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Abstract

The Mediterranean Basin represents a Global Biodiversity Hotspot where many organisms

show high inter- and intraspecific differentiation. Extant phylogeographic patterns of terres-

trial circum-Mediterranean faunas were mainly shaped through Pleistocene range shifts and

range fragmentations due to retreat into different glacial refugia. Thus, several extant Medi-

terranean bird species have diversified by surviving glaciations in different hospitable refugia

and subsequently expanded their distribution ranges during the Holocene. Such a scenario

was also suggested for the Eurasian Wren (Nannus troglodytes) despite the lack of genetic

data for most Mediterranean subspecies. Our phylogenetic multi-locus analysis comprised

18 out of 28 currently accepted subspecies of N. troglodytes, including all but one subspe-

cies which are present in the Mediterranean Basin. The resulting phylogenetic reconstruc-

tion dated the onset of the entire Holarctic radiation of three Nannus species to the early

Pleistocene. In the Eurasian Wren, two North African subspecies represented separate

basal lineages from the Maghreb (N. t. kabylorum) and from the Libyan Cyrenaica (N. t. juni-

peri), being only distantly related to other Mediterranean populations. Although N. troglo-

dytes appeared to be paraphyletic with respect to the Nearctic Winter Wren (N. hiemalis),

respective nodes did not receive strong statistical support. In contrast, paraphyly of the

Ibero-Maghrebian taxon N. t. kabylorum was strongly supported. Southern Iberian popula-

tions of N. t. kabylorum did not clade with Maghrebian populations of the same subspecies

but formed a sister clade to a highly diverse European clade (including nominate N. t. troglo-

dytes and eight further taxa). In accordance with a pattern also found in other birds, Eurasian
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populations were split into a western clade (Europe, Caucasus) and an eastern clade (Cen-

tral Asia, Sino-Himalayas, East Asia). This complex phylogeographic pattern revealed cryp-

tic diversification in N. troglodytes, especially in the Iberio-Maghrebian region.

Introduction

In the Western Palearctic, the Mediterranean Basin represents a region of exceptional genetic

and species diversity both of flora and fauna and it is therefore recognized as a Global Biodi-

versity Hotspot [1–5]. Due to the colonization of structurally very different peninsulas (Ibe-

rian, Apennine, Balkan, and Anatolian Peninsulas), island archipelagos (of the Mediterranean

Sea and Macaronesia), and the North African coastline, many species occur in marginal or iso-

lated distributional areas with regard to their European core distributions [3,6,7]. At a more

narrow spatial scale, the Mediterranean Basin comprises multiple regional vegetational Biodi-

versity sub-Hotspots [8–10] which largely coincide with several climatically stable refugia,

where many endemic species have survived during the Pliocene and Pleistocene [11–13].

Within the western Mediterranean Basin, the Ibero-Maghrebian Region (IMR) comprises

the Iberian Peninsula and the Maghreb Region of Northwest Africa. The latter stretches from

the northernmost part of the Western Sahara Territory over Morocco and northern Algeria to

Tunisia [14,15]. The IMR has previously been described in different scientific contexts, such as

seismotectonics [16–18] and biogeography [19–23]. It furthermore includes the three Biodi-

versity sub-Hotspots of the High and Middle Atlas, the Baetic–Rifan mountain complex, and

Kabylia–Numidia–Kroumire and is neighboured by the Mediterranean Cyrenaica of northeast

Libya [9,12]. Being part of the Mediterranean biome, the IMR is characterized by Mediterra-

nean sclerophyllous forests, woodlands, and scrub, but also by continued Palearctic influence,

both in floral and in faunal communities [3]. For examples, several Euro-Siberian tree and

shrub species reach their southernmost range limits here in the form of Maghrebian exclaves

(such as Taxus baccata, Ilex aquifolium, Sorbus aria, Prunus avium, Populus tremula, Acer
campestre [6,24]). A commonly observed phylogeographical pattern in many vertebrate taxa of

the IMR is a strong differentiation between Iberian and Maghrebian populations and in many

cases, also a further differentiation of western and eastern Maghrebian populations (e.g.

reviewed for amphibians and reptiles [15,25,26]). Further east in the Mediterranean Cyrenaica,

small relict populations of bush- and forest-dwelling bird species are known to exist on the for-

ested Jebel Akhdar massif. These are separated by a large desert area from their closest conspe-

cifics in the Maghreb and therefore, some Cyrenaican populations represent distinct and relict

genetic lineages (e.g. in African Blue Tits Cyanistes teneriffae [27–29] and in Common Chaf-

finches Fringilla coelebs [30]).

The Eurasian Wren Nannus troglodytes (until recently referred to as Troglodytes troglodytes;
see explanation below) inhabits the IMR at the south-western periphery of its Palearctic-wide

distributional range. Here, it prefers forest and shrubland habitats with dense undergrowth,

often in the proximity of watercourses [31–34], such as forested stream valleys at higher eleva-

tions in North Africa [32]. It is the only Palearctic species of the otherwise Nearctic and Neo-

tropic family of wrens (Passeriformes: Troglodytidae), which currently comprises up to 93

recognised species [31–33]. Conventionally, all Holarctic populations of the “Winter Wren” or

“Northern Wren” had been united under the species-level taxon Troglodytes troglodytes
[31,32,34], until Drovetski and colleagues [35] demonstrated that Palearctic and Nearctic pop-

ulations are divided into separate mitochondrial DNA (mtDNA) lineages. As this genetic
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divergence was paralleled by differences in territorial songs [36], a species-level split of Palearc-

tic from Nearctic “Winter Wren” populations was recommended [37]. Today, most authorities

accordingly recognize the Eurasian Wren T. troglodytes as an exclusively Palearctic species

[33,38,39]. For its remaining Nearctic relatives, a high level of genetic divergence between east-

ern and western populations is accompanied by slight but consistent bioacoustic differentia-

tion [40,41] and due to a lack of vocal admixture in an area of sympatry, reproductive isolation

has been assumed [42]. Therefore, the Nearctic “Winter Wren” populations were furthermore

split into two species: the Pacific Wren T. pacificus of the Western Nearctic and the Winter

Wren T. hiemalis of the Eastern Nearctic [33,37,38].

According to a recent molecular study [43], there is increasing evidence that the genus

Troglodytes (sensu e.g. [31–33]) is not monophyletic. Therefore it was recommended to trans-

fer T. troglodytes, T. pacificus, and T. hiemalis into the re-established genus Nannus Billberg,

1828 (as already suggested before by [44,45]), and to restrict the genus name Troglodytes Vieil-

lot, 1809, to a monophyletic group of New World taxa (see [46], as referenced in [38]).

Although these taxonomic recommendations have not yet been implemented into a major tax-

onomic compendium, we assume that this will be inevitably the case in the near future and we

therefore follow the suggestion by Barker [43] and henceforth refer to the spp. troglodytes,
pacificus, and hiemalis as members of the genus Nannus.

The Eurasian Wren is highly polytypic and currently populations of N. troglodytes are

assigned to 28 (the preferred concept throughout this study [38,39,47]) or to 29 [33] subspe-

cies, showing the highest subspecies diversity in Europe (North Atlantic islands and Mediter-

ranean Basin) and in Eastern Asia (China and northwest Pacific islands from Taiwan to

Kamchatka). In both regions, a differentiation into island-endemic subspecies subtly differing

in size-proportions, plumage-barring, and coloration can be observed [31,32,48].

Based on an analysis of mitochondrial NADH dehydrogenase 2 (ND2), the taxonomic diver-

sity of N. troglodytes corresponds to four separate mitochondrial lineages, comprising six sub-

species so far documented by Drovetski et al. [35]: A European lineage (sspp. troglodytes and

indigenus), a Caucasian (ssp. hyrcanus), a Nepalese (ssp. nipalensis), and an East Asian lineage

(sspp. dauricus and fumigatus). Further molecular genetic analyses of North Atlantic island

populations (sspp. islandicus, borealis, zetlandicus, fridariensis, hirtensis, hebridensis) found

only small genetic divergence of these subspecies from populations of ssp. indigenus from

Great Britain and Ireland and from continental European nominate troglodytes, suggesting

recent differentiation [49,50]. All North Atlantic island subspecies thus originated from Pale-

arctic rather than from Nearctic founders and did not substantially diverge since the coloniza-

tion event [49]. Wren populations of the northernmost ranges in Europe and East Asia are

migratory and leave their breeding grounds in winter, whereas remaining populations are

largely sedentary to partially migratory [31,32].

Although previous studies [35,49,50] shed light on the intraspecific differentiation of the

Eurasian Wren, a broader geographic and taxonomic coverage is much required. Also the phy-

logenetic relationships of N. troglodytes taxa distributed in the IMR within the Mediterranean

Biodiversity Hotspot remain unknown. Due to their peripheral and fragmented range with

regard to the Palearctic core distribution they might, however, yield important information on

the biogeographic history of this species.

In this study, we aim to scrutinize the genetic structure of N. troglodytes populations based

on a denser taxon sampling at the subspecies level. Our focus was set on the phylogenetic rela-

tionships of unstudied populations from the forested margins of the Qinghai-Tibet Plateau

(i.e. sspp. talifuensis and idius) and of Ibero-Maghrebian wren populations, represented by the

isolated and poorly investigated subspecies N. t. juniperi of the Cyrenaica [51–54], by N. t.
kabylorum of Northwest Africa, the Balearic Islands, and southern Iberia, by N. t. koenigi
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endemic to Corsica and Sardinia, and by the nominate form N. t. troglodytes of northern Iberia

and the rest of the European mainland. As phylogeographic results based on mtDNA data

alone do not necessarily need to be consistent with findings from nuclear DNA analyses [55],

our phylogenetic analysis relied on two mitochondrial genes and three nuclear markers (two

introns, one exon) for 18 out of the 28 subspecies, of which six subspecies have not been sub-

ject to genetic analysis to date.

Materials and methods

Sampling and laboratory procedures

We analysed a total of 45 tissue and blood samples from 35 localities in the Palearctic (Fig 1).

For a list of used samples and GenBank accession numbers of newly analysed sequences

(MN919550-MN919644; MN927043-MN927084; MN931755-MN931781) see S1 Table.

Genetic sample material used for this study was obtained from the collections of natural his-

tory museums (NMS, MNHN, SNSD, UWBM). All sampling procedures are in compliance

with animal research ethical guidelines of respective institutes, as well as with national guide-

lines of respective countries. Therefore, the study has not been formally approved by an animal

research ethics committee. Material was specifically collected for this study i) in the UK (feath-

ers lost during routine ringing operations licenced by the British Trust for Ornithology, thus

not falling under animal care regulation; c.f. [49]), ii) in Spain, where field work was conducted

under permits of the Council of Government of the Principality of Asturias (2013/001891) and

of the Regional Government of Andalusia (ENSN/BRL//MCF). The dataset was completed

with sequences of further ingroup as well as outgroup taxa archived in GenBank.

Total genomic DNA was extracted from ethanol- or buffer-preserved tissue and blood sam-

ples using an innuPREP DNA Mini Kit (Analytik Jena AG) or an innuPREP Blood DNA Mini

Kit (Analytik Jena AG) respectively, following the manufacturer’s protocol except for over-

night incubation with proteinase K for cell lysis in both procedures. We also included DNA

extracts from eight samples of North Atlantic island populations previously analysed by Shan-

non et al. [49].

For identification of mitochondrial lineages, we amplified and sequenced two mitochon-

drial genes: barcoding standard marker cytochrome oxidase subunit I (COI, 696 bp) [57] and

NADH dehydrogenase subunit 2 (ND2, 1033 bp). We sequenced ND2 for 35 samples for com-

parison with sequence data sets available from previous studies (112 sequences; see below and

S1 Table). To reconstruct a most taxon-complete multi-locus phylogeny of Nannus wrens, we

sequenced three further nuclear markers for at least one sample of each subspecific taxon (or

mitochondrial lineage per taxon): beta-fibrinogen gene, intron 5 (Fib5, 570 bp),myoglobin gene,

Fig 1. Distributional area of Nannus troglodytes in the Palearctic. Seasonal ranges indicated by colour (green:

whole-year resident; yellow: breeding; blue: non-breeding; data from [56]), and genetic sampling localities for our

phylogenetic analyses indicated by symbols (stars: newly sequenced samples for this study; circles: sequences retrieved

from GenBank).

https://doi.org/10.1371/journal.pone.0230151.g001
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intron 2 (Myo2, 736 bp), and one partial exon of the recombination activating protein 1 gene
(RAG1, 763 bp) (see S2 Table for used primers and PCR protocols). To hydrolyse surplus

primers and nucleotides, PCR products were purified using ExoSAP-IT (Thermo Fisher Scien-

tific, Waltham, MA, USA) according to the manufacturer’s instructions (adding 0.2 ml ExoSA-

P-IT solution in 4 ml H2O to each sample; thermocycler incubation with 37˚C for 30 min,

94˚C for 15 min).

PCR products were prepared for sequencing with BigDyeTM 3.1 Dye Terminator Cycle

Sequencing Kits (Applied Biosystems, now at Thermo Fisher Scientific, Waltham, MA, USA),

according to the manufacturers’ instructions. Cycle sequencing products were purified by

using Sephadex (GE Healthcare, Munich, Germany), and sequenced in both reading directions

on an ABI 3130xl DNA sequencer (Thermo Fisher Scientific, Waltham, MA, USA).

For each of the five markers, a sequence alignment was compiled in MEGA6 [58]: Forward

and reverse DNA sequences for each individual sample were manually inspected and edited in

a cross-check with the respective chromatogram signals (using Chromas v.2.6.5 (Technelysium

Pty Ltd, Brisbane, Australia)). Sequences of both reading directions were then combined to a

single consensus sequence per marker per sample. Further sequences of Nannus and Troglo-
dytes taxa were imported from GenBank into the respective alignments to increase sample size

and taxon coverage. For ND2 and COI haplotype network reconstruction (see below), we

included published sequences from GenBank into our datasets (see S1 Table). Furthermore,

we included sequence data of at least one representative of all other families of Certhioidea

(Sittidae, Certhiidae, Polioptidae) to the Troglodytidae data set (for full account of included

sequences for phylogenetic analyses, see S1 Table). For hierarchical outgroup rooting we used

sequence data of the Bohemian Waxwing (Bombycilla garrulus) and the Goldcrest (Regulus
regulus).

Phylogenetic analyses

Single-locus analyses. For inference of phylogeographic structure, we reconstructed hap-

lotype networks for all markers using PopART v.1.7 [59]. To determine allele sequences of

nuclear markers in heterozygote individuals, we applied the PHASE algorithm as implemented

in DNA Sequence Polymorphism v.6 (DnaSP 6 [60]), with MCMC options at their default val-

ues (number of iterations: 100; thinning interval: 1; burn-in iterations: 100). Allelic haplotype

networks were then created as TCS networks [61,62], using PopART v.1.7 [59] with gaps being

treated as a 5th state. For nuclear markers, we included sequences of Troglodytes aedon from

GenBank as outgroups, as well as sequences of Cistothorus palustris and C. platensis published

by Robbins and Nyári [63] for the marker Fib5.

Multi-locus analysis and divergence time estimates. We used Partitionfinder v.1.1.1 [64]

to determine the best-fitting partitioning scheme and models of sequence evolution. The

search for the best strategy was performed using the ‘beast’ model-set and heuristic search.

The best fitting strategy according to the AICc criterion was a 9-partition scheme with both

mitochondrial genes being split by codon positions and the three nuclear markers as separate

partitions each (resulting partitioning scheme and corresponding substitution models: COI: 1st

position: GTR+Γ+I, 2nd position: HKY+I, 3rd position: GTR+I; ND2: 1st position: TrN+Γ+I,

2nd position: GTR+Γ+I, 3rd position: GTR+Γ; Fib5: GTR+Γ+I;Myo2: HKY+Γ; RAG1: TrN+I).

A multi-locus tree was reconstructed using Bayesian inference of phylogeny in BEAST

v.1.8.1 [65]. According to the best-fitting scheme, nine partitions were assigned to the five

markers and the best-fitting models applied to each partition. All tree models were linked to

one tree model and a ‘Speciation: Birth-Death Incomplete Sampling’ (BD model) tree prior

was applied [66]. We optimized ESS values in exploratory runs with BEAST using different
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chain lengths and priors. It turned out that robustness of the analysis was most strongly influ-

enced by prior choice of the six rate parameters of the GTR model: We obtained poor ESS val-

ues across all parameters when a gamma distribution (default setting) was applied to rate

priors; however, ESS values were greatly improved when a uniform prior distribution was

applied. Tree-model choice did not affect tree topology at all in exploratory runs under the

Yule model (compare [67,68]). Divergence time estimates were slightly older under the Yule

model than under the BD model; however, 95% HPD intervals for the time of the most recent

common ancestor (tmrca) largely overlapped among runs under different tree models (com-

pare [69]).

MCMC chains ran for 50,000,000 generations in two parallel runs, each with one cold and

three heated chains (heating parameter λ = 0.1). Trees were sampled every 5,000th generation.

The first 3,000 samples were discarded as burn-in and model parameters and posterior proba-

bilities were estimated from the remaining samples. Remaining trees were summarized in a

50% majority rule consensus tree. Effective sample sizes for priors used in the Bayesian infer-

ence of phylogeny were controlled in Tracer v.1.7.1 [70].The BEAST analysis was run three

times using different seeds and convergence of BEAST runs was assessed after combining the

three log files using LogCombiner v.1.7.1 into a single log file. The combined log file was

inspected in Tracer v.1.7.1 and ESS values were checked for all parameters.

In addition, we reconstructed a multi-locus phylogeny using Maximum Likelihood (ML)

with RAxML v.7.2.6 [71], using the GUI python application v.0.93 [72]. Node support in a ML

framework was obtained by 1,000 bootstrap replicates with RAxML (thorough bootstrap

option, 100 replicates). In two separate runs, we partitioned the concatenated matrix (5 parti-

tions by gene; 9 partitions by gene and codon, see above) and applied the GTR+Γ+I model

across partitions.

To estimate phylogenetic divergence times, we applied two methodological approaches in

the form of i) molecular clock calibrations based on empirical substitution rates, and ii) a fossil

time calibration. The latter was based on two fossil taxa of the superfamily Certhioidea

(defined by [73]). Two fossils have been postulated as common ancestors of all Certhioidea,

Certhiops rummeliManegold, 2008 [74], from the early Miocene of Germany (MN3 20.5–18.0

Ma), and the recently described taxon Kischinskinia scandens Volkova & Zelenkov, 2018 [75],

from the early Miocene of eastern Siberia (MN5 16.0–13.8 Ma [76]). The fossil age of the

older fossil (Certhiops) was applied as estimate for the tmrca to the node uniting all Certhioi-

dea. We performed our calibration according to the standard outlined by Benton et al. [77],

who recommended the use of a soft maximum and minimum constraint that correspond to

the oldest certain and the oldest possible date of origin of a clade. According to this approach,

Claramunt and Cracraft [78] generated clade age priors for time calibration. Therefore we

used their tmrca priors for Certhioidea for our fossil calibration: zero offset = 18.0; Log(mean)

= 2.0; Log(stdev) = 1.2 (thus the known fossil age 20.5–18.0 Ma covered the time interval from

the zero offset to the maximum of the lognormal prior distribution (c.f. [77]: Fig 2; [78]: Fig 1).

Because monophyly of Certhioidea was strongly supported in previous analyses [79,80], the

calibrated node was forced to be monophyletic. The geologic time scale applied in our analysis

followed Walker et al. [81]. The trees obtained from the BEAST analysis were summarised to

one consensus tree applying TreeAnnotator v1.8.1, using a burn-in set to a number of 3,000

trees and mean node heights. The final consensus trees were visualised in FigTree v.1.4.3 [82]

with posterior probabilities (PP) and ML bootstrap as node support values.

For comparison, we inferred divergence time estimates based on empirical substitution

rates for ND2 from multiple independent runs with BEAST under a relaxed lognormal clock

model. Some previous studies have considered the empirical substitution rate for the avian

cytochrome-b (0.0105 substitutions per site per lineage per Ma [83]) as a ‘universal’ value for
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mtDNA in general [84]. However, this approach is problematic as substitution rates vary

greatly among mitochondrial genes (birds: [85–87]; other vertebrates: [88,89]) and the substi-

tution rate of a selected mtDNA marker may vary drastically among different bird orders with

passerine mtDNA evolving fastest [90–92]. Divergence time estimates for Nannus wrens were

previously inferred using an empirical rate based on a molecular clock calibration for ND2 of

Galapagos mockingbirds of 0.0276 substitutions per site per lineage per million years [35].

However, empirical rate estimates for ND2 cover a rather broad range from 0.0123 to 0.029

subst/site/lin/Ma [93–96]. We therefore performed independent runs with BEAST based on

the latter empirical maximum and minimum estimates. Moreover, there is firm evidence that

in birds mitochondrial substitution rates are correlated with body size, body mass, and genera-

tion time [97–99], so that systematic biases could arise if rates are not corrected for different

species (but see [92] for a critical reappraisal). Because the Eurasian Wren is one of the smallest

Palearctic birds, we expect a considerable deviation from empirical mean mtDNA substitution

rates for this species. We therefore calculated body mass-corrected substitution rates for ND2
of wrens according to the parameters inferred from two different calibration sets (2 and 4) by

Nabholz et al. [99] (Fig 2). We assumed a mean body mass of Nannus wrens of 9 g [48]. We

used mass-corrected rates of the entire ND2 gene and for the 3rd codon position of ND2 for

further independent inference of divergence time estimates with BEAST. For reliable compari-

son with divergence time estimates based on the fossil calibration, we performed molecular

clock calibrations using the entire Certhioidea data set of the ND2 data set including all further

outgroups. However, Nabholz et al. [99] recommended limiting data sets for molecular clock
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Fig 2. Inference of divergence time estimates from mitochondrial substitution rates. A: linear correlation between body mass and mitochondrial substitution rates in

birds according to two calibration sets (cal1, cal2) by Nabholz et al. [99]; mass-corrected rates can be inferred from two parameters of the regression lines: slope and

intercept; B: divergence time estimates for the time of the most recent common ancestor (tmrca) of Nannus according to 12 independent runs with BEAST; marginal

density plots inferred from log output files with Tracer v.1.7.1; divergence time estimates were inferred from i) fossil calibration (by gene: ND2 treated as a single

partition; by codon:ND2 partitioned by codon position), ii) two uncorrected rates for ND2 (from [92] and [93], each partitioned by gene or by codon; see above), iii) a

mass-corrected rate for the entireND2 gene of Nannus (partitioned by gene or by codon; see above), and iv) a mass corrected rate for the 3rd codon position of ND2 in

Nannus (partitioned by codon; see above); rates in substitutions per site per lineage per Ma indicated at upper left.

https://doi.org/10.1371/journal.pone.0230151.g002
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calibration using mass-corrected rates to closely related species of comparable body mass val-

ues. Because many other Certhioidea species are considerably larger than wrens (e.g. several

nuthatches), we performed alternative runs with BEAST using only the data set of Troglodyti-

dae (with sequences of Polioptila caerulea for hierarchical outgroup rooting).

According to molecular clock calibrations based on calibration set 2 [99] time estimates for

the most recent common ancestor (tmrca) of Certhioidea were nearly as old as the most

ancient known stem fossil of all Passeriformes (tmrca of Certhioidea: 26–29 Ma; fossil age: 30–

34 Ma, [100,101]). We do not consider this a reasonable result and one reliable explanation is

that time calibrations relying on calibration points only for outgroup taxa or near the root of a

phylogenetic tree tend to overestimate divergence times particularly for crown groups of a

phylogeny [102,103]. We consider calibration set 4 more appropriate for passerine birds, as it

included one further calibration point within Passeriformes that was not used in calibration

set 2. Therefore, in the following we do not consider mass-corrected rates inferred from cali-

bration set 2 and show only results inferred from calibration set 4 by Nabholz et al. [99].

Species Distribution Modelling (SDM)

To characterize the current distributional range of Nannus troglodytes based on its climatic

niche and to draw conclusions on possible refugia of this species during the Last Glacial Maxi-

mum (LGM, ~ 22,000 years ago [104]), we performed species distribution models (SDMs)

based on locality data covering the entire distributional range of this species and on a set of

environmental predictor variables. Locality data was obtained in the form of geo-referenced

collection data of preserved specimens from the online databases GBIF [105] and VertNet

[106] (manually controlled for obvious mistakes, e.g. offshore occurrence, and corrected if

possible), together with further occurrence data from the SNSD bird collection and type locali-

ties inferred from the literature [107]. Occurrence records based on geo-referenced tissue sam-

ples from earlier studies [35] and from the dataset compiled for this study (see Fig 1) were also

included in the locality dataset. The dataset was spatially rarefied to a Euclidian distance of 5

km using the SDMtoolbox v1.1c [108] in ArcGIS v10.3 to prevent false inflation of model per-

formance. Occurrences from assumed non-breeding wintering areas of partly migratory Eur-

asian Wrens in the Ponto–Caspian steppe (eastern Ukraine / southwest Russia) and in

southeast China (Fig 1) were not included in the dataset.

As a result 583 unique records were retained for modelling. The following uncorrelated

(correlation coefficients: R2 < 0.75) bioclimatic variables with a spatial resolution of 2.5 arc-

minutes (~4 km at the equator) describing annual trends, seasonality, and limiting factors

related to temperature and precipitation, were obtained from http://worldclim.org [104]:

mean diurnal temperature range (bio 2), isothermality (bio 3), temperature seasonality (bio 4),

maximum temperature of the warmest month (bio 5), mean temperature of the wettest quarter

(bio 8), annual precipitation (bio 12), precipitation seasonality (bio 15), and precipitation of

the driest quarter (bio 17). To assess the influence of past climate and sea level fluctuations on

the distribution of N. troglodytes corresponding predictor variables for three projections for

the LGM, derived from global circulation models through the Paleoclimate Modelling Inter-

comparison Project Phase II [109], were obtained [104]. These include the Community Cli-

mate System Model (CCSM3) [110], the Max-Planck-Institute Earth System Model P

(MPI-ESM-P), and the Model for Interdisciplinary Research on Climate (MIROC) [111].

A circular buffer of 400 km surrounding each locality was used as background for model

training whereas a rectangular study extent was selected as projection area. Therefore, the

model was trained across the entire breeding range of N. troglodytes but projections were

restricted to a smaller extent focussing on the Western Palearctic (Europe + North Africa). By
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doing so, we accounted for a sampling bias between relatively many records in the Western

Palearctic and relatively few records in the Eastern Palearctic. Models were computed using

the machine learning algorithm Maxent v3.4.1 [112–114]. Maxent is one of the most efficient

presence-only data modelling tools. The feature classes linear, quadratic, and hinge were

selected. A bootstrapping method with 100 replicates randomly splitting the data set into a

training (80%) and a testing subset (20%) was applied. Subsequently, the model was projected

onto the three LGM projections. The area under the curve (AUC), a threshold-independent

measure of model performance, was used for model evaluation [115]. An AUC score of 1 refers

to a perfect fit of the data while a score of 0.5 is no better than random [112,116]. The average

projection across all replicate runs was used for further processing, wherein the minimum

training presence logistic threshold was applied as presence-absence threshold.

Results

Single-locus reconstructions

The haplotype network based on mitochondrial ND2 sequences (Fig 3; n = 174, sequence

length: 723 bp) included the highest number of polymorphic sites among all markers used for

this study and showed a differentiation of sequences into 46 haplotypes. Within this network,

the Nearctic species Nannus pacificus and N. hiemalis were found in two independent genetic

clusters at different positions; both species are remarkably differentiated from any neighbour-

ing Palearctic clusters. For the Palearctic N. troglodytes, eight haplotype clusters could be iden-

tified as listed below:

1. Widespread Western Palearctic. This haplotype cluster comprised most of the Western

Palearctic samples and included the nominate subspecies N. t. troglodytes together with

seven insular subspecies from the North Atlantic Ocean (sspp. islandicus, borealis, zetlandi-
cus, fridariensis, hebridensis, hirtensis, indigenus) as well as the Mediterranean subspecies

Fig 3. TCS haplotype network drawn for the mitochondrial ND2 of the Nannus pacificus/hiemalis/troglodytes species complex including 18 subspecies of N.

troglodytes. Haplotype circles scaled to sample size (n) of each represented haplotype (total sampling: n = 174); substitution distances not to scale.

https://doi.org/10.1371/journal.pone.0230151.g003
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koenigi (represented by two samples from Corsica sharing the same haplotype). The most

common central haplotype (out of eight) of this cluster was found in 36 individuals from

six subspecies. Three samples of nominate N. t. troglodytes from northern Spain (Picos de

Europa) were also included in this cluster.

2. Southern Iberia. Samples of ssp. kabylorum from central and southern parts of the Iberian

Peninsula (from Sotalbo, Province of Ávila, and from the Sierra Nevada, respectively)

belonged to a separate mitochondrial cluster. This southern Iberian cluster comprised four

haplotypes that differed from the central haplotype of the Western Palearctic cluster by at

least three substitutions.

3. Maghreb. Strikingly, N. t. kabylorum populations from central and southern Iberia and

those from Northwest Africa were not closely related; the two haplotype clusters differed by

at least 20 substitutions.

4. Cyrenaica. The single haplotype of the isolated Cyrenaican population of N. t. juniperi did

not fall into any other Mediterranean cluster but was placed in a separate cluster.

5. Caucasus. Further east on the Eurasian continent, individuals of N. t. hyrcanus from the

Caucasus region formed a fifth cluster (of five haplotypes) that differed by at least seven

substitutions from the Western Palearctic nominate cluster.

6. Central Asia. One haplotype of the Central Asian N. t. tianschanicus represented a sixth

mitochondrial cluster that differed by at least eight substitutions from its nearest neigh-

bouring cluster below.

7. Northeast Asia. Five haplotypes of the Northeast Asian and Japanese sspp. dauricus and

fumigatus were assembled in this cluster. They differed by eight substitutions from the Cen-

tral Asian haplotype of N. t. tianschanicus and by at least four substitutions from haplotypes

of the Sino-Himalayan cluster.

8. Sino-Himalayan. This Asian cluster of the Sino-Himalayan region contained the haplo-

types of Chinese sspp. idius (two haplotypes) and talifuensis (one haplotype), together with

two Nepalese haplotypes of ssp. nipalensis at a distance of at least six substitutions.

A haplotype network based on the barcoding marker COI included 38 haplotypes of 18 sub-

species of N. troglodytes which were allocated to the same clusters that were also identified by

the ND2 network (S1 Fig; n = 81, sequence length: 551 bp). Furthermore, the barcoding net-

work included two samples which each represent an additional subspecies not included in the

ND2 haplotype network or in the multi-locus phylogeny: N. t. cypriotes, which was attributed

to the cluster of N.t. hyrcanus from the Caucasus, and N. t.mosukei from the Izu Islands of

Japan, sharing the most common haplotype within N. t. fumigatus (S1 Fig).

Allelic haplotype networks for the three nuclear markers are shown in Fig 4. All three mark-

ers showed a pronounced differentiation of Troglodytes aedon alleles from alleles of the Nan-
nus species complex, including indels of several base pairs (bp) in all three cases. For Fib5,

Cistothorus and T. aedon were separated by a shared indel of 47 bp from Nannus (Fig 4A).

None of the nuclear markers showed a clear phylogeographic structure within Nannus and

many alleles were shared among regions (e.g. Fib5 allele B,Myo2 alleles A and C, RAG1 allele

A; Fig 4). Only forMyo2 three Eastern Palearctic alleles (B plus two derived allelic haplotypes)

were separated by at least two substitutions from a larger cluster from all other regions (Fig

4B).
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Multi-locus phylogeny and divergence times

Our multi-locus phylogeny (Fig 5; see S2 Fig for all outgroup taxa included; S3 Fig for ML

reconstruction) supported the monophyly of the Nannus pacificus/hiemalis/troglodytes species

complex as the sister clade of Troglodytes aedon (1.00 PP). According to our time calibration,

the differentiation of the Nannus species complex from its sister clade took place about 7.4 Ma

ago in the late Miocene (late Tortonian).

According to the fossil time calibration of the multi-locus tree, the onset of diversification

among the three Nannus wren species was dated to the early Pleistocene at about 2.0 Ma.

Divergence times inferred from mtDNA substitution rates suggested two basically different

scenarios. The maximum uncorrected mean rate for ND2 was in good accordance with an

early Pleistocene onset of the Nannus radiation (2.0–2.5 Ma) inferred from the fossil calibra-

tion (Fig 2B). Partitioning of mtDNA genes by codon position had little if any effect on tmrca

estimates. However, the effect of body mass correction was considerable because divergence

time estimates inferred from mass-corrected rates were almost twice as old as those inferred

Fig 4. Allelic haplotype networks for three nuclear markers of Nannus spp. samples with troglodytes aedon as outgroup. A: Fib5, including Cistothorus palustris and

C. platensis as outgroups (n = 31); B:Myo2 (n = 27); C: RAG1 (n = 26). Circles scaled to sample size (stated in parentheses for named allelic haplotypes); substitution

distances not to scale.

https://doi.org/10.1371/journal.pone.0230151.g004
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from the minimum uncorrected rate and from fossil calibration (Fig 2B). According to mass-

corrected rates, the basal radiation of Nannus started already in the early Pliocene (~ 5.0 Ma).

Tmrca estimates inferred from the minimum uncorrected rate supported the Pliocene diversi-

fication of Nannus. That scenario was consistent for nearly all runs with mass-corrected rates

for the entire ND2 gene and for the 3rd codon position only (Fig 2B). Application of mass-cor-

rected rates to the reduced Troglodytidae data set (all other families of Certhioidea and further

outgroups excluded) yielded slightly younger divergence time estimates. This effect was stron-

gest for mass-corrected rates for the 3rd codon position that yielded a tmrca estimate for Nan-
nus wrens at the Pliocene-Pleistocene boundary (Fig 2B).

Fig 5. Multi-locus phylogeny of the Nannus pacificus/hiemalis/troglodytes species complex with outgroups reduced to troglodytes aedon and Cistothorus spp.

(n = 35). Bayesian reconstruction across the five loci COI (696 bp), ND2 (1033 bp),Myo2 (736 bp), Fib5 (570 bp), and RAG1 (763 bp). Node support values indicate

Bayesian posterior probabilities (above nodes) and bootstrap values of maximum likelihood analysis (below nodes; / = node was not recovered in the ML tree); asterisks

mark nodes with full support from both analyses. Divergence times estimated with fossil calibration; 95% confidence intervals shown as node bars. Holocene (0.012–0

Ma, [81]) omitted on timescale for readability.

https://doi.org/10.1371/journal.pone.0230151.g005
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In the Bayesian tree (Fig 5), the two Nearctic Nannus species (N. hiemalis, N. pacificus) and

the two North African clades (N. t. kabylorum from the Western Maghreb and N. t. juniperi
from the Cyrenaica) appeared as four deeply split successively basal offshoots of the Nannus
clade. Neither the Nearctic species nor the two North African clades appeared as sister clades.

However, none of the basal nodes received strong support, so the phylogenetic relationships of

the four taxa in question were not fully resolved. In the ML tree N. t. juniperi from the Cyrena-

ica appeared as a basal offshoot and the two successively basal splits were i) a clade uniting

Maghrebian N. t. kabylorum and Nearctic N. pacificus with poor support for this sister group

relationship, and ii) Nearctic N. hiemalis (S3 Fig).

The terminal clade comprising all samples of continental Eurasian N. troglodytes received

full support in both BI and ML analysis (Figs 5 and S3). That Eurasian clade was divided in

an Eastern and a Western Palearctic subclade that were both strongly supported. East-West

divergence among the two Eurasian continental subspecies groups was dated to Pleistocene

in all time calibrations (e.g. to about 0.9 Ma based on the fossil-calibration, to 1.2–1.3 Ma

based on uncorrected ND2 rate, and to slightly earlier periods at the Pliocene-Pleistocene

boundary (2.8 Ma) based on mass-corrected rates. Each of the two Eurasian subclades com-

prised three major genetic lineages (Fig 5). In the Western Palearctic these are i) N. t. hyrca-
nus from the Caucasus that was sister to a terminal sister group of ii) N. t. kabylorum from

southern Iberia and iii) the large nominate clade from continental Europe (nominate N. t.
troglodytes), the British Isles (sspp. zetlandicus, fridariensis, hebridensis, hirtensis, indi-
genus), other Atlantic Islands (sspp. islandicus, borealis) and Corsica-Sardinia (ssp. koenigi).

In the Eastern Palearctic three distinct clades are represented by i) N. t. tianschanicus from

Central Asia that was sister to a terminal sister group of ii) populations from the Sino-

Himalayas (sspp. nipalensis, talifuensis, idius) and iii) populations from the Russian Far East

and Japan (sspp. dauricus, fumigatus).

Species distribution model for Western Palearctic Nannus troglodytes
The SDM for the current distribution of N. troglodytes in the Western Palearctic as well as the

reconstructed SDMs for distributions during the LGM are shown in Fig 6. Model performance

across all replicate runs was high for current (AUC test = 0.842) as well as past climatic condi-

tions (CCSM3 = 0.838; MPI-ESM-P = 0.83; MIROC = 0.841) indicating that the model dis-

criminates well between suitable and unsuitable space. Across all models, temperature

seasonality (bio 4) had the highest contribution (31.4–34.1%), followed by precipitation of the

driest quarter (bio 17, 21.4–21.4%), precipitation seasonality (bio 15, 17.7%), mean diurnal

temperature range (bio 2, 8.2%), and maximum temperature of the warmest month (bio 5,

7.6%). Contribution of the remaining predictors did not exceed 5%. For details on variable

contributions of all models see Table 1.

A comparison of the SDM for current and LGM conditions reveals that the extent of suit-

able space was considerably smaller during the LGM (Fig 6). Areas of high suitability indi-

cate that the species range in the Western Palearctic could have contracted to isolated

refugia situated in the Mediterranean region. A larger central refuge (or chain of smaller

refuges) existed on the Italian Peninsula, the Balkan Peninsula, and some islands in the

South of the continent (Corsica, Sardinia, Sicily, and Crete; Fig 6B–6D). Potential Iberian

refugia could have existed rather in the West of the peninsula, whereas in the Eastern Medi-

terranean, small glacial refugia may have existed in the Levant and on Cyprus (Fig 6B–6D).

In North Africa scattered glacial refugia might have existed in the Maghreb and these were

largely separated from a small isolated refuge in the Cyrenaica according to all three models

(Fig 6B–6D).
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Discussion

According to our phylogenetic analysis, genetic diversification of Nannus troglodytes is consid-

erably greater than previously documented. In addition to four known mitochondrial lineages

on the Eurasian continent (Europe, Caucasus, Nepal, and Eastern Asia [35]) we identified fur-

ther four distinct clades of the N. troglodytes phylogeny: two in the Ibero-Maghrebian region

Fig 6. Results of species distribution modelling for Western Palearctic Nannus troglodytes. Current potential distribution as derived from Maxent (A). Projection

onto climatic conditions of the Last Glacial Maximum as derived from the global circulation models MPI-ESM-P (B), CCSM3 (C), and MIROC-ESM (D). Suitability

ranges from moderate (dark blue) to high (red).

https://doi.org/10.1371/journal.pone.0230151.g006

Table 1. Contribution of selected environmental predictor variables. Variable contributions exceeding 5% are displayed in bold; temperature abbreviated as T.

Predictor Predictor name Variable contribution (%)

current CCSM3 MPI-ESM-P MIROC

Bio 2 Mean diurnal T range 8.2 8.9 9.9 7.5

Bio 3 Isothermality 3.4 3.8 3.6 4

Bio 4 T seasonality 34.1 32.9 31.8 32.2

Bio 5 Max. T of the warmest month 7.6 9.0 9.6 8.5

Bio 8 Mean T of the wettest quarter 2.7 2.8 2.4 3.5

Bio 12 Annual precipitation 4.8 3.8 4.1 4.9

Bio 15 Precipitation seasonality 17.8 16.5 13.7 17.3

Bio 17 Precipitation of the driest quarter 21.4 22.3 24.8 22.1

Total 100 100 100 100

https://doi.org/10.1371/journal.pone.0230151.t001
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(two clades of N. t. kabylorum), one in the Cyrenaica (N. t. juniperi), and one in Central Asia

(N. t. tianschanicus). Monophyly of N. troglodytes was not supported by our multi-locus analy-

sis and received only poor support from the single-locus analysis by Drovetski et al. ([35]; who

excluded the two North African clades that rendered N. troglodytes paraphyletic). The two

Nearctic species N. pacificus and N. hiemalis did not result as sister clades either (this study;

[35]); yet there are also examples for non-monophyletic Nearctic species groups from other

Holarctic passerine genera, e.g. kinglets, Regulus [117], and nuthatches, Sitta [118]. However,

in wrens, none of the three basal nodes of the Nannus clade received reasonable support.

Therefore, no firm conclusions on colonization pathways between the Nearctic and the Pale-

arctic can be drawn from this poorly supported topology. Drovetski et al. [35] postulated five

Pleistocene vicariant events that triggered diversification of Nannus wrens into six clades from

a single Holarctic ancestor. In accordance with Drovetski et al. [35], our divergence time esti-

mates inferred from fossil dating suggested that Nannus wrens started diversifying in the early

Pleistocene when Nearctic, Eurasian and North African lineages separated from each other

during a very short time period (2.0–1.2 Ma). We advocate for the Pleistocene scenario of Nan-
nus wren diversification as the more reliable one, because it is supported by i) tmrca estimates

based on the maximum uncorrected ND2 rate for passerine birds [94] whereas the minimum

uncorrected ND2 rate was based on a mixed data set of Passeriformes and non-Passeriformes

[96,119] and would thus be expected to pre-date passerine lineage splits to implausibly older

ages; ii) tmrca estimates based on the mass-corrected ND2 rate for the Nannus data set only

(molecular clock calibration based on mass-corrected rates should rely on data sets of closely

related species of comparable body mass [99]).

Though most tmrca estimates based on mass-corrected substitution rates for ND2 sug-

gested a more ancient (Pliocene) basal split of Nannus, early diversification on the Eurasian

continent (basal split of the terminal crown clade) was unanimously dated to the Pleistocene

in all our calibrations (see below). In the Eastern Palearctic, three major clades diversified dur-

ing the Pleistocene in a circum-Tibetan phylogeographic pattern, that has been documented

for many other passerine birds [120–122]: i) a Central Asian clade, ii) a Far East Russian/Japa-

nese clade, and iii) a Sino-Himalayan clade. In the latter, the split between N. t. nipalensis from

Nepal vs. Chinese N. t. idius and N. t. talifuensis corresponds to a characteristic east-west dis-

junction found in many other birds as well [120,121,123].

In the Western Palearctic however, the most striking diversification patterns were observed

in the Ibero-Maghrebian and Cyrenaican regions.

Phylogeographic patterns in the Ibero-Maghrebian and Cyrenaican regions

We could identify strongly divergent mtDNA lineages of Cyrenaican, Maghrebian, and Iberian

wren populations. In our phylogeny, the two North African clades (N. t. kabylorum in the

Maghreb and N. t. juniperi in the Cyrenaica) appeared as two early and deep splits from the N.

troglodytes clade; however their phylogenetic relationships remained unresolved.

Biogeographical affinities between the Iberian Peninsula and North Africa are characterized

by complex phylogeographical patterns and multiple phases of trans-Mediterranean bidirec-

tional faunal exchange during Pliocene and Pleistocene times [12]. Strong genetic differentia-

tion of Northwest African populations from closest Eurasian relatives as found in the Eurasian

Wren is a common phylogeographic pattern in several other Palearctic bird taxa, such as Strix
aluco [124–126], Picus spp. [127], Pica spp. [128], Periparus ater [129], Cyanistes spp. [27–29],

Acrocephalus scirpaceus [130,131], Certhia brachydactyla [132], Cinclus cinclus [133],Musci-
capa striata [134], Ficedula spp. [135,136], Fringilla coelebs [137,138], and Loxia spp. [139].

Similarly deep splits between Iberian and Maghrebian populations of the same species were
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found in other terrestrial vertebrates, such as in amphibians, reptiles [25,140], and in mammals

[141–144]. The Strait of Gibraltar was suggested to be an effective biogeographic barrier for

trans-Mediterranean floral and faunal interchange [145–147] and accordingly split ages

between populations north and south of the Strait were often dated to times when land bridges

between the two continents existed, e.g. during the Messinian Salinity Crisis (MSC) [23,148].

Earlier divergence times for the basal splits of Ibero-Maghrebian populations (N. t. kabylorum
and N. t. juniperi) inferred from mass-corrected rates would be in accordance with that Plio-

cene scenario. There is even strong evidence for earlier Ibero-Maghrebian interchange prior to

the MSC, e.g. in mammals [149], but also for more recent trans-Mediterranean faunal

exchange including oversea-dispersal, stepping-stone colonization during phases of low sea-

level [150,151] or even through human-mediated dispersal [152].

However, the entire Eurasian Nannus wren radiation was dated to the Pliocene-Pleistocene

boundary and therefore the remarkable divergence between and within the East and West

Palearctic clades was presumably shaped by range fragmentation and range shifts along with

global climate cooling. Accordingly, phylogeographic patterns on the Eurasian continent, in

the Mediterranean Basin, and in North Africa coincide with major glacial refugia as identified

in our SDM analysis (i.e. the southern European peninsulas [4,153]).

In North Africa, Pleistocene origin of an east-west disjunction as suggested for N. troglo-
dytes was suggested for several other vertebrate species, such as in reptiles (e.g. in chelonians:

Testudo graeca [154]; and in lizards: Acanthodactylus pardalis group [155]), in birds (e.g. Cya-
nistes teneriffae [27–29], Galerida cristata [156], and Fringilla coelebs [30]) and in mammals

(e.g. Jaculus orientalis [157]). Rather complex phylogeographic patterns have been docu-

mented for other mammals, e.g. vicariance of genetically distinct Red Fox populations (Vulpes
vulpes) of the Maghreb and the Fertile Crescent that are replaced by Rueppell’s Fox (Vulpes
rueppellii) across their distribution gap in Libya [143]. In other mammal species, Sardinian

and other Mediterranean island populations are firmly nested in a trans-Maghrebian clade

(e.g. in the European Wildcat, Felis silvestris [144]), or in a distinctive East Maghrebian clade

(e.g. in the Greater White-toothed Shrew, Crocidura russula [158]).

Even if we considered an earlier onset of Nannus radiation (as inferred from mass-cor-

rected ND2 rates) we can assume that North African wren populations were affected by envi-

ronmental changes along with the global cooling towards the end of the Pliocene and during

the Pleistocene, e.g. during phases of aridification in North Africa at 2.8 Ma and 1.7 Ma

[159,160]. As the establishment of Pleistocene glacial/interglacial climatic cycles resulted in the

alternation of humid- and arid-adapted vegetation in the Mediterranean Basin [159–161],

wrens might have occupied a broader range along the North African coastline during a rela-

tively humid phase providing suitable bridging habitats and then have retreated into the

Maghrebian Atlas Mountains and the Cyrenaican Jebel Akhdar massif due to the onset of

increasing lowland aridification. Paleoenvironmental studies suggested that during the late

Pleistocene the Jebel Akhdar constituted an “environmental refugium” from the extreme arid

conditions in the neighbouring Sahara [162–164]. According to all three models compared in

our SDM analysis, suitable habitats for N. troglodytes in the Maghreb and in the Cyrenaica

were separated by a large corridor of unsuitable habitat (clearest separation according to

CCSM3 and MIROC-ESM; Fig 6C and 6D). Thus, the extant distribution of N. troglodytes in

North Africa well corresponds to a postulated Mauritanian and a Cyrenaican refugium [12].

Cryptic lineages in Western Palearctic wrens

The remaining N. troglodytes taxa of the Eurasian continent showed a typical differentiation

into Western and Eastern Palearctic sister clades, which is a common differentiation pattern of
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Palearctic birds observed on different taxonomic levels, such as within species (e.g. in tits [165]

and in magpies [128]) or between closely related species pairs (e.g. in corvids [166] and in bun-

tings [167]).

Within the Western Palearctic clade of Eurasian Wrens, we identified the Caucasian clade

of N. t. hyrcanus as a first basal offshoot. According to DNA barcoding, there is first evidence

that N. t. cypriotes of the eastern Mediterranean (distributed on Aegean Islands, western and

southern Anatolia, Cyprus, and Levantine coastline [38]), is closely related to the Caucasian

lineage (S1 Fig) [168]. However, the existence of another distinct mtDNA lineage (of N. t.
cypriotes) in the eastern Mediterranean Basin needs further support from future analyses

based on a broader sampling. Further potential glacial refugia in the eastern Mediterranean

and the Middle East identified by our SDM analyses could have harboured ancestors of extant

N. t. cypriotes and N. t. hyrcanus (Fig 6).

In a terminal late Pleistocene colonization event, founder populations from the European

continent spread to the North Atlantic islands [49,50]. According to our SDM analyses suitable

glacial refugia in south-western Europe could have harboured founder populations that colo-

nized the British Islands via land bridges during the LGM (Fig 6B–6D).

On the Iberian Peninsula, we found a north-south disjunction between southern Iberian

populations of N. t. kabylorum that represent a cryptic phylogenetic lineage and northern pop-

ulations of the nominate ssp. troglodytes that were nested in the European nominate clade.

Strong genetic divergence of two mtDNA lineages on the Iberian Peninsula was also observed

in many plant and animal species (reviewed in [4,10]), including e.g. amphibians [140,169],

mammals [170], and bird species such as the White-throated Dipper, Cinclus cinclus
[133,171,172] and Savi’s Warbler, Locustella luscinoides [173]. Particularly, in the latter species

local admixture of two divergent mtDNA lineages in Iberian population is striking; however,

due to low sample sizes on the Iberian Peninsula in our study we cannot infer reliable informa-

tion on levels of mitochondrial introgression. This must be subject to future population genetic

analyses based on a comprehensive sampling of Iberian populations.

The Iberian Peninsula is regarded as one major Pleistocene glacial refugium in the Western

Palearctic and as an important origin of post-glacial expansion of species to Central Europe.

According to our SDM analysis isolated areas of suitable habitat during the LGM existed only

along the west coast of the Iberian Peninsula. Ancestors of the extant genetically distinct N. t.
kabylorum populations from southern Spain might have survived the Pleistocene in that

region.

Along the southern European coastline a long chain of suitable habitat for N. troglodytes
has existed during the LGM (Fig 6B–6D), e.g. in two other classical European glacial refugia

(on the Apennine Peninsula and on the Balkan Peninsula). These central Mediterranean refu-

gia must have been occupied by ancestral populations of the nominate troglodytes clade who

later re-colonized large parts of Europe (including the Atlantic islands and the northern parts

of the Iberian Peninsula) in one post-glacial expansion event. Very likely, Holocene range

expansion of N. t. troglodytes to northern Iberia has limited the northward dispersal of the Ibe-

rian relict populations (i.e. the cryptic ssp. kabylorum lineage from southern Iberia) and

shaped the intra-Iberian differentiation we observe today.

A similar pattern of post-glacial range expansion has been inferred for the Dunnock, Pru-
nella modularis [174]. In this species, northern Europe appears to have been colonised from

Apennine and Balkan refugia, rather than from genetically distinct Iberian or Caucasian line-

ages. Considering the heterogeneous distribution of wrens in Iberia with a continuous distri-

bution in the north and rather scattered distribution in the southern part [175,176], this

distributional pattern might already reflect genetic differentiation of wren lineages. Whether a

zone of sympatry exists between the ranges of the cryptic south Iberian “kabylorum”-
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populations and north Iberian troglodytes-populations, is not known to date and would be sub-

ject to more detailed future research.

Supporting information

S1 Fig. TCS haplotype network drawn for the mitochondrial barcoding marker COI (551

bp) of the Nannus pacificus/hiemalis/troglodytes species complex. For n = 81 sequences,

including 18 subspecies of N. troglodytes. Haplotype circles scaled to sample size (n) of each

represented haplotype; substitution distances not to scale.

(JPG)

S2 Fig. Multi-locus phylogeny of the Nannus pacificus/hiemalis/troglodytes species complex

with all outgroups included. Bayesian reconstruction across the five loci COI, ND2,Myo2,

Fib5, and RAG1. Node support values indicate Bayesian posterior probabilities. Divergence

times estimated with fossil calibration. 95% confidence intervals shown as node bars. Holocene

(0.012–0 Ma, [87]) omitted on timescale for readability.

(JPG)

S3 Fig. Maximum likelihood phylogeny as calculated with RAxML v.7.2.6. Node values

indicate bootstrap support.

(JPG)

S1 Table. Overview of newly sequenced samples of the Nannus troglodytes/hiemalis/pacifi-
cus species group and further outgroup taxa used for this study. GenBank accession num-

bers are given for each of the used markers (XXX = sequence data from own samples;

accession numbers will be provided upon manuscript acceptance). Highlited samples (orange)

were included in the multi-locus phylogenetic reconstruction; further samples (imported from

GenBank) included in haplotype networks (ND2 & COI) only. Geographic coordinates are

given in parentheses if estimated. Abbreviations of collections and institutions (Inst.) for

newly sequenced samples as follows (in alphabetical order): Burke Museum of Natural History

and Culture (UWBM), University of Washington, Seattle, WA, USA; Institute of Medical Sci-

ences (IMS), University of Aberdeen, Foresterhill, Aberdeen, UK; Institute of Pharmacy and

Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany; Muséum

National d’Histoire Naturelle (MNHN), Paris, France; National Museums Scotland (NMS),

Edinburgh, UK; Research Unit of Biodiversity (UMIB), Oviedo University, Mieres, Spain;

Senckenberg Natural History Collections Dresden (SNSD), Museum of Zoology, Dresden,

Germany; tissue collection of J. Martens (MAR).

(XLSX)

S2 Table. Summary of primer pairs used for PCR and sequencing, together with respective

PCR thermal cycle settings.

(XLSX)
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evidence for the species status of the Ibero-Maghrebian grass snake Natrix astreptophora. Biol J Linn

Soc. 2016; 118: 873–888. https://doi.org/10.1111/bij.12782

22. Gutiérrez-Rodrı́guez J, Barbosa AM, Martı́nez-Solano Í. Integrative inference of population history in
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85. Päckert M, Martens J, Tietze DT, Dietzen C, Wink M, Kvist L. Calibration of a molecular clock in tits

(Paridae)—Do nucleotide substitution rates of mitochondrial genes deviate from the 2% rule? Mol Phy-

logenetics Evol. 2007; 44, 1–14. https://doi.org/10.1016/j.ympev.2007.03.006 PMID: 17512759

86. Pacheco MA, Battistuzzi FU, Lentino M, Aguilar RF, Kumar S, Escalante AA. Evolution of modern

birds revealed by mitogenomics: timing the radiation and origin of major orders. Mol Biol Evol. 2011;

28: 1927–1942. https://doi.org/10.1093/molbev/msr014 PMID: 21242529

87. Lavinia PD, Kerr KCK, Tubaro PL, Hebert PDN, Lijtmaer DA. Calibrating the molecular clock beyond

cytochrome b: assessing the evolutionary rate of COI in birds. J Avian Biol. 2016; 47: 84–91. https://

doi.org/10.1111/jav.00766

88. Bininda-Emonds ORP. Fast genes and slow clades: comparative rates of molecular evolution in mam-

mals. Evol Bioinform. 2007; 3: 59–85. https://doi.org/10.1177/117693430700300008

89. Eo SH, DeWoody JA. Evolutionary rates of mitochondrial genomes correspond to diversification rates

and to contemporary species richness in birds and reptiles. Proc R Soc Lond B, Biol Sci. 2010; 277:

3587–3592. https://doi.org/10.1098/rspb.2010.0965 PMID: 20610427

90. Pereira SL, Baker AJ. A Mitogenomic Timescale for Birds Detects Variable Phylogenetic Rates of

Molecular Evolution and Refutes the Standard Molecular Clock. Mol Biol Evol. 2006; 23: 1731–1740.

https://doi.org/10.1093/molbev/msl038 PMID: 16774978
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121. Päckert M, Martens J, Sun Y-H, Severinghaus LL, Nazarenko AA, Ting J, et al. Horizontal and eleva-

tional phylogeographic patterns of Himalayan and Southeast Asian forest passerines (Aves: Passeri-

formes). J Biogeogr. 2012; 39: 556–573. https://doi.org/10.1111/j.1365-2699.2011.02606.x
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