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Abstract 
RNA N6-methyladenosine (m6A) regulators are essential for a variety of biological functions, such as early development, viral 
infections, and cancer. However, their roles in Alzheimer disease (AD) are still not very clear. Here, 16 significant m6A regulators 
were identified using difference analysis between AD patients and non-demented controls based on the GSE132903 dataset 
from the Gene Expression Omnibus database. Using these 16 m6A regulators, a nomogram model was established to predict 
the prevalence of AD. We found that patients could obtain a good clinical benefit based on this model. In addition, we revealed 2 
distinct m6A patterns and 2 distinct m6A gene patterns in AD and demonstrated their prognostic and risk assessment significance. 
This present work comprehensively evaluated the functions of m6A regulators in the diagnosis and subtype classification of AD. 
These results suggested they have potential prognostic and risk assessment significance in AD.

Abbreviations: AD = Alzheimer disease, APP = amyloid-beta precursor protein, DEGs = differentially expressed genes, m6A 
= N6-methyladenosine, MAPT = microtubule-associated protein tau, NK = natural killer, PC1 = principal component 1, PCA = 
principal component analysis, PSEN1 = presenilin 1, PSEN2 = presenilin 2, RF = random forest, ssGSEA = single sample gene 
set enrichment analysis, SVM = support vector machine.
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1. Introduction
Alzheimer disease (AD) accounts for a major factor resulting in 
mortality among elderly people. In 2021, there were about 6.5 
million AD patients in America.[1] The number of people who live 
with AD almost doubles every 5 years after age 65.[2] Since life 
expectancy around the world has increased steadily over the last 
century, AD has caused a great burden of morbidity and mortality 
and has become an escalating burden on society as a whole. Over 
the last decades, scientists have made tremendous progress in bet-
ter understanding AD, especially in terms of its neuropathologi-
cal alterations.[3–6] However, at present, there are still no effective 
treatment options for AD, and many key questions remain.[7]

In recent decades, increasing importance has been placed on 
the potential role of epigenetics in AD pathogenesis, as a result, 
epigenetic mechanisms have different effects on AD occurrence.[8] 
Epigenetics mostly involves reversible RNA/DNA/histone modi-
fications, and they are inheritable by means of cell division with 
no change of DNA sequence.[9] To date, >100 RNA posttranscrip-
tional modification types are identified, like N1-methyladenosine, 

2-o-dimethyladenosine, and N6-methyladenosine (m6A).[10] m6A 
is a posttranscriptional RNA modification, as well as a frequently 
seen RNA chemical modification type, which was associated with 
diverse biological activities, like early development, viral infec-
tions, and cancer.[11] At the molecular level, m6A RNA methyl-
ation is under dynamic and reversible modulation via proteins 
regulating RNA methylation, thereby causing different RNA 
fates.[12] m6A methylation is catalyzed via a core methyltrans-
ferase complex, the “writers” while m6A can also be removed 
by 2 m6A demethylases, the “erasers.” In addition, by binding to 
the m6A site, another set of proteins, the “readers,” can control 
the fate of the targeted mRNA.[13] Although m6A was recently 
suggested with critical effects on diverse disorders, ranging from 
cancer to neurodegenerative diseases to cardiovascular diseases, 
the clinical and biological significance of m6A regulators in AD is 
still not clear and needs further investigation.

The present work conducted the comprehensive evaluation of 
m6A regulators’ effects on diagnosing and classifying AD subtypes 
according to GSE132903 dataset obtained in Gene Expression 
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Omnibus database. In addition, 1 AD risk prediction model was 
constructed using 16 potential m6A regulators, as a result, this 
model was utilized for obtaining favorable patient outcomes. 
Additionally, this work identified 2 different m6A patterns and 2 
distinct m6A gene patterns of AD, and both of them have different 
immune cell infiltration and AD-related gene expression, suggest-
ing their prognostic and risk assessment significance in AD.

2. Methods and Materials

2.1. Data acquisition

GSE132903 dataset containing 98 nondemented controls and 
97 AD cases was collected in Gene Expression Omnibus data-
base.[14] Altogether 23 m6A regulators were collected in our 
enrolled dataset through differential analysis on m6A regu-
lators in AD patients compared with nondemented controls. 
Such regulators contained 6 writers (METTL3, METTL14, 
CBLL1, ZC3H13, WTAP, and RBM15B), 2 erasers (FTO and 
ALKBH5), along with 15 readers (YTHDC1, YTHDC2, FMR1, 
HNRNPC, YTHDF1, YTHDF2, YTHDF3, LRPPRC, RBMX, 
HNRNPA2B1, IGF2BP1, IGF2BP2, IGF2BP3, ELAVL1, and 
IGF2BP1).

2.2. Random forest (RF) and support vector machine (SVM) 
models establishment

RF and SVM models were built to be the training models for pre-
dicting AD prevalence. Receiver operating characteristic curves, 
boxplots of residual and the reverse cumulative distribution 
were drawn for model evaluation. RF represents the constitu-
ent supervised learning approach, which is suggested to be the 
decision tree extension. According to our results, the RF model 
was established using R software RF package (R Foundation, 
Vienna, Austria) for selecting the potential m6A regulators from 
those 23 m6A regulators, thus predicting AD risk. This work set 
mtry and ntrees as 3 and 500, respectively. On the other hand, 
SVM represents the supervised machine learning approach on 
the basis of the principle of structural risk minimization follow-
ing the statistical learning theory. This work drew all data points 
to be dots within the n-dimensional spaces (with n indicating 
m6A regulator number).

2.3. Nomogram model establishment

One nomogram model was constructed by using those screened 
m6A regulators with the use of R package “rms” function for 

Figure 1. Landscape showing 23 m6A regulators within AD. (A) Histogram showing differential analysis on 21 m6A regulators detected in AD patients com-
pared with nondemented controls. (B) Positions of 23 m6A regulators in chromosomes. * P < .05, ** P < .01, and *** P < .001. AD = Alzheimer disease, m6A 
= RNA N6-methyladenosine.
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predicting AD risk. This work also utilized a calibration curve 
for evaluating whether the model-predicted results were consis-
tent with real measurements. In addition, the present work drew 
a clinical impact curve for determining whether our nomogram 
model was of predicting ability and later conducted decision 
curve analysis to assess the benefits of our model-based deci-
sion-making to patients.[15]

2.4. Molecular subtype identification

Consensus clustering has been developed as the algorithm 
for identifying different members as well as the subgroup 
members and for verifying the rationality of clustering 
on the basis of resampling. Different m6A patterns were 
identified by consensus clustering by using distinct m6A 
regulators using the R software ConsensusClusterPlus 
package.[16]

2.5. Differentially expressed genes (DEGs) identified among 
different m6A patterns and calculation of the m6A score

This work utilized R software limma package for selecting 
DEGs among diverse m6A patterns upon P < .05 threshold. For 
quantifying m6A patterns, principal component analysis (PCA) 
was adopted for calculating m6A scores of different samples. 
Firstly, m6A patterns were distinguished by PCA. Secondly, this 
work determined m6A scores as follows, m6A score = PC1i, 
with PC1 representing principal component 1 (PC1) whereas i 
representing the DEG level.[17]

2.6. Infiltrating degrees of immune cells

This work conducted single sample gene set enrichment analysis 
(ssGSEA) for evaluating the abundance of immune cells within 
the brain tissues from AD cases and nondemented subjects. Firstly, 
this work adopted ssGSEA for sequencing gene levels within 

Figure 2. RF and SVM models establishment. (A and B) Residual distribution of the RF and SVM models. (C) ROC curves of RF and SVM models for predicting 
occurrence of AD. (D) Importance for 16 significant m6A regulators using RF model. AD = Alzheimer disease, m6A = RNA N6-methyladenosine, RF = random 
forest, ROC = receiver operating characteristic, SVM = support vector machine.
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samples for obtaining the sorting rank. Secondly, the above genes 
were searched against the input dataset, and then all gene levels 
were added. According to our assessment, this work quantified 
the levels of infiltrating immune cells within all samples.

2.7. Statistical analysis

Difference comparison among different groups was completed 
via Kruskal–Wallis tests. Two-tailed tests were conducted for 

parametric analysis, and P < .05 stood for significance. This 
work adopted R version 4.0.0 in statistical analysis.

3. Results

3.1. Landscape of the 23 RNA m6A regulators in AD

Using the limma package in R, we first identified a total of 
23 m6A regulators from the dataset using difference analysis 

Figure 3. Nomogram model construction. (A) Nomogram model construction by using 16 significant m6A regulators. (B) Predicting ability and (C) clinical impact 
of our as-constructed nomogram. (D) Our nomogram-based decision-making is beneficial for AD. AD = Alzheimer disease, m6A = RNA N6-methyladenosine.
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between AD patients and nondemented controls. Then, 16 sig-
nificant m6A regulators were further screened, and 8 of them 
(METTL14, ZC3H13, RBM15B, YTHDC1, YTHDF1, 
HNRNPA2B1, IGFBP3, and RBMX) were overexpressed in AD 
patients, while 8 of them (WTAP, CBLL1, YTHDC2, YTHDF2, 
HNRNPC, LRPPRC, ELAVL1, and FTO) displayed decreased 
expression in AD patients compared to nondemented controls 
(Fig.  1A). Furthermore, by virtue of the RCircos package, we 
visualized the chromosomal positions of these 23 m6A regula-
tors (Fig. 1B).

3.2. RF and SVM models construction

To determine possible m6A regulators that can be used for pre-
dicting the occurrence of AD from these 23 m6A regulators, 
we established RF and SVM models in AD. According to both 
boxplots of residual (Fig. 2A) and residual reverse cumulative 
distribution (Fig. 2B), RF model showed the minimum residu-
als, besides, many samples from RF model showed low residu-
als. Moreover, this work drew receiver operating characteristic 
curve for model evaluation. As revealed by area under the 
curve, RF model outperformed SVM model in terms of accuracy 
(Fig. 2C). Therefore, it was suggested that RF model performed 
well in predicting AD risk. Also, those top 16 m6A regulators 
were selected in line with importance-based gene ranking, 
which were regarded as candidate genes for further investiga-
tion. These 16 genes were YTHDF2, LRPPRC, HNRNPA2B1, 

YTHDC2, FTO, RBM15B, METTL14, YTHDF1, YTHDC1, 
CBLL1, ZC3H13, RBMX, HNRNPC, ELAVL1, WTAP, and 
IGFBP3 (Fig. 2D).

3.3. Nomogram establishment

According to these 16 possible m6A regulators, this work built 
a nomogram model with R software rms package for predicting 
AD occurrence (Fig. 3A). As revealed by calibration curves, our 
as-constructed nomogram showed high accuracy in predictabil-
ity (Fig.  3B). Based on clinical impact curve, our constructed 
nomogram had remarkable predictive power (Fig. 3C). In addi-
tion, in decision curve analysis curve, the red line was always 
above black and gray lines in 0 to 1, which suggested that the 
nomogram-based decision-making was beneficial for AD cases 
(Fig. 3D).

3.4. Two different m6A pattern identification

To identify different m6A patterns according to 16 distinct m6A 
regulators, this work used consensus clustering by R software 
ConsensusClusterPlus package, which discovered 2 m6A pat-
terns (Clusters A and B) (Fig. 4A). Cluster A contains 26 cases, 
and Cluster B contains 71 cases. According to PCA, 16 dis-
tinct m6A regulators were able to differentiate 2 m6A patterns 
(Fig.  4B). Then, we investigated differential expression of 16 
distinct m6A regulators between these 2 clusters. METTL14, 

Figure 4. Identification of 2 distinct m6A patterns. (A) Consensus matrices for 16 distinct m6A regulators at k = 2. (B) Principal component analysis for 16 
distinct m6A regulators expression profiles in the 2 m6A patterns. (C) The expression levels of 16 distinct m6A regulators within Clusters A and B. (D) Different 
immune cell infiltrating levels in Clusters A and B. * P < .05, ** P < .01, and *** P < .001. m6A = RNA N6-methyladenosine.
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WTAP, CBLL1, YTHDC2, YTHDF2, HNRNPC, LRPPRC, 
HNRNPA2B1, and FTO displayed higher levels within Cluster 
B, while IGFBP3 and RBMX displayed increased expression 
within Cluster A. Regarding the expression levels of ZC3H13, 
RBM15B, YTHDC1, YTHDF1, and ELAVL1, there were no 
significant differences between Clusters A and B (Fig. 4C). By 
applying ssGSEA, we then calculated immune cell abundances 
within brain samples of AD patients and analyzed the difference 
in immune cell infiltrating degrees of both m6A patterns. As a 
result, there were more T follicular helper cells, activated CD4 T 
cells, gamma delta T cells, CD56 bright natural killer (NK) cells, 
mast cells, regulatory T cells, immature dendritic cells, Type 1 
T helper cells, Type 2 T helper cells, and Type 17 T helper cells 
in Cluster B, while there were more CD56 dim NK cells, mono-
cytes and NK T cells within Cluster A (Fig. 4D).

3.5. Detection of 2 m6A gene patterns

To validate 2 m6A patterns described above, this work adopted 
consensus clustering for classifying AD cases into distinct 
genomic subtypes by using 397 DEGs between Clusters A and B 
(DEGs associated with m6A). Two different m6A gene patterns 
were identified (gene Clusters A and B), conforming to 2 m6A 
patterns grouped (Fig. 5A). Using a heatmap, we also illustrated 
these 397 m6A-related DEGs expression between 2 gene clus-
ters (Fig.  5B). Additionally, those 16 distinct m6A regulators 
showed diverse gene levels between 2 gene clusters, along with 
different immune cells levels (Figure 5C, D). Moreover, the dif-
ference between these 2 distinct m6A gene patterns was similar 

to the difference between the 2 m6A patterns, which suggested 
that consensus clustering was accurate in grouping.

3.6. Prognostic significance of different m6A or m6A gene 
patterns

To further investigate the prognostic significance of different m6A 
patterns, we first calculated the m6A scores in different samples 
with PCA algorithm. By comparing m6A scores between 2 clus-
ters and 2 gene clusters, we found that m6A scores of Cluster 
B and gene Cluster B increased relative to Cluster A and gene 
Cluster A (Figure 6A, B). Relationship between the m6A scores 
and different m6A patterns and different m6A gene patterns was 
visualized in a Sankey diagram (Fig. 6C). As the expression levels 
of presenilin (PSEN)-1, PSEN2, amyloid-beta precursor protein 
(APP), and microtubule-associated protein tau (MAPT) were 
reported to be closely related to the risk of AD onset,[18–20] we 
investigated the relation of different m6A patterns with MAPT, 
APP, PSEN1, and PSEN2 expression. The results demonstrated 
that the MAPT, APP, and PSEN1 expression increased within 
Cluster B and gene Cluster B samples compared with Cluster A 
and gene Cluster A, as a result, Cluster B and gene Cluster B have 
higher AD susceptibility than the other 2 clusters (Figures 6D, E).

4. Discussion
Recently, substantial efforts are undertaken to reveal the poten-
tial role of m6A in a broad range of physiological and patholog-
ical processes.[21–23] As a most common type of various kinds of 

Figure 5. Identification of 2 distinct m6A gene patterns. (A) Consensus matrices for 397 m6A-associated DEGs at k = 2. (B) Heatmap of 397 m6A-associated 
DEGs levels. (C) The expression levels of 16 distinct m6A regulators within gene Clusters A and B. (D) Different immune cell infiltrating degrees within gene 
Clusters A and B. * P < .05, ** P < .01, and *** P < .001. DEGs = differentially expressed genes, m6A = RNA N6-methyladenosine.
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modifications present on mRNA, m6A can regulate the fate of 
mRNA.[24–26] Although prior works suggest that m6A could also 
play a crucial role in neurodegenerative diseases, its potential 
role in AD is still not very clear.[27–29] Thus, this work investi-
gated m6A regulators’ effects on AD.

First, 16 distinct m6A regulators were discovered from 23 
m6A regulators by means of differential analysis in AD patients 
compared with nondemented controls. By comparing the estab-
lished RF and SVM models, this work found that the RF model 
was a better model for predicting AD risk. According to the 16 
screened significant m6A regulators, we further constructed a 
nomogram model. It was confirmed that this model has accurate 
predictability, which was beneficial for decision-making in AD 
cases.

As previous studies have shown that the consensus cluster-
ing method could be used for subgrouping analysis, we tried 
to identify different m6A patterns through this method.[16,30] 
According to those 16 distinct m6A regulators, this work per-
formed consensus clustering, and identified 2 m6A patterns 
(Clusters A and B). It is obvious that these 2 m6A patterns not 
only have distinct expression of 16 m6A regulators but also 
have distinct immune cell levels within the brain microen-
vironment of AD patients. Basically, Cluster B has increased 
T-cell infiltration compared with Cluster A, such as gamma 
delta T cells, T follicular helper cells, activated CD4 T cells, 
regulatory T cells, Type 1 T helper cells, Type 2 T helper cells, 
and Type 17 T helper cells. This result suggested that Cluster 
B is more closely involved in T-cell-mediated immunity than 
Cluster A. Considering that increasing evidence suggests that 
AD pathogenic mechanism may be restricted to the neuronal 
compartment, and is strongly related to brain immunologi-
cal mechanisms,[31–34] according to our results, different AD 
subgroups could have different immune cell infiltrations. In 

addition, we further validated these 2 distinct m6A patterns 
by dividing the AD cases as diverse genomic clusters (gene 
Clusters A and B) by using 397 DEGs between Clusters A and 
B through consensus clustering. Regarding 16 significant m6A 
regulators and immune cell infiltration, there were similarities 
in m6A compared with m6A gene patterns, which suggested 
that our grouping by consensus clustering was accurate. By cal-
culating the m6A scores of AD patients, we found that m6A 
scores in Cluster B and gene Cluster B increased compared with 
the other 2 clusters. Finally, we investigated the relations of 
different m6A or m6A gene patterns with the expression levels 
of several risk genes of AD. We demonstrated that MAPT, APP, 
and PSEN1 expression increased relative to Cluster B and gene 
Cluster B, which suggested that Cluster B and gene Cluster B 
have increased AD susceptibility compared with Cluster A and 
gene Cluster A AD patients.

Overall, this present work comprehensively evaluated the 
functions of m6A regulators in the diagnosis and subtype clas-
sification of AD. We not only established a gene model for 
predicting AD susceptibility based on sixteen candidate m6A 
regulators but also revealed 2 distinct m6A patterns and 2 dis-
tinct m6A gene patterns of AD and both of them have important 
prognostic and risk assessment value in AD.

As the database we used in this study only contains 98 non-
demented controls and 97 AD patients, more patients need to be 
included in our evaluation process for more reliable conclusions. 
In addition, even though we have demonstrated the importance 
of the 16 significant m6A regulators, we have not investigated 
the biological function of these m6A regulators in AD. Thus, 
more biochemical and molecular biology experiments need to 
be done for revealing their exact roles in the process of AD. 
Considering that this study is just a primary investigation of 
the role of m6A regulators in AD, the results from this study 

Figure 6. Prognostic significance of different m6A or m6A gene patterns. (A) Different m6A scores in Clusters A compared with B. (B) Different m6A scores in 
gene Clusters A compared with B. (C) Relation of m6A scores, m6A patterns, and m6A gene patterns as illustrated by the Sankey diagram. (D) The expression 
levels of APP, PSEN1 and PSEN2 within Clusters A and B. (E) APP, PSEN1 and PSEN2 expression within gene Clusters A and B. *P < .05, **P < .01, and ***P 
< .001. APP = amyloid-beta precursor protein, m6A = RNA N6-methyladenosine, PSEN = presenilin 1.
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definitely provide us a good reason to research deeper in this 
direction in the future.
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