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Abstract: Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein 

that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor 

protein, S100A10. Annexin A2 has been proposed to play a key role in many processes 

including exocytosis, endocytosis, membrane organization, ion channel conductance, and 

also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of 

potential binding partners and regulatory activities, it was somewhat unexpected that the 

annexin A2-null mouse should show a relatively benign phenotype. Studies with the 

annexin A2-null mouse have suggested important functions for annexin A2 and the 

heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox 

regulation. However, the demonstration that depletion of annexin A2 causes the depletion 

of several other proteins including S100A10, fascin and affects the expression of at least 

sixty-one genes has confounded the reports of its function. In this review we will discuss 

the annexin A2 structure and function and its proposed physiological and pathological roles. 
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1. Introduction 

The annexins are a family of proteins that bind anionic phospholipids in a calcium-dependent 

manner (reviewed in [1–6]). Annexins were first discovered in animal cells and were named for their 

ability to “annex” or aggregate membranes [7]. The annexins are expressed in vertebrates (ANXA), 

invertebrates (ANXB), fungi and protozoa (ANXC), plants (ANXD) and protists (ANXE). The basic 

structural domains of the annexins consist of a variable amino-terminal head domain and a 

homologous carboxyl domain. The amino-terminal domain contains sites for post-translational 

modification and protein-protein interaction and imparts each annexin with a unique function(s). The 

carboxyl core domain is typically divided into four homologous domains (eight for annexin A6) of 

about 70 amino acids (numbered as domain I–domain IV), and each of these domains consist of five  

α-helices (A–E). The AB and DE helices are connected by loops, referred to as the AB and DE loops. 

One or more of domains I–IV contains a region of homology, called the endonexin fold, which include 

the residues of the AB loop and several amino acids that flank the AB loop. The endonexin fold is 

considered to be the signature amino acid sequence for the annexins, houses the calcium-binding motif 

(KGXGT-38 residues—D/E) and is present in at least one of the four AB loops. Most eukaryotic 

species have between one and twenty annexin (ANX) genes. The defining property that distinguishes 

annexins from other calcium-binding proteins is their calcium-dependent binding to negatively 

charged cellular membranes. However, while some annexins bind membranes in a  

calcium-independent manner, other annexins can insert into membranes as monomers or hexamers [8]. 

The annexins have also been shown to participate in a variety of membrane related functions such as 

exocytosis, endocytosis, the regulation of ion transport across membranes, membrane reorganization, 

vesicular trafficking and redox regulation (reviewed in [2,3,9]).  

One member of the vertebrate annexins, annexin A2 (ANXA2) was initially identified as a substrate 

for the tyrosine kinase v-Src, the gene product of Rous Sarcoma virus which promotes cellular 

transformation [10]. Annexin A2 is present in various cells such as endothelial cells, monocytes, 

macrophages and most cancer cells. Annexin A2 can exist as a monomer or as a heterotetrameric 

complex with S100A10 (p11). The annexin A2-S100A10 complex is referred to asAIIt. The binding of 

S100A10 to annexin A2 regulates a number of functions of annexin A2, and thus the biochemical 

properties of monomeric annexin A2 and the heterotetrameric annexin A2 are distinct [11]. For 

example, the binding of S100A10 to annexin A2 reduces the calcium dependency of membrane 

interaction of annexin A2 from millimolar to micromolar levels of intracellular calcium. In contrast, 

annexin A2 plays an obligatory role in the regulation of S100A10 by protecting S100A10 from rapid 

ubiquitin-mediated degradation. Thus, S100A10 cannot exist in the absence of annexin A2 and 

depletion of cellular annexin A2 results in the rapid disappearance of S100A10 [12–17]. Recently it 

has been shown that the protein, deleted in liver cancer (DLC1) competes for the annexin A2 binding 

site in the carboxyl-terminal region of S100A10. Since the binding of DLC1 with S100A10 does not 

protect S100A10 from ubiquitin mediated degradation, S100A10 within this complex is ubiquitinated 

and degraded. This observation presents a unique mechanism for the regulation of S100A10 and 

S100A10-dependent plasmin generation at the cell surface. As presented in the graphical abstract, 

under normal conditions S100A10 protein is maintained at a steady-state level by the antagonist 

actions of DLC1 and annexin A2 on S100A10 stability. However, during oncogenic transformation, 
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DLC1 levels decrease while annexin A2 levels increase. The increased formation of annexin  

A2-S100A10 complex increases the stability of S100A10 on the cell surface resulting in increased 

S100A10 mediated plasmin generation. 

Extracellularly, annexin A2 primarily functions as a cell surface receptor for S100A10.. The 

S100A10 subunit plays a key role in maintaining vascular patency by regulating the cell surface 

generation of the proteolytic enzyme plasmin. In this regard, S100A10-dependent plasmin generation 

functions to stimulate the breakdown of fibrin blood clots (fibrinolysis) (recently reviewed in [18]). In 

addition, the annexin A2-S100A10 complex plays an important role in oncogenesis, also by regulation 

of the proteolytic activity of plasmin (recently reviewed in [19]). This cell surface plasmin activity is 

utilized by cancer cells, and tumor associated macrophages and neutrophils to digest the extracellular 

matrix and other tissue barriers. In addition, annexin A2 also interacts with extracellular receptors such 

as Toll-Like receptor 4 (TLR4) and ligands such as gastrin. Thus, AIIt-dependent cell surface plasmin 

activity empowers cancer and cancer-associated cells with the properties of invasion and metastasis. 

For example, macrophages use S100A10-dependent plasmin generation to allow movement through 

tissue barriers to sites of inflammation [20] Extensive studies of the annexin A2-S100A10 complex 

have demonstrated that the carboxyl-terminal lysine of the S100A10 subunit functions to bind 

plasminogen and the plasminogen activator, tissue plasminogen activator (tPA) which results in a 

dramatic stimulation of tPA-dependent conversion of plasminogen to plasmin. Therefore the function 

of annexin A2 in cell surface plasmin regulation appears to be indirect, i.e., annexin A2 functions to 

transport S100A10 to the cell surface and anchor S100A10 to the extracellular surface of the plasma 

membrane (reviewed in [19,21]). Additionally, cell surface annexins A2 has been suggested to 

function in signal transduction. 

2. Structure of Annexin A2 and AIIt Heterotetramer 

As described for the annexins in general, annexin A2 is composed of two major domains, the highly 

variant amino-terminal domain or head region and the conserved carboxyl-terminal core domain. The 

amino-terminal region is the site for post-translational modification, as well as ligand and protein 

interactions, while carboxyl-terminal core region contains binding site for calcium and anionic 

phospholipids, heparin, DNA and F-actin [22] (Figure 1). The carboxyl-terminal core domain consists 

of four repeat segments of 70 amino acids each called the annexin repeat. Each repeat segment 

contains five α-helices (A–E) with four of the helices oriented anti- parallel and the fifth one 

perpendicular to them [23] wound in a right-handed superhelix. The amino-terminal tail domain of 

annexin A2 contains a region of amphipathic alpha-helix, the hydrophobic surface of which binds to 

S100A10. Four hydrophobic amino acids of the amino terminus of annexin A2 (V3, I6, L7 and L10) 

form seven points of contact with helix HI of one S100A10 monomer, two points of contact with the 

hinge region of S100A10 and nine points of contact with helix HIV of the other S100A10 monomer, 

for a total of nineteen contact points between annexin A2 and S100A10 (reviewed in [19]). Moreover 

N-acetylation of annexin A2 was found to be necessary for forming the complex with S100A10.  

It was suggested that amino-terminal acetyl group stabilizes the helix dipole of annexin A2  

amino-terminus required for formation of the region of amphipathic α-helix [24,25]. 
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S100A10, the binding partner of annexin A2 belongs to a group of acidic, dimeric, small molecular 

weight, calcium-binding EF hand proteins. The calcium-binding sites in the two EF hand domains of 

S100A10 are unique among S100 proteins in that these domains are mutated such that they cannot 

bind calcium. Hence S100A10 does not undergo a calcium induced conformation change and assumes 

a conformation similar to the calcium bound states of other S100 proteins [26,27] (recently reviewed 

in [19]). The important functional domain of S100A10 is its carboxyl-terminal lysine residue which 

forms a binding site for tPA and plasminogen. Within the heterotetrameric complex S100A10 binds 

tPA and plasminogen with a Kd of 0.68 μM and 0.11 μM respectively. 

Figure 1. Domain structure of annexin A2. Annexin A2 is composed to two domains—the 

amino-terminal domain and carboxyl-terminal domain. The amino-terminal is the site for 

post-translational modifications (Ser-1–Phe-32) such as acetylation (Ser-1) and 

phosphorylation (Ser-11, Tyr-23, Ser-25). Additionally it also encompasses the redox reactive 

cysteine residue (Cys-8) and the nuclear export sequence (NES) (Val-3-Leu-12). The 

S100A10 binding site is an amphipathic α-helix, with the hydrophobic residues, Val-3,  

Ile-6, Leu-7 and Leu-10 making contacts with S100A10. The carboxyl-terminal core 

domain includes four predominantly alpha-helical domains each containing 70 amino 

acids. This carboxyl-terminal core domain contains binding sites for heparin and RNA, 

calcium and phospholipid and as well as for F-actin. 

 

Cryoelectron microscopy has suggested that each annexin A2 molecule binds to one membrane in 

the outer position of the heterotetramer, with S100A10 in the center of the complex [28]. Another 

study utilized scanning force electron microscopy to show that both annexin A2 molecules bind to the 

same membrane and the S100A10 dimer resides on the outer side of the heterotetramer thus 

facilitating interaction with other cytosolic proteins or receptors [29]. The former model possibly 
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accounts for the membrane aggregation function of the AIIt heterotetramer. More recently,  

Schulz et al. [30] used chemical cross-linking, high resolution mass spectrometry and computational 

docking analysis to propose that the annexin A2/S100A10 complex exists on the inner cell surface as 

an octamer rather than as a heterotetramer as was originally proposed by our laboratory [11]. 

The amino-terminal domain of annexin A2, also possesses both serine and tyrosine phosphorylation 

sites [31] a reactive cysteine [32] and a nuclear export sequence [33]. Annexin A2 is planar and forms 

a slightly curved disc with a concave and convex side. Calcium, phospholipid binding and membrane 

attachment occur at the convex side, whereas the amino- and carboxyl-terminal S100A10 binding site 

occurs at the opposite concave side and faces the cytosol [3,24,25]. Using site-directed mutagenesis of 

annexin A2 and structures based on the crystal structure of annexin V, it has been suggested that type 

II calcium-binding sites are formed from a loop which connects the first and second alpha-helices 

(loop AB) of the second, third and fourth domain of the protein. An acidic residue, located about  

38 residues downstream, between the fourth and fifth alpha-helices also comprises part of this  

calcium-binding site. Calcium-coordination is accomplished by 3 peptide carbonyl oxygen ligands 

from alternate loop residues in the AB loop sequence and by bidentate carboxylate oxygens from the 

distant acidic residue [34–38]. Annexin A2 also has two type III sites in the first repeat which are 

formed from three ligand-donating residues: two peptide carbonyl oxygens and a bidentate carboxylate 

group from a glutamic residue. Interestingly, only the type II calcium-binding sites play a role in 

membrane association of annexin A2. Moreover the association between annexin A2 and S100A10 

which occurs on the concave side of annexin A2 does not require calcium [11]. Annexin A2 was 

initially crystallized by Luecke’s group. Unlike previous studies the annexin A2 analyzed by this 

group contained an intact amino-terminus. They reported that annexin A2 bound seven calcium 

molecules. Crystallographic analysis by Shao et al. [39] has demonstrated that annexin A2 shows 

significant calcium-dependent heparin binding both as a monomer and as the annexin A2-S100A10 

complex. The heparin binding site was present at the convex face of the domain IV of annexin A2 and 

was formed by the two calcium-binding loops i.e., IVAB and IVDE. 

Classically annexin A2 has been described as a calcium-dependent phospholipid and membrane 

binding protein, where removal of calcium results in loss of phospholipid binding [3]. Interestingly, we 

reported that the mutagenesis and inactivation of the five calcium-binding sites (three type II and two 

type III) resulted in a protein that could bind to anionic phospholipid in the absence of calcium. Thus, 

the calcium-independent phospholipid binding reported in our mutational studies suggested that amino 

acids that form the calcium-binding sites might function to block access to phospholipid. These amino 

acids would allow access to phospholipid upon calcium-binding or due to their inactivation by 

mutagenesis [40]. 

3. Annexin A2 Binds to Anionic Phospholipids 

Annexin A2 and the annexin A2-S100A10 heterotetramer have been shown to bind to and 

aggregate vesicles consisting of the anionic phospholipids, phosphatidic acid, phosphatidylserine and 

phosphatidylinositol but not vesicles composed of phosphatidylethanolamine or phosphatidylcholine [41]. 

When bound to a lipid bilayer, monomeric or heterotetrameric annexin A2 can form a monolayer of 

protein clusters with anionic phospholipids accumulating underneath these protein clusters [42]. 
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Mounting evidence indicates that annexin A2 and AIIt are involved in organizing cholesterol-rich lipid 

rafts [43,44] and linking them to cytoskeletal proteins [45–48]. Although it was originally proposed 

that annexin A2 was a cholesterol binding protein it is now clear that annexin A2 does not bind 

cholesterol [49], but that cholesterol most likely enhances the membrane-binding affinity of annexin 

A2 by mediating the formation of anionic phospholipid-rich microdomains and/or clusters thus 

resulting in an increased local concentrations of anionic phospholipids. Since annexin A2 cannot 

effectively promote the formation of stable phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) 

microdomains in the absence of cholesterol, cholesterol may play the dual role of promoting both the 

initial membrane adsorption of AIIt and the annexin A2-mediated formation of stable PtdIns(4,5)P2 

microdomains. Monomeric and heterotetrameric annexin A2 is capable of binding to PtdIns(4,5)P2 

with high specificity and affinity. This interaction also plays a role in the organization of actin at 

membrane sites that are enriched in PtdIns(4,5)P2 [6,50]. Together with previous reports showing that 

annexin A2 binds cholesterol-containing membranes [51,52] and PtdIns(4,5)P2 is localized in 

cholesterol-rich lipid rafts in the plasma membrane [53], these results identify a role for annexin A2 in 

the formation of PtdIns(4,5)P2-rich lipid raft-like structures. However, it is unclear if annexin A2 

monomer or annexin A2-S100A10 heterotetramer is involved in these functions Nonetheless,  

Gokhale et al. [49] have shown that AIIt has at least 10 times higher affinity for PtdIns(4,5)P2-containing 

vesicles than the monomer indicating that intracellularly, AIIt and not annexin A2 monomer likely 

interacts with PtdIns(4,5)P2. 

Gokhale et al. [49] also proposed a mechanism by which the annexin A2-S100A10 heterotetramer 

induced PtdIns(4,5)P2 clustering. They proposed that the annexin A2-S100A10 heterotetramer bound 

to anionic membranes via calcium-dependent electrostatic interactions. This was followed by lateral 

diffusion and targeting of the heterotetramer to PtdIns(4,5)P2 on the membrane surface. As the 

heterotetramer molecules laterally aggregated on the membrane surface, protein-bound PtdIns(4,5)P2 

molecules also formed patches, a process which was facilitated by the membrane cholesterol. It was 

also suggested that the heterotetramer-induced PtdIns(4,5)P2 clusters would be accessible to other 

PtdIns(4,5)P2-binding proteins. This allows the formation of discrete regions of the membrane 

containing clusters of specialized proteins. Since the heterotetramer can also interact with the  

F-actin cytoskeleton, it was proposed that the movement of these PtdIns(4,5)P2 clusters would be 

severely restricted. 

Seaton and coworkers initially characterized the interaction of annexin V with anionic 

phospholipid [54]. They demonstrated that the Gly and adjacent Thr in the AB loop (Gly-281 and  

Thr-282 in Figure 2) participate in calcium and phosphatidylserine binding. They observed that the 

carbonyl oxygen of the Gly residue coordinated binding of the AB calcium while its amide interacted 

with the glycerol backbone of the phospholipid. The Thr carbonyl oxygen coordinated a second (AB’) 

calcium while its methyl group served to stabilize the calcium-binding loop and its hydroxyl group 

formed a hydrogen bond with the amino group of the phosphatidylserine. They also identified highly 

specific interactions between the serine head group of phosphatidylserine and annexin V. For example, 

the phosphoserine oxygen coordinated the AB calcium while the serine carboxylate coordinated the 

AB’ calcium. Besides linking these two calcium ions, the alpha amino group of phosphatidyl serine 

was observed to hydrogen bond with the side-chain hydroxyl of the Thr residue and to also hydrogen 

bond to the carbonyl oxygen of the distal Glu residue that forms bidentate carboxylate oxygen ligands 
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for the AB calcium. Interestingly, the region of annexin A2 that provides the binding site for 

PtdIns(4,5)P2-binding has been shown to involve Arg-273-Arg-284 [49]. This site corresponds to the 

basic nine-amino acid motif that has been identified in several F-actin- and PtdIns(4,5)P2-binding 

proteins [55]. These authors showed that Lys-278 and Lys-280, are directly involved in PtdIns(4,5)P2 

binding. These residues are located in the domain IVAB calcium-binding loop and the carbonyl groups 

of the residues adjacent to the PtdIns(4,5)P2 binding residues (Met-277, Gly-279 and Gly-281) directly 

participate in calcium-binding (Figure 2). 

Figure 2. Phospholipid binding domain of annexin A2. For simplicity only the fourth 

domain (IV) of annexin A2, encompassing the five regions of alpha-helix (helix IVA to 

helix IVE) is presented. This cartoon illustrates the location of the endonexin fold  

(Arg-272-Arg-283). The calcium and phospholipid binding sites are located in the AB loop 

connecting helix IVA to helix IVB and also include the distal aspartic acid residue. The * 

indicates the lysine residues shown to participate in binding PtdIns(4,5)P2. 

 

4. Transcriptional Regulation of Annexin A2 

Annexin A2 expression is regulated at both the transcriptional and translational levels. Specifically 

in cancer cells, it is transcriptionally regulated by growth factors such as insulin, fibroblast growth 

factor and epidermal growth factor [56]. It is also induced in cells transformed by v-src-, v-H-ras-,  

v-mos-, or SV40 [57]. For instance, c-Fos a major component of the transcription factor AP-1 induces 

annexin A2 expression in rat fibroblasts and neuronal PC12 cells [58]. It was demonstrated that 

annexin A2 expression was increased both at the transcript and protein level in vitro in chondrocytes 

and retinal endothelial cells and in a murine model of ischemic retinopathy. This was primarily through a 

Vascular Endothelial Growth Factor (VEGF)/VEGF-R2 and PKCβ pathway [59,60]. Annexin A2 is 

also up-regulated in osteoblastic cells in conditions of hypoxia, however via a VEGFR1/Neuropilin 

pathway and Src and MEK kinase pathway [59]. These pathways implicate the importance of 

transcriptional regulation in the modulation of annexin A2 levels. 

Additionally annexin A2 is subject to regulation by alternative splicing in humans, mice and rats. 

Alternative splicing produces different isoforms of annexin A2 differing in the amino-terminal regions. 

Since the amino-terminal region is involved in various functions, alternative splicing has the potential 

of playing an important role in the function of annexin A2. Human annexin A2 mRNA is alternatively 

spliced into two isoforms, one which is the canonical annexin A2 consisting of 338 amino acids and 

the other is a minor form with additional 18 amino acids at the amino-terminal end. It is possible that 

this form does not bind to S100A10, since it lacks the serine residue that is acetylated in the major 

form of annexin A2 [3,61]. Similarly, alternative splicing of annexin A2 transcripts in mice results in 
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the formation of two isoforms, one of which has low abundance. The splicing occurs in the  

5'-untranslated region (5'-UTR), in which a 70 nucleotide non-coding exon2 insertion between the 

exon 1 and exon 3 results in difference in translation and transport of the mRNA between the two 

isoforms [62]. In rats isoform 2 an additional 6 nucleotides between exon 3 and 4 translates into and 

additional serine residue in the amino-terminal region, and provides another serine phosphorylation 

site [63]. Interestingly, annexin A2 also regulates its own expression by binding to its mRNA within 

the 3'-UTR region. The binding occurs within a region of 100 nucleotides with two repeats of the 

consensus sequence 5'-AA(C/G)(A/U)G in the mRNA [64] thus regulating its own mRNA transport 

and translation. 

5. Post-Translation Modification and Regulation of Annexin A2 

The amino-terminal region contains sites for post-translational modification and serves to regulate 

the properties of both amino and carboxyl-terminal domains [2]. Thus, the amino-terminal domain has 

sites for acetylation, serine and tyrosine phosphorylation, and glutathionylation. These post-translational 

events regulate the nuclear export sequence and S100A10 binding site that are housed in the  

amino-terminal domain. Acetylation of Ser-1 in the amino-terminal domain regulates the binding to 

S100A10 [61]. These modifications of amino-terminal region typically regulate the F-actin and 

phospholipid-binding activity of the carboxyl-terminal core domain [65]. 

Annexin A2 has been shown to be poly-ubiquitinated in porcine intestinal mucosa and mouse Krebs 

II cells. Interestingly this modification does not result in proteosomal degradation of annexin A2; 

rather it promotes its enrichment in the cytoskeletal fraction. This potentially has a role in F-actin and 

lipid raft binding due to the association of the ubiquitinated form with triton-insoluble fractions [66]. 

In a recent study by Deng et al. [67] the poly-ubiquitinated annexin A2 was shown to be elevated in 

breast cancer tissue although the functional significance of this observation is not established. 

We have observed that loss of S100A10 also affects annexin A2 protein levels in a tissue-specific 

manner. Specifically, S100A10 null-mice show decreased levels of annexin A2 in the lungs, liver, 

spleen and kidneys, whereas the levels in the intestine were not affected. The mRNA levels in all the 

tissues remained unchanged. Thus, it appears that S100A10 can reciprocally regulate annexin A2 

protein stability, although the mechanism of such a regulation is not understood [19]. 

Since the annexin A2-S100A10 complex plays an important role as a cell surface plasminogen 

receptor (discussed later), its secretion and localization to the extracellular surface is an essential 

regulatory step. The absence of a signal peptide in annexin A2, suggests that it could be secreted by 

one of the non-conventional secretion pathways [68–70]. There are three potential ways by which 

annexin A2 secretion to the extracellular surface could be accomplished. First, annexin A2 is 

incorporated into multivesicular endosomes and subsequently released as exosomes. Interaction  

with S100A10 and phosphorylation of Tyr-23 is essential for this process [71,72]. Secondly,  

SNARE-mediated fusion with plasma membrane could also result in the movement of the AIIt 

complex outside the cell as seen in enterocyte brush border cells [73]. Lastly, binding of annexin A2 to 

PtdIns(4,5)P2 could promote the formation of transmembrane channel or pore analogous to secretion 

of FGF2 [70]. All these three processes require the presence of S100A10, thus suggesting that it plays 

a key role in many of the functions proposed for annexin A2. 



Int. J. Mol. Sci. 2013, 14 6267 

 

6. Phosphorylation 

Phosphorylation is an important post-translational modification that controls the activity and 

functions of various cellular proteins such as enzymes, receptors, ion channels and regulatory or 

structural proteins. Several growth factors such as platelet derived growth factor receptor; hepatocyte 

growth factor and insulin growth factor induce tyrosine phosphorylation of annexin A2. Nicotine 

stimulation of adrenal cells causes PKC activation which induces serine (Ser-25) phosphorylation of 

annexin A2 and calcium- dependent exocytosis [74,75]. One of the other critical residues in annexin 

A2 that is phosphorylated in response to several stimuli described above is Tyr-23, located in the 

amino-terminal tail region of the protein. In the initial studies during identification of annexin A2, 

tyrosine phosphorylation has shown to occur both in vivo and in vitro by pp60vsrc [10,76,77] and was 

later shown to be at Tyr-23 [31]. The phosphorylation event reduces annexin A2 binding to 

phospholipid vesicles at low calcium concentration, and thereby prevents binding to F-actin and 

bundling in vitro [65] whereas Ser-25 phosphorylation of AIIt by PKC inhibits its ability to aggregate 

phospholipid vesicles [78,79] without affecting lipid vesicle binding of the protein. Moreover PKC 

phosphorylation of annexin A2 at Ser-11 reduced its association with S100A10, [25] and caused 

dissociation of the annexin A2-S100A10 complex [80,81]. Deora et al. [71] have shown that temperature 

stress induced translocation of annexin A2 to cell surface is dependent on its association with S100A10 

as well as its tyrosine phosphorylation. Other studies have [82] has demonstrated that oncogenic v-src 

dependent annexin A2 phosphorylation plays an important role in inducing cell scattering and 

branching morphogenesis in MDCK cells by modulating cofilin-dependent actin dynamics [82]. This 

could implicate the involvement of annexin A2 in epithelial-mesenchymal transition (EMT) and tumor 

metastasis. Consistently a recent investigation by Lei Zheng et al. [83] has shown that Tyr-23 

phosphorylation of annexin A2 is required for Rho-regulated EMT process in mouse model of 

pancreatic cancer. Ser-25 and Ser-11 phosphorylation of annexin A2 also prevents the nuclear 

shuttling of the protein in prostate cancer cells [84]. Paradoxically, Eberhard et al. [33] have shown 

that tyrosine phosphorylation of annexin A2 promotes the nuclear entry of the protein. They suggest 

that such a process requires annexin A2 to dissociate from S100A10. Moreover the Hajjar group has 

shown recently that plasmin induces PKC activation and Ser-25 and Ser-11 phosphorylation of the 

annexin A2, resulting in its dissociation. This was suggested to act as a feed-back loop preventing 

further activation of plasmin on the cell surface by S100A10 [13].  

Insulin receptor tyrosine kinase also phosphorylates Tyr-23 of annexin A2 [85]. It was suggested 

that the phosphorylation of annexin A2 is an early event in insulin receptor activity and correlates with 

the initial steps in insulin receptor endocytosis and sorting. It was proposed that phosphorylation of 

annexin A2 resulted in its association with insulin receptor at early endosomes, which prevents fusion 

with lysosomes and further degradation of insulin receptor [86]. More recently it has been 

demonstrated that insulin induced Tyr-23 phosphorylation of annexin A2 in BHK cell line causes the 

remodeling of membrane associated-actin and cell detachment (loss of cell adhesion) by converting 

actin from a stationary to a more motile phenotype [87]. Collectively, reports from multiple 

laboratories suggests that phosphorylation of annexin A2 at different residues could have different 

effects on its localization and functional activation. 
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7. Redox Regulation 

Cysteine residues in proteins are one of the common amino acids that undergo reversible 

oxidation/reduction under physiologic conditions [88]. The cysteine residue acts as a redox sensor that 

regulates protein structure and function. Reactive oxygen species (ROS) which encompasses hydrogen 

peroxide (H2O2), superoxide anion (.O2
−), singlet oxygen (1O2) and hydroxyl radical (.OH) play an 

important role in various cellular processes such as proliferation, differentiation, autophagy, cell cycle 

arrest, senescence, apoptosis and necrosis [89–91]. Excessive ROS results in DNA damage, lipid 

peroxidation and irreversible protein damage and loss of function. The redox sensitive cysteines in 

proteins undergo various oxidative modifications by ROS such as formation of sulfenic acid, sulfinic 

acid, sulfonic acid, disulphide bonds and nitrosothiols derivatives [92]. Redox sensitive cysteines are 

those that exist in the Cys-S- form at neutral pH. In contrast, the Cys-SH form of cysteine is the  

non-reactive and common species present in proteins. Since the pKa value of protein cysteine residues 

is 8.5 the majority of cysteine residues exist as Cys-SH at physiological pH. ROS are rapidly eliminated 

by anti-oxidant enzyme systems such as catalase, superoxide dismutase, glutathione peroxidase, and 

peroxiredoxins. However various cellular stresses such as radiation, drugs, temperature and pH 

changes, nutrient deprivation can promote increased levels of ROS, causing cellular oxidative stress.  

In such situations, the oxidized cysteine in proteins acts as a sensor of change in redox potential and 

stimulates signaling pathways activating the cellular antioxidant responses. 

Annexin A2 has four cysteine residues—Cys-8, Cys-132, Cys-261, and Cys-334. Among these 

residues, Cys-8 and Cys-334 are present on the amino- and carboxyl- terminus respectively. These 

residues are on the convex side of the protein facing the cytoplasm. Based on crystallographic studies, 

it has been suggested that Cys-132 and Cys-261 forms disulphide linkages in the annexin A2 

monomer [93]. Cys-334 is only exposed at the surface when annexin A2 binds to plasmin, and is 

involved in cleaving disulphide bond in plasmin [94]. The function of Cys-8 is well characterized and 

suggested to be the redox sensitive cysteine. The first study to highlight this role of Cys-8 was in HeLa 

cells. Treatment with TNF-α in the presence of a glutathione analogue resulted in S-glutathionylation 

of Cys-8 of annexin A2 [95]. At that time the physiological relevance of this modification was not 

identified. Further studies showed that chemical modification of AIIt by the sulfhydryl reagent  

N-ethylmalemide or peroxnitrite results in loss of liposome aggregation of annexin A2 in vitro [96,97]. 

Our laboratory carried out a detailed investigation of reversible glutathionylation of annexin A2 and 

effect of modification on its function. In this study we showed that oxidative stress induced 

glutathionylation of Cys-8 and Cys-132 of the annexin A2 subunit of AIIt caused the loss of 

phospholipid and F-actin binding [98]. Interestingly, we showed that AIIt was also de-glutathionylated 

by glutaredoxin, which resulted in reactivation of its phospholipid and F-actin binding activity.  

In other studies, we showed that the thiols of AIIt participated in plasmin reduction promoting the 

release plasmin cleavage product, angiostatin. The reduction of plasmin at the cell surface in HT1080 

fibrosarcoma cells by AIIt resulted in the oxidation of AIIt. The oxidized AIIt was further reduced by 

thioredoxin system. This study demonstrated the role of AIIt in redox-dependent processing of 

plasminogen and also identified AIIt as a substrate for the thioredoxin system [94].  

Recently we have identified a novel redox regulatory role for annexin A2 critical for 

tumorigenesis [99]. We observed that annexin A2–null mice showed increased oxidation of liver and 
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lung tissue proteins compared to WT mice. Furthermore, proteins isolated from tumor cells depleted of 

annexin A2 also show more oxidation compared to control cells. We showed that Cys-8 residue of 

annexin A2 is an important redox-sensitive cysteine which is reversibly oxidized by H2O2 and then 

reduced by the thioredoxin system. Thus, annexin A2 possibly acts an anti-oxidant in oxidative stress 

conditions within the cells by degrading H2O2. Consequently, we have observed that annexin A2 

depleted tumor cells present with significantly increased levels of ROS, and also showed increased 

oxidation of redox sensitive cellular proteins upon H2O2-mediated oxidative stress. Furthermore 

tumors formed by subcuteaneous injection of annexin A2 depleted cells into immunocompromised 

mice showed impaired growth. Tumor growth of the annexin A2 depleted cells was rescued by 

application of the anti-oxidant N-acetyl cysteine (NAC). Taken together, these results delineate an 

important role of annexin A2 in tumor growth by functioning as a redox-regulatory protein. This study 

has significant implications in cancer chemotherapeutics and radiation therapies which largely function 

by increasing the ROS levels within a tumor cells. Annexin A2 possibly provides chemoresistance to 

tumor cells by acting as an anti-oxidant and protects cellular components against oxidative damage. 

This is consistent with reported up-regulation of annexin A2 in chemoresistant breast tumor cells [100].  

A small percentage of total cellular annexin A2 has been shown to be present in the nucleus, though 

predominantly it is found in the cytoplasm and plasma membrane [33,101,102]. The nuclear export 

sequence (NES) in annexin A2 located in the amino-terminal tail region prevents its accumulation in 

the nucleus. This sequence consists of T-2VHEILCKLSL-12 and is similar to other reported NES  

L-(X1-4)-L-(X2)-L-(X)-L, where L is usually a hydrophobic residue. The NES also overlaps the 

S100A10 binding sequence (VHEILCKL). Since it is unlikely that the hydrophobic residues that 

participate in S100A10 binding could also participate in nuclear exclusion it was anticipated that the 

annexin A2-S100A10 complex would accumulate in the nucleus and not be exported. However, we 

have observed that although annexin A2 is easily detected in the nucleus, S100A10 does not appear to 

be present. It is unclear how annexin A2 is transported into the nucleus as the protein does not possess 

a recognizable nuclear import sequence. It is reasonable to propose that the binding of S100A10 

prevents the transport of annexin A2 into the nucleus. 

The function of nuclear annexin A2 is not clearly understood though it has been shown to bind 

RNA [103] and has also been suggested to participate in primer recognition protein complex that is 

involved in enhancing DNA polymerase α activity [104]. We have recently shown that the nuclear 

accumulation of the annexin A2 monomer plays a role in protecting the cells from DNA damage 

during oxidative stress [105]. Rapid nuclear accumulation of annexin A2 occurred in response to DNA 

damaging agents such as gamma radiation, UV radiation, chromium VI, and etoposide and under 

conditions of H2O2- mediated oxidative stress. Importantly the nuclear accumulation was mediated by 

inactivation of the NES and was independent of oxidation of the Cys-8 residue in annexin A2. This 

suggests that the annexin A2 which accumulates in the nucleus has a reactive thiol (Cys-8) which is 

capable of reacting with ROS such as H2O2. Moreover the annexin A2 depleted cells are more 

sensitive DNA damage as seen by the formation of phosphorylated H2AX-53BP1 foci in the nucleus. 

Consistent with our study, Weber’s group revealed that annexin A2 translocates to the nucleus in 

human organotypic culture and murine epidermal cells on exposure to X-radiation. In this investigation, 

annexin A2 depleted cells show increased sensitivity to TNF-α induced apoptosis, [106]. The redox 

function of annexin A2 may be relevant in designing novel can cancer therapeutics that are aimed at 
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increasing the effectiveness of radiation and chemotherapeutics which largely function by increasing 

ROS levels. 

8. Functions of Annexin A2 

8.1. F-Actin Binding 

Complexes of the annexin A2 monomer and heterotetramer and actin was first demonstrated in 

proteins purified from brush borders of intestinal epithelial cells [107], and in A431 cells and 

fibroblasts [108]. Subsequent studies by our laboratory showed that AIIt is a high affinity F-actin 

binding protein [109]. This high affinity binding occurred in the presence of calcium and in a 

cooperative manner. At physiological levels of calcium, F-actin binding to AIIt resulted in F-actin 

bundling. Although bundling was observed for the monomer, it was to a lesser extent and required a 

significantly higher concentration compared to AIIt [109]. A synthetic nonapeptide which corresponds 

to residues 286–294 of annexin A2 resulted in the loss of the calcium-dependent F-actin bundling, but 

not binding [110]. This suggested that binding of F-actin to AIIt results in a conformation change 

which enhances AIIt’s ability to interact with other AIIt molecules leading to bundling. The F-actin 

bundling activity of AIIt is decreased by Tyr-23 phosphorylation of AIIt [65]. Further to this, our 

laboratory also mapped the F-actin binding region of AIIt to the carboxyl-terminal amino acid residues 

LLYLCGGDD [111]. The F-actin bundling activity of AIIt is decreased by Tyr-23 phosphorylation of 

AIIt [65]. More recently it has been shown that the monomer is able to bundle pre-formed F-actin 

filaments and is also capable of regulating the growth of newly formed filaments [112]. Interestingly, 

although AIIt is an actin bundling protein it does not play a role in stress fiber or filopodia  

formation. It is rather associated with dynamic membrane cytoskeletal structures such as rocketing 

macropinosomes [47] and phagosomes [113]. Thus, depletion of annexin A2 results in the enrichment 

of stress fibers and loss of dynamic ruffling physiology [112]. 

Formation of actin networks is regulated by proteins such as Arp2/3 [114], WASP, WAVE and 

SCAR. These proteins are in turn regulated by small GTPases such as Rho, Rac1 and Cdc42. Annexin 

A2 was purified from complexes containing Rac1 at actin rich cell-cell contacts [115]. Additionally, 

annexin A2 associates with AHNAK at the cytosolic surface of the plasma membrane of cell-cell 

contacts in MDCK cells [45]. In another example annexin A2 was associated in submembranous actin 

during clustering of the hyaluronan receptor CD44 [44]. Actin-dependent transport of secretory 

vesicles to the apical membrane also required the presence of annexin A2 in epithelial cells [116].  

In summary, annexin A2 acts as a scaffold protein which links actin cytoskeleton and various 

membrane microdomains or recruits factors for actin remodeling events. 

8.2. Exocytosis and Endocytosis  

Very early studies using electron microscopic analysis had shown that annexin A2 forms  

cross-links between secretory granules and the plasma membrane in stimulated neuroendocrine cells. 

Nonetheless, the involvement of annexin A2 in exocytosis remained controversial. For example 

introducing an inhibitory peptide competing for interaction of annexin A2 with S100A10 in 

chromaffin cells had no effect on secretion [117,118]. Moreover, expression of a chimeric protein that 
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causes aggregation of annexin A2 in the cytosol did not affect secretion in PC12- adrenal medulla 

cells [119]. In contrast, a synthetic peptide corresponding to the amino-terminal region harboring the 

PKC phosphorylation site in annexin A2 was capable of inhibiting catecholamine secretion in 

chromaffin cells [120]. Moreover PKC dependent phosphorylation of annexin A2 was required for 

generating a secretory response by stimulated chromaffin cells [75]. These results suggest the 

requirement for the PKC phosphorylation in annexin A2-mediated secretion. AIIt may play an 

important role in exocytosis not only by forming and stabilizing lipid microdomains in the plasma 

membrane, but also by organizing the exocytotic machinery in the chromaffin cells [121]. Through its 

ability to bind actin, AIIt also participates in the formation membrane cytoskeletal complexes which 

control lipid raft assembly and the formation of functional exocytotic sites.  

As described earlier, plasma membrane-associated annexin A2 binds PtdIns(4,5) P2-containing 

vesicles. This is important since PtdIns(4,5)P2 forms lipid microdomains in the plasma membrane in 

close proximity to SNARE complexes during exocytosis and endocytosis [122]. In fact, annexin A2 is 

targeted to the endosomal membrane/compartment, through a specific targeting sequence in the  

amino-terminal interaction domain [123]. Interestingly, this endosomal association occurs at membrane 

sites characterized by high cholesterol content [46,52]. Some reports have suggested that annexin A2 

physically interacts with cholesterol forming cholesterol rich platforms on early endosomes, which 

also involves interactions with other proteins. This property of annexin A2 is independent of the 

presence of S100A10, suggesting that S100A10 is not essential for endosome binding.  

Cruetz et al. [124] have shown that annexin A2 also plays a role in clathrin mediated endocytosis. 

Annexin A2 interacts with the μ2 subunit of clathrin assembly proteins AP2 via the YXXφ  

(Y—Tyr 23, X—variable residue, φ—bulky hydrophobic residue) sequence present in the  

amino-terminal region of annexin A2. Interestingly, PtdIns(4,5) P2 which bind to annexin A2, also 

regulate the binding of YXXφ motifs to μ2. A recent investigation of APPL endosomes revealed that 

annexin A2 interacts with the two Rab5 effector proteins APPL1 and APPL2 [125]. Rab5 a GTPAse is 

a dominant regulator of early steps of endocytosis [126]. As a component of APPL endosomes, 

annexin A2 is required for endosomal localization of APPL2 along with Rab5, since loss of annexin 

A2 results in loss of APPL proteins and APPL endosomes [125]. Unfortunately whether annexin A2 

links actin to APPL proteins could not be established by these studies since loss of annexin A2 leads to 

direct disruption of APPL endosomes.  

Another aspect of annexin A2 involvement in endocytosis is mediated by its property of binding to 

actin in a calcium dependent manner. Annexin A2 could potentially serve as a link between actin 

cytoskeleton and clathrin-coated vesicles. Moreover annexin A2 can also link different domains of 

early endosomes via calcium independent cholesterol binding as described previously. However, 

Valapala and Viswanatha have described the calcium-dependent cell surface trafficking of annexin A2 

independent of clathrin [72]. Phosphorylation of annexin A2 at Tyr-23 was shown to be essential for 

stabilization of lipid raft complexes and its subsequent association with the endosomal system.  

Exosomes are small membrane (30–100 nm) vesicles secreted by cells of hematopoietic origin  

and epithelial cells by fusion of the late Multivesicular Endosomes (MVE) with the cell 

membrane [127,128]. Very early studies using mass spectrometry had identified annexin A2 as an 

important component of exosomes in dendritic cells [128], but precise mechanism of secretion of 

annexin A2 was not established. Valapala and Viswanatha demonstrated that annexin A2 was secreted 
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in exosomes in a raft associated manner [72]. They showed that in the ionophore stimulated NIH3T3 

cells, annexin A2 is secreted in the exosomes through MVEs and these can then be transferred from 

one cell to another. Although this study did not highlight the importance of S100A10 in exosomal 

secretion of annexin A2, recent studies by Fang et al. [129] suggest that annexin A2 is associated to 

the exosomal secretion pathway in a S100A10 dependent manner in lung epithelial cells. In this 

investigation, stimulation of lung epithelial cells by IFN-γ resulted in increased surface translocation of 

annexin A2 and S100A10 primarily by enhanced expression of S100A10 via the JAK2/STAT1 

pathway. They observed increased secretion of annexin A2 in the exosomes in IFN-γ treated cells, 

which was markedly reduced in cells where S100A10 expression was silenced. Together these studies 

delineate mechanism of annexin A2 secretion into exosomes. Exosomes function in the immune 

system and also promote intercellular signaling [127]. Tumor-derived exosomes have also been 

identified and are thought to promote tumor cell growth and metastasis [130]. Interestingly annexin A2 

has been identified in melanoma exosomes using proteomics [131,132]. It was suggested that exosomal 

annexin A2 could serve as a diagnostic tool and as a biomarker in cancer progression and prognosis.  

Although S100A10 may not be required for annexin A2-mediated endosomal association, S100A10 

plays an important role in mobilizing annexin A2 for various functions in membrane dynamics.  

It mediates the translocation of annexin A2 to the cell surface in some cell types [71]. It also targets 

annexin A2 to the cortical cytoskeleton and enhances annexin A2 dependent F-actin bundling [133–135]. 

In a more recent investigation, Sylvette Chasserol-Golaz’s group has shown that S100A10 physically 

interacts with the VAMP2 protein in vitro and at the plasma membrane in adrenergic chromaffin cells. 

S100A10 also forms clusters along with VAMP2 and syntaxin to which annexin A2 translocates [136]. 

Annexin A2 translocates to the membrane and forms a tetrameric complex with S100A10 in 

secretagogue-stimulated cells. It is suggested that AIIt plays an important role in exocytosis as a 

potential binding partner for SNARE proteins and also by targeting these proteins to membranes. 

8.3. Epithelial and Endothelial Cell Polarity 

In response to external stimuli, annexin A2 is capable of promoting epithelial cell polarity by 

orchestrating two processes, namely cell-cell adhesion and formation of adherens junctions. Since 

annexin A2 regulates actin dynamics, and weakly interacts with PtdIns(3,4,5)P3, it is plausible to 

consider annexin A2 as an important modulator of cell-cell adhesion. In fact, annexin A2 recruits and 

regulates the activation of Rho and Rac1 GTPases [137,138] both of which are essential for initiating 

actin cytoskeleton reorganization during cell-cell adhesion [139,140]. Additionally, it interacts with 

AHNAK and recruits it to cholesterol-rich microdomains which are also essential for regulation of 

actin cytoskeleton [45]. 

AIIt complex also functions in adherens junction formation in epithelial [141] and endothelial 

cells [142] by its association with epithelial E-cadherin and endothelial VE-cadherin. Annexin A2 

depletion ablates E-cadherin recruitment to the adherens junction without affecting the formation of 

tight junctions. Loss annexin A2 expression in endothelial cells results in instability of adherens 

junctions and absence of VE-cadherin at these junctions. Extracellular annexin A2-S100A10 complexes 

are also shown to be involved in cell membrane bridging and tight junction formation [143]. 
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8.4. mRNA Binding 

Annexin A2 is one of several proteins found in mRNP (ribonucleoprotein) complexes and may 

function as a nuclear scaffold protein for recruitment of other proteins. The function of annexin A2 in 

binding mRNA was first demonstrated in rous sarcoma virus transformed and normal cells, where  

10%–15% of annexin A2 was shown to associate with ribonucleoparticles (RNPs) [101]. 

Immunoprecipitation of annexin A2 from UV-irradiated cultured cells revealed an association of 

annexin A2 with RNA as a part of RNP complex. Subsequently studies have shown that annexin A2 is 

found in the nucleus in association with Z-DNA [144], and as a part of primer recognition complex 

which stimulates DNA polymerase α activity [102,104]. Moreover the cytoskeleton-associated annexin 

A2 was shown to localize with mRNA complexes in the cytoskeleton [145]. The presence of NES in 

annexin A2 [33] further suggests that it could play an important role in RNA binding, transport and 

translation. Comprehensive studies in our laboratory further established that annexin A2 binding to 

mRNA is a calcium-dependent event. In fact, annexin A2 specifically binds to oncogenic  

c-myc mRNA and regulates its translation, as expression of annexin A2 showed enhanced levels of  

c-myc protein [103]. Interestingly, this mRNA binding function was observed only for monomeric 

annexin A2. By mapping the mRNA binding site of annexin A2 to the helices C-D in its domain IV, 

Vedeler’s group recognized that this motif is unique among the previously identified RNA binding 

motifs (such as the RNP motif, the arginine-rich motif, the RGG box, the KH motif, the double 

stranded RNA-binding motif, and the zinc finger-knuckle motif) [146]. Specifically, the positively 

charged polar residues in this domain that are easily accessible and solvent exposed are involved in 

RNA binding. The initial interactions with RNA are suggested to be non-specific electrostatic 

interactions between lysine residues in annexin A2 and the negatively charged phosphate residues in 

the mRNA backbone. Further stabilization of the interaction is promoted by the conformation change 

in annexin A2 upon to calcium-binding [103,146]. The annexin A2 binding site on the mRNA of  

c-myc and annexin A2 involves an 80–100 nucleotide sequence in the 3'-UTR region of the mRNA. 

The consensus sequence for mRNA binding is 5'-AA(C/G)(A/U)G, which is repeated three times in 

annexin A2 mRNA and only once in c-myc mRNA [64,147]. Moreover the binding not only depends 

on the consensus sequence but also on the presence of higher order secondary structure of the mRNA 

such as a pseudoknot structure preceding the consensus sequence. Post-translational modification of 

annexin A2 affects its RNA binding. Annexin A2 heterotetramer failed to bind to RNA when it was 

bound to phospholipids, whereas F-actin binding did not interfere with mRNA binding. F-actin-mRNA 

interaction is well described functioning to anchor the mRNA in the cytoskeleton during the final 

stages of mRNA transport [148]. Thus, annexin A2 can act as a scaffolding protein for F-actin mediated 

stabilization of mRNA transcripts in the cytoskeleton hence playing a role in post-transcriptional 

regulation of gene expression. 

8.5. Plasminogen Receptor—S100A10, and Not Annexin A2, Binds Plasminogen and tPA and 

Regulates Plasmin Generation 

Plasminogen receptors play a crucial role in regulating plasmin activation on the cell surface. The 

inactive zymogen plasminogen is converted to the active serine protease plasmin by the plasminogen 
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activators, tissue plasminogen activator (tPA) and urokinase plasminogen activators (uPA). The 

presence of plasminogen activator inhibitors (PAI-1 and PAI-2) and plasmin inhibitor α1-antiplasmin 

regulates plasmin activity to prevent inappropriate proteolysis on the cell surface. Plasmin activation is 

involved in many physiological and pathological processes including fibrinolysis and tumor cell 

invasion. This is mediated at the surface of the endothelial cells and tumor cells which involves the 

dissociation of extracellular matrix and basement membrane The rate of plasmin production is 

significantly accelerated by the presence of plasminogen receptors on the cell surface, primarily by 

binding plasminogen and also by co-localizing the plasminogen activators tPA and uPA [149–151]. 

One key feature of majority of plasminogen receptors is the presence of a carboxyl-terminal lysine 

residue. This lysine residue interacts with the lysine-binding (kringle) domains of tPA and plasminogen 

and thereby participates in plasminogen binding and activation at the cell surface [152]. Annexin A2 

was originally identified as a plasminogen receptor whose binding to plasminogen was blocked by  

pre-treatment with carboxypeptidase B [153]. Since carboxypeptidase B removes carboxyl-terminal 

lysines and annexin A2 does not possess a carboxyl-terminal lysine, it was speculated that a new 

carboxyl-terminal lysine was generated by a post-translational event, namely, through cleavage at  

Lys-307-Arg-308 by an unidentified protease at the cell surface [153]. Nearly twenty years later, the 

presence of a proteolytically processed annexin A2 has not been demonstrated at the cell surface and 

rigorous studies, while successful at identifying full-length annexin A2 at the cell surface, have been 

unsuccessful in the identification of the proteolyzed annexin A2 [18,19,21]. For example, we have 

demonstrated that only the full length annexin A2 is present on the surface of thioglycollate-elicited 

macrophages. This experiment involved injecting the peritoneal cavity of mice with thioglycollate, an 

inflammatory stimulus. This was followed by collecting the macrophages that migrated from the blood 

to the peritoneal cavity in response to the inflammatory stimulus. Since in order for macrophages to 

transverse tissue barriers they must generate plasmin, the thioglycollate model system is considered the 

gold standard for examining the role of proteases in cell migration in vivo. Examination of the cell 

surface annexin A2 of the thioglycollate elicited macrophages revealed that annexin A2 was not 

proteolysed. This established that the proposed annexin A2 post-translational proteolytic cleavage 

event does not occur in vivo [154]. The annexin A2 protein used in previous experiments was eluted 

from polyacrylamide gels as a 40 kDa band and the possibility that this annexin A2 was denatured and 

subsequent results artifactual, must be now considered. Consequently, it has been clearly established 

that intact annexin A2 does not bind plasminogen [155,156], and annexin A2 is not cleaved in vivo.  

It is now accepted that annexin A2 is not a plasminogen receptor.  

The role of annexin A2 as a tPA-binding protein is more perplexing as it was originally 

demonstrated that the Cys-8 residue of annexin A2 formed the binding site for tPA. However, 

subsequent studies that utilized mutagenesis of the amino acid residues in the vicinity of Cys-8 

demonstrated that the residues that flanked Cys-8 had no influence on the binding of tPA to annexin 

A2. Simply interpreted, these experiments establish that tPA forms a covalent disulfide bond with 

annexin A2 in vitro [157]. However, the binding of tPA to cells is known to be reversible and 

dependent on a carboxyl-terminal lysine on the tPA receptor [158,159], which contrasts with the 

formation of an irreversible covalent disulfide bond between tPA and annexin A2. Furthermore, the 

interaction between tPA and its binding sites on the cell surface are known to involve the finger and 

kringle-2 domains [160–162]. In fact, the kringle-2 domain of tPA binds to lysine Sepharose and to 
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plasminogen activation cofactors (e.g., fibrin, denatured albumin) [163,164]. This interaction can 

blocked by the carboxyl-terminal lysine mimetic, ε-aminocaproic acid [163] indicating that this 

domain is key in the interaction of tPA with its cellular receptors. In addition, tPA only contains one 

free thiol which is present in the EGF domain which is capable of forming a disulfide bond with 

annexin A2 [165]. However, the EGF domain of tPA does not participate in binding to the cell surface 

and it is therefore most unlikely that annexin A2 forms a disulphide linkage with this residue in vivo. 

Lastly, a recent study has shown that tPA binding to the cell surface of endothelial cells does not  

co-localize with annexin A2, suggesting that annexin A2 is not a tPA receptor on these cells [162].  

As discussed previously, annexin A2 can exist in the cells as a monomer, or a heterotetramer in 

complex with S100A10. Interestingly in cell types such as endothelial, epithelial, and MDCK cells 

most of the annexin A2 is present on the cell surface as the heterotetramer form AIIt [107,166,167]. 

Moreover when annexin A2 was specifically down-regulated in MDCK cells by siRNA, both annexin 

A2 and S100A10 protein levels were significantly reduced in these cells [45]. This is consistent with 

the fact that annexin A2 protein has been shown to regulate the expression of S100A10 by  

post-translational modification, primarily by stabilizing S100A10 on the cell surface [13–15,168,169]. 

Interestingly, down-regulation of S100A10 by siRNA did not result in decrease in annexin A2 protein 

expression [155,170]. More recently our laboratory has used human microvascular endothelial cell line 

(TIME – telomerase immortalized microvascular endothelial cell), to deplete protein levels of both 

annexin A2 and S100A10 by shRNA. S100A10-depleted cells showed a significant decrease in 

plasminogen binding and plasmin generation, in the presence of identical cell surface level of annexin 

A2. Depletion of annexin A2 in TIME cells resulted in similar losses in plasminogen binding and 

plasmin generation as in S100A10-depleted cells [171]. This is likely due to the loss of S100A10 in 

cells depleted of annexin A2. Homozygous annexin A2-null mice show increased deposition of fibrin 

in the blood vessels and incomplete clearance of injury induced arterial thrombi [172]. These authors 

suggested that annexin A2 played an important role in fibrinolysis and plasmin generation. However, 

as discussed these studies did not take into account the critical fact that annexin A2 knock-out also 

results in concomitant loss of S100A10 in these mice. In contrast, our laboratory observed enhanced 

accumulation of fibrin in the tissues of the S100A10-null mice. These S100A10-null mice had 

significantly lower rates of fibrinolysis suggesting a decreased level of plasmin generation by the 

microvasculature that was devoid of S100A10 but that contained wild type levels of annexin A2 [171].  

Several investigators have previously reported that annexin A2 is required for plasmin generation 

and matrix invasion by macrophages [173,174]. However, we have recently established that  

S100A10, and not annexin A2, is responsible for not only promoting the reported macrophage 

plasminogen-mediated matrix invasion and degradation but also the infiltration of tumor-promoting 

macrophages into tumor sites [20,154]. Moreover, we have shown that enhanced generation of plasmin 

exhibited by promyelocytic leukemic cells (NB4), which was originally ascribed to annexin A2 [173], 

was in fact misinterpreted and can now be attributed to S100A10. 

Thus rigorous scientific analysis suggests that annexin A2 plays an important role in regulating 

plasmin activity not by acting as a direct plasminogen receptor but by stabilizing and transporting 

S100A10 to the cell surface where it serves as a cell surface receptor for S100A10 (Figure 3). 
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Figure 3. Experimental model of plasmin regulation by cell surface annexin A2 and 

S100A10. The heterotetrameric complex consists of two copies of annexin A2 and one 

copy of the S100A10 dimer. AIIt binds the tissue-plasminogen activator tPA and 

plasminogen at the carboxyl-terminal lysine residue of the S100A10 subunit. The annexin 

A2 subunit does not bind tPA or plasminogen but serves as cell surface receptor for 

S100A10. The urokinase-plasminogen activator is bound to its receptor (uPAR) and forms 

the uPA/uPAR complex that colocalizes with AIIt. The co-localization of the plasminogen 

activators and plasminogen by AIIt results in accelerated cleavage of plasminogen into 

plasmin. Plasmin activates pro-MMPs (matrix metallo-proteases) into active MMPs and 

further activates pro-uPA into active uPA. 

 

9. Role of Annexin A2 in Diseases 

As described, annexin A2 is a multifunctional protein involved in gene regulation, cellular 

transformation, regulating membrane dynamics, cytoskeletal re-arrangement, and fibrinolysis. Thus, it 

is not surprising that it has been implicated in a number of diseases. Here, we will describe in detail the 

role of annexin A2 in cancer progression, inflammation and anti-phospholipid syndrome (APS). 

9.1. Annexin A2 in Cancer Progression 

Accumulating evidence delineates a correlation between the deregulation of annexin A2 expression 

and tumorigenesis in many cancers but disregard the possible role of S100A10. Nevertheless, annexin 

A2 has been suggested to be capable of modulating key events in tumor progression mainly those 

involving invasion, metastasis, and drug resistance (Table 1). In fact, annexin A2 is proposed as a 

potential diagnostic/prognostic marker for prediction of tumor malignancy, metastatic recurrence and 
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patient survival. Annexin A2 expression in cancer is relatively paradoxical as it may act as a tumor 

suppressor or as an oncogene depending on the type of cancer. This not only reflects the lack of 

complete understanding of annexin A2 regulation in tumors but also the fact that annexin A2 

deregulation is probably affecting gene expression or is simply a bystander effect as a consequence of 

change in expression of major cancer-regulating genes. Gou et al. [175] reported that annexin A2 

depletion by shRNA results in the deregulation of expression of 61 genes in type-II alveolar cells. In 

contrast, microarray analysis by our laboratory showed that S100A10 depletion only affected S100A10 

mRNA levels and has no effect on gene expression (unpublished data). Since annexin A2 is a redox 

protein it is possible that oncogenic changes in annexin A2 may be related to changes in cellular redox 

status, particularly since oncogenes are known to increase intracellular levels of H2O2, which in turn is 

known to increase annexin A2 levels [99]. On the other hand, S100A10 acts as the effector molecule 

whose activity can be determined by the levels of expression of annexin A2. Since S100A10 is a  

well-documented plasminogen receptor it is likely that oncogenic stimulation of annexin A2 levels 

also serve to increase S100A10 levels. This then has a direct impact on cell surface plasmin generation 

and proteolytic activity of cancer cells  

Many studies have attributed the role of plasmin generation and cancer cell invasion to annexin A2 

(discussed next). These studies must be re-examined in light of the recent findings about the 

relationship between annexin A2 and its binding partner S100A10. Nonetheless, annexin A2 can be an 

indirect contributor to plasmin generation as it stabilizes S100A10 which in turn directly participates in 

binding to tPA and plasminogen and enhancing plasminogen activation. Once cleaved, plasminogen is 

converted into its active proteolytic form plasmin. Plasmin not only mediates the hydrolysis and 

remodeling of the extracellular matrix (ECM) but also activates other key matrix metallo-proteases 

(MMPs) such as MMP-9 and cathepsin B [176,177] (Figure 3). Importantly, matrix remodeling is an 

essential step in tumor cell mobilization and often exploited by tumors to promote invasion.  

Plasmin-mediated ECM proteolysis allows tumor cell invasion into surrounding tissues, basement 

membrane degradation, and transmigration into circulation leading to distant-site metastasis. MMP-9 

activation also contributes to tumor angiogenesis by releasing sequestered VEGF from the ECM [178].  

The role of annexin A2 in cellular transformation was first identified by Erikson and Erikson using 

fibroblasts which were transformed by the avian sarcoma virus-transforming gene product (pp60src). 

The transformation was mediated by pp60src-specific phosphorylation of annexin A2 [10]. In 1993, 

Chaing et al. [179] further elucidated that annexin A2 expression is regulated by the cell cycle 

suggesting a potential role of annexin A2 in cell proliferation. Both annexin A2 mRNA and protein 

levels increased in G1 reaching a maximum during early S phase.  

9.2. Annexin A2-S100A10 Complex and Not Monomeric Annexin A2 Mediates Invasion, Metastasis 

and Drug Resistance in Breast Cancer and May Act as Pathological Predictor 

Annexin A2 is consistently over-expressed in patients with both invasive ductal mammary 

carcinoma and ductal carcinoma in situ (DCIS). In contrast, it is undetectable in normal and hyperplastic 

breast ductal epithelium [180] suggesting a role of annexin A2 in malignancy and tumor invasiveness.  

Accumulating evidence suggest that invasiveness of breast cancer is maintained through enhanced 

plasmin generation. Treatment with angiostatin inhibits breast cancer growth and lung metastasis 
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formation via binding to annexin A2 and inhibiting annexin A2-mediated plasmin generation [181].  

In fact, annexin A2 mediates tPA-dependent plasmin generation (probably through S100A10) and 

promotes the in vitro migration of MDA-MB-231 breast cancer cells [182]. The AIIt tetramer is  

over-expressed on the surface of these cells which may justify their highly invasive nature. Annexin 

A2 expression also correlated with increased recruitment of inflammatory cells into tumor sites and 

with elevated neoangiogenic activity in breast cancer patients [182]. Interestingly, S100A10 expression 

on tumor-associated macrophages (TAMs) is required for their recruitment to primary tumor sites in a 

lewis lung carcinoma (LLC) mouse model. In fact, S100A10-null mice develop smaller and less 

angiogenic tumors due to failure of recruitment of these macrophages [20]. This suggests that the 

reported role of annexin A2 in the early activation of the “angiogenic switch” is probably mediated 

through S100A10 and not annexin A2. In addition to its interaction with S100A10, annexin A2 also 

directly interacts with the glycoprotein tenascin C (TNC). TNC supports the establishment of the  

pre-metastatic niches and promotes breast cancer metastasis into lungs. This direct annexin A2-TNC 

interaction at metastatic sites might also drive metastatic cell proliferation through annexin A2 

signaling [183]. The pathway of annexin A2-mediated cell proliferation remains largely unclear. 

Annexin A2 is also potentially involved in promoting breast cancer resistance to chemotherapeutic 

anthracyclines and taxanes. Quantitative proteomic analysis revealed 5.4-fold and 1.8-fold up-regulation 

of annexin A2 in doxorubicin- and paclitaxel- resistant MCF-7 cells [184]. Reduction in annexin A2 

expression in doxorubicin-resistant MCF-7 cells led to slower proliferation and significantly decreases 

their invasive capacity [184]. Notably, annexin A2 reduction failed to restore doxorubicin sensitivity 

suggesting that annexin A2 is not the sole contributor to resistance in this cell line. 

Clinically, annexin A2 may act as a predictor of pathological response to neoadjuvant chemotherapy 

in advanced breast cancer patients. Pre-treatment annexin A2-positive patients are predicted to have 

poor pathological response upon chemotherapy [100]  

9.3. Annexin A2 Promotes Invasion and Metastasis in Pancreatic Ductal Adenocarcinoma (PDAC) 

and Is Predictive of Post-Operative Recurrence and Patient Survival 

Pancreatic ductal adenocarcinoma (PDAC) is responsible for over 90% of pancreatic cancers with a 

5-year survival rate of 5%. The high mortality rate of PDAC is mainly caused by the enhanced 

metastatic capacity of the disease combined with lack of early diagnosis. Proteomic analysis of PDAC 

patient samples revealed that annexin A2 is overexpressed in 88.6% of tumor tissues and only 34.2% 

of non-tumorous pancreatic tissues. Immunohistochemical (IHC) analysis of early pancreatic lesions 

showed that annexin A2 is only found in 36% of PanIN-1A (Pancreatic intraepithelial neoplasia) and 

19% of PanIN-1B non-invasive lesions. In contrast, annexin A2 was expressed on more than 80% of 

the more invasive lesions (PanIN-2 and PanIN-3) suggesting that annexin A2 might be a contributor to 

the progressive invasiveness of PDAC [185]. However, this increased invasiveness is most likely to be 

mediated by S100A10, and not annexin A2, since S100A10 expression is also highly up-regulated in 

PanIN lesions [186]. Furthermore, in the invasive lesions, annexin A2 is primarily localized to the cell 

surface with a weak cytoplasmic signal predicting the involvement of surface plasmin-mediated 

invasion of PDAC [187,188]. Annexin A2 blockade by shRNA or anti-annexin A2 antibodies inhibited 

invasion of pancreatic cell lines (human Panc 10.05 and mouse Panc02) and reduced liver metastasis in 



Int. J. Mol. Sci. 2013, 14 6279 

 

a PDAC mouse model [83]. The effect of annexin A2 depletion on S100A10 expression is not reported 

in this paper and is probably responsible for the loss of invasiveness in these cell lines.  

The cell surface localization of annexin A2 and its invasion-promoting function require the 

phosphorylation of the Tyr-23 residue [83]. This phosphorylation event is likely to be critical for 

S100A10 stabilization and expression on the cell surface. 

Epithelial mesenchymal transition (EMT) is a process through which epithelial cells acquire a 

motile phenotype which is essential for embryonic development and tissue remodeling. Tumors exploit 

the plasticity of epithelial cells to undergo EMT in order to promote invasion and metastasis.  

Rescher et al. [87] identified that Tyr-23 phosphorylation of annexin A2 is critical for the active 

remodeling of membrane-associated actin cytoskeleton through Rho/ROCK signaling pathways [87]. 

This remodeling allows tumor cell motility and adhesion both of which are characteristic of EMT. 

Expectedly, shRNA blockade of annexin A2 results in inhibition of TGFβ-induced Rho-mediated 

EMT of PDAC cells [83]. 

In addition to its binding partner S100A10, annexin A2 interacts with multiple splice variants of 

TNC. The latter is a hexameric anti-adhesive matrix glycoprotein that interacts with other ECM 

proteins (fibronectin), surface receptors (annexin A2, cell adhesion integrin) and syndecan membrane 

proteoglycans all of which are reported to be overexpressed in pancreatic cancer [183,185]. Annexin 

A2-TNC interaction promotes mitogenesis, migration, and loss of focal adhesion in endothelial cells 

that can be blocked by anti-annexin A2 antibodies [189]. Both annexin A2 and TNC were found to be 

over-expressed and co-localized in high-grade PanIN lesions and PDAC [185] suggesting a potential 

role of their interaction in advanced stages of pancreatic cancer.  

Annexin A2 has been clinically implicated with recurrent disease in patients with advanced PDAC. 

In fact, high levels of annexin A2 correlate with pancreatic cancer recurrence in post-operative patients 

who were previously treated with gemcitabine adjuvant therapy [190]. Patients with high levels of 

annexin A2 expression also have a worse disease-free survival than those with low annexin A2 

levels [83]. These studies support annexin A2 as a prognostic indicator of pancreatic cancer recurrence 

and patient survival. 

9.4. Annexin A2 Is a Metastatic Marker in Renal Cell Carcinoma (RCC) 

Renal cell carcinoma (RCC) is the most common kidney cancer and accounts for 3% of all adult 

cancers. It represents a group of heterogeneous tumors with distinct biological characteristics of which 

clear-cell renal carcinoma (ccRCC) is the most common (80% of all RCCs). RT-qPCR and 

immunohistochemistry analysis showed that annexin A2 is up-regulated in RCC tissues at both the 

mRNA and protein levels compared to normal renal tubule tissues [191]. In fact, both members of the 

AIIt tetramer (annexin A2 and S100A10) were up-regulated in RCC patient tissues suggesting that 

AIIt expression, and not only annexin A2, can be a potential diagnostic marker in these patients.  

At this point, the role of S100A10 in RCC is yet to be investigated. 

Interestingly, the up-regulation of annexin A2 in RCC is not limited to primary tumor sites.  

Its expression is extended and amplified in metastatic sites of ccRCC patients. Immunohistochemical 

analysis of patient ccRCC tissues revealed that annexin A2 was over-expressed in 47.4% of primary 

tumors and 87.5% of metastatic tumors. The 5-year metastasis-free survival rate of patients with high 
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annexin A2 expression was significantly lower than those with no annexin A2 expression [192]. These 

results suggest that annexin A2 is a novel predictor of the metastatic potential of ccRCC. 

9.5. Annexin A2 Expression Correlates with TNC Expression and Is a Potential Prognostic Marker of 

Advanced Colorectal Carcinoma (CRC) 

Colorectal cancer (CRC) is the third most common cancer in men and women. Annexin A2 is  

up-regulated in 29.5% of colorectal cancer patient samples and this up-regulation correlated with 

tumor size, advanced histology, and depth of invasion and pTNM stage (pathological  

tumor-node-metastasis). Annexin A2 over-expression also correlated with TNC expression in 

colorectal tissues [193]. Tissue microarrays and proteome analysis showed that up-regulated annexin 

A2 expression also predicted higher lymph node metastasis (LNM) in colorectal cancer patients [194]. 

Interestingly, Zhang et al. [195] identified S100A10 as the major contributor to plasminogen binding, 

plasmin generation and subsequent invasiveness of Colo 222 colorectal cancer cells, cells which do not 

express surface annexin A2. Moreover, S100A10 expression correlated with tumor recurrence in stage 

II and III colon cancer patients treated with 5-fluoruracil [196]. Importantly, it therefore appears that 

the invasiveness of cancer cells observed in colorectal cancer is potentially maintained through the 

increased stabilization of S100A10 (and not annexin A2) as invasion can also be mediated through an 

annexin A2-independent manner as observed in the Colo 222 cells.  

9.6. Annexin A2 Is a Differential Diagnostic Tissue and Serum Marker in  

Hepatocellular Carcinoma (HCC) 

The up-regulation of annexin A2 in HCC was first described by Frohlich et al. [197] and was 

associated with malignant transformation of hepatocytes and not with liver tissue regeneration. The 

expression of annexin A2 in hepatocellular carcinoma is up-regulated at the transcriptional and 

translational level [197]. Interestingly, the non-tumorous cirrhotic tissues expressed relatively high 

levels compared to the adjacent tumorous tissues suggesting that annexin A2 up-regulation is 

potentially a by-product of inflammation rather than oncogenic transformation per se. This is further 

supported by the report that plasmin-mediated cleavage of annexin A2 activates intracellular pathways 

which result in the activation of MAP kinases and NF-κB nuclear translocation. NF-κB activates the 

expression of pro-inflammatory molecules such as IL-1, IL-6 and TNFα [198].  

Annexin A2 staining was intense in moderately and poorly differentiated tumors and not in  

well-differentiated tumors [199]. This is consistent with the function of annexin A2 in cellular 

differentiation and suggests annexin A2 as a possible determinant of histological grade in HCC 

patients. Using annexin A2 expression as a biomarker can improve the sensitivity and specificity of the 

de-facto 3-marker IHC panel of HSP7 (heat shock protein 70), GS (glutamine synthase), GPC-3 

(glypican-3) used to differentiate early stage well differentiated HCC from normal liver mitogenesis. 

In fact, combinations of annexin A2-GPC3 and annexin A2-GS performed better than the  

3-marker combination [200] suggesting that adding annexin A2 as diagnostic marker increases the 

reliability of HCC diagnosis in liver biopsies. Recent microarray analysis of HCC patient samples 

revealed multiple hotspots that were linked to the Akt/NF-κB signaling pathways. These gene expression 

hotspots included annexin A2, S100A10 and the diagnostic HCC marker GPC-3 [201] indicating that 
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annexin A2 and S100A10 expression at the protein levels may promote hepatocarcinogenesis through 

the activated Akt pathway. Serum levels of annexin A2 are also elevated in early stage HCC patients 

which are AFP-negative [202]. Alpha-fetoprotein (AFP) is a widely used marker for surveillance and 

early detection of hepatic cancers. The results indicate that annexin A2 serum level is a better 

diagnostic marker than the traditional AFP screening, although combining both markers yielded the 

most accurate diagnosis with 87.4% accuracy [202].  

9.7. Annexin A2 May Promote Hyperfibrinolysis and Acute Bleeding in  

Acute Promyelocytic Leukemia (APL) 

Bleeding in acute promyelocytic leukemia (APL) is caused by intravascular coagulation and 

hyperfibrinolysis. The latter is mediated through enhanced plasmin generation which results in the 

breakdown of fibrin. APL patients express higher levels of annexin A2 than other leukemic patients. 

PML-RARα-positive APL cells have enhanced cell surface tPA-dependent plasmin generation which 

can be inhibited by anti-annexin A2 antibodies [203]. Moreover, annexin A2 depletion in NB4 cells 

decreased plasmin generation by 60% while its expression in HL-60 cells (APL cell line with low 

endogenous annexin A2) resulted in a 5-fold increase in plasmin generation [204]. However, we have 

recently demonstrated that induced expression of PML-RARα increases the expression of cell surface 

S100A10 which caused a dramatic increase in fibrinolytic activity of these NB4 cells [205]. This 

clearly indicates that S100A10, and not annexin A2, is the actual regulator of plasmin-mediated 

fibrinolysis in these cells and that PML-RARα-mediated S100A10 up-regulation is likely to be 

responsible for the bleeding symptoms in APL patients.  

The arsenic trioxide (ATO) or all-trans retinoic acid (ATRA) treatments of APL patients are 

currently used to induce terminal differentiation of leukemic promyelocytes which potentially leads to 

complete remission [204,206]. Both treatments induce rapid amelioration of APL-associated bleeding 

through the down-regulation of annexin A2 [207,208] and more importantly S100A10 [205]. This 

down-regulation reduces plasmin generation and aids in resolution of coagulopathy. Most studies have 

reported that annexin A2 expression is elevated in many cancers and can directly correlate with 

clinical outcome. However, annexin A2 down-regulation have been reported in some cancers (prostate 

cancer and head and neck cancers), yet some of these results remain conflicting mainly due to 

difference in methodologies. 

9.8. Annexin A2 Expression Presents Conflicting Results in Prostate Cancer 

Annexin A2 mRNA expression is often lost in prostate cancer specimens when compared to normal 

prostate tissues. In fact, immunohistochemistry of prostate cancer patient samples showed a loss in 

expression of annexin A2 and its binding partner S100A10 in all patients [168,209]. Both proteins are 

also lost in 65% of prostate intraepithelial neoplasia (a prostate cancer precursor) [168]. Microarray 

analysis revealed that annexin A2 (along with annexin A1, A4, A7 and A11) was significantly  

down-regulated in metastatic androgen-independent prostate cancer patients when compared to 

hormone-naive prostate cancers and non-cancerous prostate tissues [210]. This suggests that the loss of 

annexin A2 is potentially required for the acquisition of androgen refraction which ultimately leads to 

the development of metastatic prostate cancer. Liu et al. [84] demonstrated that annexin A2 is 
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abundantly expressed in five strains of normal human prostate (NHP 1-5) epithelial cells while 

reduced/lost in seven prostate cancer cell lines (PPC-1, MDA PCa 2b, LNCaP, C4-2, C5, PC3 and 

DU-145). Expectedly, retroviral re-expression of annexin A2 in prostate cancer cells (DU-145 and 

LNCaP) with low/no endogenous annexin A2 significantly inhibited migration of both cell lines [84]. 

This loss in migration capabilities is consistent with the established role of annexin A2 in cellular 

motility [109]. It also is suggested that reduction in annexin A2 expression is maintained 

epigenetically through DNA hypermethylation since treating LNCaP cells with DNA methylation 

inhibitors (e.g., 5-aza-deoxycytidine) restored expression of annexin A2 [84].  

The aforementioned studies reported that the reduction of annexin A2 expression correlated with 

high grade metastatic prostate cancers. However, Banerjee et al. [211] observed contradicting results 

when comparing annexin A2 expression in prostate carcinoma patients between USA and India. 

Interestingly, the results revealed that 25% of high grade prostate cancer US patients show intense 

focal membrane staining of annexin A2 which was not found in Indian patients with similar grades.  

In addition, the study observed that the DU-145 prostate cancer cell line expressed annexin A2 while 

LNCaP did which contradicts the Liu et al. observations [84]. More recently, a retrospective study of 

patient samples with non-metastatic prostate cancer revealed that all annexin A2-positive tumors 

(n = 40) relapsed compared to only half in annexin A2-negative tumors. Furthermore, shRNA 

knockdown of annexin A2 in DU-145 cells inhibited their growth in culture without affecting their 

invasiveness [212]. In addition, annexin A2 expressed on osteoblasts facilitates the homing and 

migration of annexin A2 receptor bearing prostate tumors cells contributing to bone metastasis. 

Annexin A2 can also facilitate the growth of prostate cancer cells in vitro through activation of the 

MAPK pathway [213]. Unlike Liu et al. and Chetcuti et al., these studies delineate a positive 

correlation between annexin A2 and prostate cancer malignancy and further contribute to the 

uncertainty of annexin A2 role in prostate cancer. 

9.9. Annexin A2 Expression Is Prognostic of Histological Grade and Metastasis in Most Head and 

Neck Cancers 

The down-regulation of annexin A2 has been implicated in head and neck cancers primarily in 

esophageal squamous cell carcinoma (ESCC), nasopharyngeal carcinoma (NPC), and head and neck 

squamous cell carcinoma (HNSCC). RT-PCR and immunohistochemical analysis of ESCC patient 

samples obtained from an area with high incidence of esophageal cancer (Henan province, China) 

showed significant decrease in annexin A2 expression in these patients compared to normal esophageal 

epithelium. Annexin A2 also negatively correlated with the differentiation status of ESCC tumors with 

less differentiated malignant tumors having the lowest annexin A2 levels [214] suggesting a role of 

annexin A2 in ESCC malignant progression.  

Proteomic analysis of nasopharyngeal carcinoma (NPC) revealed a consistent reduction in annexin 

A2 expression in all NPC patients and cell lines when compared with normal nasopharyngeal 

epithelium. Annexin A2 down-regulation in these patients is prognostic and correlated with lymph 

node metastasis [215]. Using immunochemistry and RT-PCR, Pena-Alonso et al. [216] reported that 

annexin A2 is down-regulated in head and neck squamous cell carcinoma (HNSCC) compared to 

normal basal epithelial cells and this reduction correlated with less differentiated tumors and nodal 
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metastasis. Despite these results, Wu et al. [217] identified an up-regulation of annexin A2 in HNSCC 

cells which were derived from metastatic tumors and not in cells derived from primary tumors (using 

mass spectrometry and 2D-gel electrophoresis). This contradicts with the previous studies by  

Qi et al. [214] which support annexin A2 down-regulation in primary tumors. The difference in 

annexin A2 expression between the two groups is thought to be due technical differences as mass 

spectrometry is highly sensitive and may identify annexin A2 protein modifications that cannot be 

detected using immunohistochemistry or RT-PCR. Whether annexin A2 is up- or down-regulated, the 

mechanism behind its transcriptional and translational regulation is yet to be fully established. 

9.10. Annexin A2 Is a Promising Therapeutic Target in Cancer 

Targeting annexin A2 with antibodies has been routinely used by researchers to reduce tumor 

progression and metastasis. In a study by Zheng et al. [83], anti-annexin A2 antibodies reduced 

metastasis and prolonged the survival of a PDAC mouse model. Anti-annexin A2 antibodies or sera 

from PDA patients post vaccination also inhibited invasion of PDAC cells in vitro [83]. Anti-annexin 

A2 antibodies have been also effective to inhibit tumor growth in a mouse model of LLC and reduce 

plasmin generation in vitro [180].  

In addition to specific antibodies, other molecules have been proposed for direct targeting of 

annexin A2. The anti-angiogenic molecule angiostatin inhibits annexin A2 by binding to its lysine 

domain [181] and reduces plasmin generation in LLC cells [180]. Synthetic inhibitors have been also 

developed to target annexin A2. TM601 is a synthetic inhibitor derived from chlorotoxin and acts as an 

anti-angiogenic molecule through direct binding to annexin A2. TM601 also inhibits tPA-mediated 

plasmin generation and in vitro migration of pancreatic (Panc-1), glioma (U87-MG, U373-MG), and 

lung carcinoma (A549) cells [218]. PLGA (poly lactide-co-glycolide) nanoparticles loaded with 

annexin A2 shRNA vector can mediate long-term silencing of annexin A2 and are able to reduce 

tumor growth in xenograft models of prostate cancer [219]. These studies reveal that annexin  

A2-specific targeting has promising therapeutic benefits in animal models but is yet to be elucidated in 

human trials. 
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Table 1. Characteristics of annexin A2 deregulation in cancer and the potential mechanisms. The table summarizes the effects of annexin A2 

deregulation in multiple cancers as discussed in the review.  

Cancer Characteristics/Mechanisms References 

Breast cancer 
-over-expression in invasive breast cancer and DCIS; absent in normal breast epithelium; predictor of response to 
neoadjuvant chemotherapy; tPA-mediated invasiveness and angiogenesis (through S100A10); metastatic cell 
proliferation (interaction with TNC); resistance to anthracyclines and taxanes. 

 [20,100,182–184] 

PDAC 
-over-expression in invasive lesions and PDAC; PDAC invasiveness and metastasis (probably through S100A10); 
activation of EMT; interaction with TNC in advanced pancreatic cancers; increased recurrence in post-operative 
patients pre-treated with gemcitabine; correlation with patient survival. 

 [83,87,185,190] 

RCC 
-over-expression in RCC patients (along with S100A10); low expression in normal renal tubules; AIIt as a potential 
diagnostic marker; -decreased metastasis-free survival of annexin A2-positive patients. 

 [191,192] 

CRC 
-correlation with increased tumor size, advanced histology and pTNM; plasmin-mediated invasiveness (through 
S100A10); correlation with TNC expression. 

 [193–195] 

HCC 
-over-expression in HCC tissues; activation of pro-inflammatory responses (through NF-κB); indicator of 
histological grade and improved reliability in diagnosis in HCC patients. 

 [197–200,202] 

APL 
-Activation of fibrinolysis (through S100A10); -ATRA and ATO treatments alleviate APL-associated bleeding by 
inhibiting annexin A2 and S100A10. 

 [204,205,207,208] 

Prostate cancer 
-annexin A2 and S100A10 expression lost especially in androgen-independent prostate cancer; prostate cancer cell 
migration; -annexin A2 down-regulation by DNA hypermethylation; Conflicting results: annexin A2 expression 
promotes cell proliferation, bone metastasis and tumor relapse 

 [84,168,210–212] 

Head and neck 
cancers 

ESCC -decreased expression in ESCC tissues; correlation with less differentiated ESCC tumors.  [210,214] 

NPC -reduced expression in NPC patients and cell lines; -implication with higher incidence of lymph node 
metastasis. 

 [215] 

HNSCC -down-regulation of annexin A2 in HNSCC patients; correlation with less differentiated tumors and 
lymph node metastasis; Conflicting results: annexin A2 down-regulation present in metastatic tumors 
and not primary tumors 

 [215–217] 
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9.11. Role of the Extracellular Annexin A2-S100A10 Complex in Inflammation 

The annexin A2-S100A10 heterotetramer has been found to play a critical role in inflammation by 

mediating production of proinflammatory signals in response to various stimuli and also by promoting 

plasmin-dependent migration and infiltration of macrophages. Song et al. [220] demonstrated that 

lentiviral mediated RNA interference against S100A10 impairs LPS-induced production of the 

inflammatory cytokines TNFα, IL-1β and IL-10 as well as reduces activation of MAPKs and NF-κB in 

human chondrocytes. Interestingly, Lin et al. [221] demonstrated that tPA can induce NF-κB activity 

independently of its protease activity. Addition of tPA to macrophage cells promoted the aggregation 

of annexin A2 with integrin CD11b, consequently activating the integrin-linked kinase (ILK) pathway 

(Figure 4a) that promotes NF-κB activity by causing the phosphorylation and degradation of its 

inhibitor IκB. They further demonstrated that tPA induces NF-κB activity through binding to AIIt and 

not its other receptor, LDL receptor-related protein 1 (LRP-1). Additionally endogenously produced or 

exogenously added plasmin induces activation of monocytes and macrophages in a annexin A2 or 

S100A10 dependent manner via STAT3, NF-κB, ERK1 and 2 and p38 activation and induction TNF-α 

and IL-6 [222,223]. The annexin A2-S100A10 heterotetramer was shown to be essential in mediating 

this inflammatory response as knock-down of either S100A10 or annexin A2 impaired the  

plasmin-induced production of TNFα and IL-6 from macrophages [223]. The Hajjar laboratory found 

that plasmin induces Toll-like receptor 4 (TLR4)-dependent protein kinase C (PKC) activation in 

endothelial cells [224]. It has been suggested that plasmin induces TLR4-dependent signaling by 

proteolytically cleaving annexin A2 and causing its release from the annexin A2-S100A10 

heterotetramer. The release of annexin A2 may be involved in the stimulation of TLR4 since addition 

of plasmin to endothelial cells induced protein-protein interactions between TLR4 and annexin A2; 

however, the mechanism of how plasmin stimulates inflammatory pathways is not entirely understood. 

Furthermore, plasmin-treated cells induced down-regulation of S100A10 protein level and reduced the 

surface level of annexin A2 without altering its cytoplasmic expression (Figure 4a). This indicates the 

existence of a negative feedback loop whereby plasmin induces the disassociation of the annexin  

A2-S100A10 heterotetramer, thus preventing further plasmin generation as well as production of 

proinflammatory signals [224]. Annexin A2 is known to act as a receptor of progastrin, which can 

stimulate proliferation via activation of NF-κB, β-catenin, and MAPKs [225]. The level of  

phospho-NF-κB(p65)Ser276 and β-catenin were down-regulation in colon crypts of annexin A2-null 

mice and in progastrin-expressing HEK-293 cells with annexin A2 knocked-down using siRNA [226]. 

Additionally, the down-regulation of annexin A2 in the rat intestinal cell line IEC-18 prevented the  

co-localization of progastrin and annexin A2 on the membrane and intracellularly, suggesting that 

annexin A2 is required for the binding and internalization of progastrin potentially via clathrin [227]. 

As discussed earlier, annexin A2, but not the AIIt, was shown to interact with the μ2 subunit of the 

clathrin assembly protein complex AP2 [124]. Treatment of cells with chlorpromazine (an inhibitor of 

clathrin-coated pit formation) impaired endocytosis of progastrin, indicating that annexin A2 mediates 

the endocytosis of progastrin in a clathrin-mediated manner (Figure 4b). The exact mechanism 

involving annexin A2 in clathrin-mediated endocytosis of progastrin to intercellular compartments is 

not entirely understood [227]. Together, these studies demonstrate that the AIIt has multiple roles in 
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regulating the induction of inflammatory pathways and cytokine production by modulating the 

function of various membrane-associated proteins. 

Figure 4. Experimental model of inflammatory pathway regulation by the annexin  

A2-S100A10 heterotetramer. (a) Plasmin generated by the annexin A2-S100A10 

heterotetramer (AIIt) induces the co-localization of membrane-bound annexin A2 and  

Toll-Like receptor 4 (TLR4), which causes PKC-mediated phosphorylation of cytoplasmic 

annexin A2 at serines 11 and 25. The phosphorylation of annexin A2 disassembles AIIt 

allowing the ubiquitation and degradation of S100A10. In addition, tissue-plasminogen 

activator (tPA) binding to the carboxyl-terminal lysine residue of the S100A10 subunit 

induces activation of ILK in a CD11b-dependent manner. Both tPA-mediated ILK 

activation and plasmin (via an unidentified receptor) promote NF-κB nuclear translocation 

where it induces production of proinflammatory mediators (TNFα, interleukins, etc.).  

(b) Progastrin binds to monomeric or dimeric annexin A2, but not AIIt, and induces 

clathrin-mediated endocytosis. Internalization of progastrin activates MAPKs, β-catenin, 

and nuclear translocation of NF-κB. 
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Figure 4. Cont. 

 

The annexin A2-S100A10 heterotetramer itself has also been shown to activate inflammatory 

pathways as a secreted product. The Feldman laboratory demonstrated that exogenous addition of the 

soluble annexin A2-S100A10 heterotetramer activates macrophages and promotes release of 

inflammatory cytokines via the MAPK and NF-κB pathways [198]. They further revealed that TLR4 is 

essential for annexin A2-S100A10 heterotetramer-mediated inflammatory signaling in murine and 

human macrophages [228]. Osteoclasts secrete AIIt, which acts in a paracrine/autocrine manner to 

stimulate differentiation of osteoclasts primarily via induction of GM-CSF and RANKL by activated 

T-cells and bone marrow stromal cells [229,230]. 

Plasmin mediated activation of MMP-9 has been shown to be a critical mediator of macrophage 

infiltration at inflammatory sites [176]. Our laboratory has shown using thioglycollate mediated 

peritonitis model that macrophage migration to the peritoneal cavity was significantly reduced in 

S100A10-null mice. Similarly in vitro evaluation of macrophage invasion using matrigel plugs 

demonstrated that S100A10-deficient macrophages showed significant reduction in invasion primarily 

by reduced plasmin generation and consequent MMP-9 activation suggesting a direct role of S100A10 

in plasmin generation and inflammation [154]. Interestingly, we observed a decrease in annexin A2 

protein levels in the S100A10-null macrophages which can be potentially attributed to changes in 

subcellular distribution of annexin A2. The direct role of annexin A2 in inflammation, can be assessed 
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by immune and stress challenge of annexin A2-null mice. Unfortunately as discussed before, loss of 

annexin A2 in these mice also results in concomitant loss of S100A10, making interpretations of these 

experiments difficult. 

9.12. Annexin A2 in Anti-Phospholipid Syndrome 

Anti-phospholipid syndrome (APS) is an auto-immune disorder, where the immune system 

generates antibodies against phospholipid binding proteins. This disorder is characterized by increased 

risk for primary arterial and venous thrombosis, pregnancy miscarriages and other complications. 

Autoantibodies against the antigen β2 glycoprotein 1(β2-GPI), a member of the complement control 

protein is the primary perpetrator of APS. The plasma glycoprotein β2-GPI binds to phospholipids 

with lysine residues, and its phospholipid binding site is located at the carboxyl-terminal end in 

the [231,232] fifth of its five domains. This phospholipid binding property plays an important role in 

APS. Thrombosis is mediated by the autoantibodies that react to β2-GPI. The autoantibodies activate 

expression of endothelial cell adhesion molecules, secretion of inflammatory cytokines and increase 

pro-coagulant activity. The anti-β2-GPI complexes may also potentially trigger signaling events in 

leukocytes, endothelial cells, platelets leading to the expression pro-thrombocytic proteins. Annexin 

A2 was first identified as a high affinity binding partner for β2-GPI by affinity purification 

strategy/technology in Human Umbilical Vein Endothelial Cells (HUVEC) [233]. It was further 

observed that anti-β2-GPI antibodies activate endothelial cells through cross-linking annexin A2 

bound β2-GPI [233,234]. Moreover it was observed that annexin A2 specific monoclonal antibodies 

which blocked β2-GPI binding to endothelial cells induced signaling pathways that present with a  

pro-adhesive and pro-coagulant phenotype. Consistently anti-annexin A2 specific antibodies are also 

observed in patients with APS which induced endothelial cell activation [235]. The detailed mechanism 

by which annexin A2 and β2-GPI induces signaling has not been clearly understood, primarily because 

annexin A2 is not a transmembrane protein. It is likely that some other adaptor protein which binds to 

annexin A2 is involved in mediating the signal leading to endothelial cell activation. It has been 

speculated that β2-GPI and TLR4 interact either directly or indirectly via annexin A2, thus mediating 

TLR4 signalling and NF-κB activation leading to the adhesive and coagulant phenotype [236]. TLR4 

was purified from endothelial cells using annexin A2 immobilized columns [236]. Moreover β2-GPI 

and TLR4 interactions have been demonstrated in monocytes in which annexin A2 is richly expressed. 

Finally a recent investigation has demonstrated the existence of a signaling complex on the surface of 

endothelial cells consisting of annexin A2, TLR4, calreticulin, and nucleolin which mediates NF-κB 

dependent activation of endothelial cells by anti-β2-GPI antibodies [237]. But future studies are 

required to determine the precise nature of these interactions and specific role of annexin A2 in this 

signaling complex.  

10. Concluding Comments 

Despite reports suggesting the key role of annexin A2 in a large number of important physiological 

processes ranging from exocytosis, endocytosis and the organization of lipid raft signaling domains, to 

ion channel transport to the plasma membrane, it is astounding that the annexin A2-null mouse shows 

no overt phenotype. This observation coupled with the demonstration that annexin A2 depletion or 
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knockout causes changes in the cellular levels of other proteins such as S100A10 and fascin as well as 

effects the activity of over 60 genes strongly implies that a rigorous re-examination of the previous 

studies of the putative physiological function of annexin A2 is warranted. The validity of this 

suggestion is exemplified by the initial reports of the presence of fibrin in the tissues of the annexin 

A2-null mouse and followed by the conclusion that annexin A2 was a key regulator of plasmin 

generation and fibrinolysis. With the observation of dramatically diminished S100A10 levels in the 

annexin A2-null mouse and the recent report that S100A10-null mouse has pronounced deficits in 

fibrinolysis including fibrin deposition in the tissues, it is now apparent that annexin A2 does not play 

a direct role in fibrinolysis. Rather, annexin A2 stabilizes S100A10 protein levels and facilitates 

translocation of S100A10 to the cell surface where S100A10 binds tPA and plasminogen and regulates 

plasmin generation. Thus, the multitude of functions suggested for annexin A2 (Figure 5) will await 

further study and verification. However it is apparent that many of the functions of annexin A2 require 

the phospholipid-binding property of the protein. The identification of an important role of annexin A2 

in redox regulation supported by observations in the annexin A2-null mouse and by in vitro data, 

suggests that redox regulation is a hitherto unexplored and exciting function of annexin A2. 

Elucidation of the full significance of this function will require further studies. 

Figure 5. Functions of annexin A2-S100A10 complex. The schematic diagram summarizes 

the functions of annexin A2 discussed in the review. 
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