1,082 161.88 1,048 205.82 2.64E-40 1.24E-40 1.73E-35

S7 895 7.21 1,097.6 64.1 1,096 41.73 1,075 216.77 8.52E-49 8.54E-52 1.65E-37

S8 894 2.52 1,079.6 229.6 1,077 129.91 1,039 366.06 1.09E-37 5.10E-42 6.10E-30

(A) The table shows the average agreement of the 20 repetitions across all 8 fMRI subjects. CEREBRA Approaches 1 and 2 agree with human responses 55%, CEREBRA Approach 3

agrees 54%, when the chance level is 45%. (B) The table shows the means and variances of the CEREBRA change models and the chance model for each subject, and the p-values

of the Student t-test, revealing that the differences are highly significant. Comparison agreement with human judgements where at least three of the four subjects agreed.

One disadvantage of CEREBRA is that it is expensive to collect
fMRI patterns and human ratings at a massive scale compared to
running a statistical algorithm on a data repository. Furthermore,
any changes to the CARs (e.g., adding features) would require
new data to be collected. However, such data provides a
grounding to neural processes and behavior that does not exist
with statistical approaches. This difference becomes evident
when the CAR semantic model is compared to approaches
such as Conceptual Spaces (Gardenfors, 2004; Bechberger and
Kühnberger, 2019; CS), and distributional semantic models
(Landauer andDumais, 1997; Burgess, 1998;Mitchell and Lapata,
2010; Silberer and Lapata, 2012, 2014; Anderson et al., 2013;
Mikolov et al., 2013; Bruni et al., 2014; DSMs). Both, CAR
theory and CS characterize concepts with a list of features or
dimensions as the building blocks. Importantly, they include
similar dimensions (i.e., weight, temperature, brightness) and
some of those dimensions are part of a larger domain (e.g., color)
or a process (e.g., visual system). The CAR theory provides a set
of primitive features for the analysis of conceptual content in
terms of neural processes (grounded in perception and action).
Instead, the CS framework suggests a set of “quality” dimensions
as relations that represent cognitive similarities between stimuli
(observations or instances of concepts).

Compared to DSM, the CAR theory is a brain-based semantic
feature representation where people weigh concept features
differently based on context. DSMs are not grounded on

perception and action mechanisms (i.e., words are defined by
other words). They reflect semantic knowledge acquired through
a lifetime of linguistic experience, found in the corpus used for
training the model, based on statistical co-occurrence, and do
not provide precise information about the experienced features
of the concept itself (Anderson et al., 2016). They are models of
word meaning as they are in the text (Sahlgren, 2008). CEREBRA
takes good advantage of such a grounding by representing word
meanings as they are “in the head”. The CAR features relate
semantic content to neural activity, which can then be verified
with fMRI.

CONCLUSION

The CEREBRAmodel was constructed to test the hypothesis that
word meanings adapt dynamically based on context. The results
support three conclusions: (1) context-dependent meaning
representations are embedded in the fMRI sentences, (2) they
can be characterized using CARs together with the CEREBRA
model, and (3) the attribute weighting changes are real and
meaningful to human subjects. Thus, CEREBRA opens the door
for cognitive scientists to achieve better understanding and form
new hypotheses about how semantic knowledge is represented in
the brain. Overall, this research is expected to contribute to the
development of a unified theory of concepts, the organization of
the semantic space, and the processes involved in word meaning
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representation. CEREBRA promotes further research on issues
such as how words can be related thematically, how concepts
can be combined, how word meaning can be formed, and how
different individuals perceive the world (i.e., cultural differences),
thus advancing the understanding of grounded representations
in the mental lexicon.
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