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Background: This study aimed to develop an artificial neural network (ANN) model for
predicting synchronous organ-specific metastasis in lung cancer (LC) patients.

Methods: A total of 62,151 patients who diagnosed as LC without data missing between
2010 and 2015 were identified from Surveillance, Epidemiology, and End Results (SEER)
program. The ANN model was trained and tested on an 75/25 split of the dataset. The
receiver operating characteristic (ROC) curves, area under the curve (AUC) and sensitivity
were used to evaluate and compare the ANN model with the random forest model.

Results: For distant metastasis in the whole cohort, the ANN model had metrics AUC =
0.759, accuracy = 0.669, sensitivity = 0.906, and specificity = 0.613, which was better
than the random forest model. For organ-specific metastasis in the cohort with distant
metastasis, the sensitivity in bone metastasis, brain metastasis and liver metastasis were
0.913, 0.906 and 0.925, respectively. The most important variable was separate tumor
nodules with 100% importance. The second important variable was visceral pleural
invasion for distant metastasis, while histology for organ-specific metastasis.

Conclusions: Our study developed a “two-step” ANN model for predicting synchronous
organ-specific metastasis in LC patients. This ANN model may provide clinicians with
more personalized clinical decisions, contribute to rationalize metastasis screening, and
reduce the burden on patients and the health care system.

Keywords: machine learning, artificial neural network, SEER, metastasis, lung cancer
INTRODUCTION

Lung cancer (LC) is one of the most commonly diagnosed malignancy as well as the leading cause of
cancer-related death both in males and females worldwide (1, 2). Approximately 30-40% of LC
patients present with distant metastasis (DM) at the time of diagnosis (3–5). And distant metastasis
is responsible for a large morbidity and mortality burden among LC patients (6, 7). The most
common metastatic site is bone, followed by liver, brain and adrenal gland (8, 9). Distant metastasis
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is closely related to treatment decisions and clinical outcomes.
Therefore, it is important to identify and diagnose distant
metastasis in the early period.

Computed tomography (CT), magnetic resonance imaging
(MRI), single-photon emission computed tomography (SPECT)
and positron emission tomography/computed tomography
(PET/CT) are the common techniques to screen the distant
metastasis in LC patients. However, routine DM screening to
all LC patients is controversial because of low detection rate of
asymptomatic patients, invasive operation, potential risk of
adverse reactions, complex process and high cost (10–14).
Therefore, there are strong requirements for the identification
of a high-risk group with distant metastasis and the
rationalization of DM screening in LC patients.

The occurrence and development of lung cancer is very
complicated, and most of the clinical characteristics exhibit a
multidimensional and non-linear relationship. The artificial
neural network (ANN) is a complex non-linear model inspired
by the working of biological neural networks (15–17). In the face
of huge and complex medical data, it has the ability to discover
underlying patterns and constantly adjust the algorithm to adapt
to new patient information (18–20). In recent years, the ANN
has been applied successfully in clinical medicine, including
diagnosis, image identification and outcome prediction (16,
21–24).

In this study, we aim to develop an ANN model to predict
synchronous organ-specific metastasis in LC patients. This study
may provide clinicians with more personalized clinical decisions,
reduce the unnecessary financial burden of patients, and allocate
medical resources more rationally.
Frontiers in Oncology | www.frontiersin.org 2
PATIENTS AND METHODS

Patient Selection and Data Collection
We obtained the research participants from the Surveillance,
Epidemiology, and End Results (SEER) Program. The SEER
program is supported by the US National Cancer Institute,
covers cases from 18 cancer registries, and represents
approximately 28-30% of the population (25). Patient data
were screened via the SEER*Stat software (version 8.3.6).
Since the data was anonymized, no additional institutional
review board approval or patient informed consent
was required.

We included patients diagnosed with lung cancer between
2010 and 2015. Variables of interest included age, sex, race,
marital status, insurance, primary site, histology, grade, tumor
size, separate tumor nodules, visceral pleural invasion, T-stage,
N-stage, and organ-specific metastases. We excluded the patients
whose reporting sources were “Autopsy only” or “Death
certification only”, as well as those who did not have complete
information on all the above variables.

Model Development
A multilayer perceptron ANN was created consisting of an
input, an output, and one or more hidden layers (Figure 1). In
this research, thirteen selected demographic or clinical
variables were served as the input layers neurons, and one
variable (metastasis or no metastasis) was served as the output
layer neuron. The number of neurons in the hidden layer was
set empirically. 75% of patients was used to develop the model
(the training group), while the remaining 25% was used to
FIGURE 1 | Schematic structure of the artificial neural network (ANN) model including one input layer with 13 nodes, nine hidden layers with 100 nodes, and one
output layer with 1 node.
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evaluate the developed model (the testing group). A back
propagation (BP) method was used to train the multilayer
perceptron ANN, which modified the weight of the
interneuron connections to reduce the total errors during the
repeated development cycles. During the learning progresses,
the errors between ANN model outputs and expected outputs
were minimized (21). In this study, the number of epochs was
selected from the set {10, 20, 30, 50, 100, 500}.

Statistical Analysis
Kaplan-Meier analysis was used for comparison of survival
among the subgroups classified by distant metastasis.
Multivariate Cox proportional hazard analyses was conducted
to estimate the hazard ratio (HR), and the corresponding 95%
confidence interval (CI), for the potential risk factors. The model
performance was evaluated with the receiver operating
characteristic (ROC) curves and areas under the curve (AUC),
which is a score ranging from 0.50 to 1.0. All statistical analyses
were conducted using SPSS version 21.0 and RStudio Version
1.0.153. A two-tailed P value <0.05 was considered
statistically significant.
RESULTS

Patient Demographics and
Clinical Characteristics
From 2010 to 2015, 62,151 patients with lung cancer were
consecutively included in this study. Patient characteristics
were described in Table 1. The population with a median age
of 68 (IQR, 61-75) years and White people (n=50589, 81.4%)
predominated. The distribution of male and female was almost
1:1. The most common primary site was upper lobe (n=37284,
60%) and the most common histological subtype was
adenocarcinoma (n=33036, 53.2%). Of these patients, 12,182
(19.6%) developed distant metastases, including 3,982 (6.4%)
with bone metastases, 3,674 (5.9%) with brain metastases, and
1,307 (2.1%) with liver metastases.

Survival Analysis
A cohort of 29,296 patients was used to analyze cancer-specific
survival (CSS). The median CSS for patients with none
metastasis, bone metastasis, brain metastasis, liver metastasis
and two or three metastases were 10 months, 4 months, 4
months, 4 months and 3 months, respectively (Table 2).
Kaplan-Meier analysis showed the similar trend in Figure 2. In
addition, multivariate Cox proportional hazard analyses revealed
that bone metastasis (OR=1.630, p<0.001), brain metastasis
(OR=1.698, p<0.001), liver metastasis (OR=1.673, p<0.001)
and two or three metastases (OR=2.025, p<0.001) were
associated with poor prognosis (Table 2).

Construction of the ANN Model
In the training of ANN model, we manually increased the
number of hidden layers starting with 5 layers. The predictive
sensitivity culminated with 9 layers and adding more layer did
Frontiers in Oncology | www.frontiersin.org 3
not improve the performance but increased time of computation
(Table 3). In the end, the ANN model was constructed with 13
neurons in the input layer, 100 neurons in each of the 9 hidden
layers and 1 neuron in the output layer (Figure 1). Meanwhile,
we compared the RF model (ntree=500) with the ANN model,
and the RF model showed obvious overfitting (Figure 3).

Evaluation of the ANN Model
In this study, we first evaluated the model performance for
predicting distant metastasis in the whole cohort (AUC: 0.759,
accuracy: 0.669, sensitivity: 0.906, specificity: 0.613, false
positive rate: 0.387, false negative rate: 0.094, likelihood
ratio positive: 2.339, likelihood ratio negative: 0.154). Then
we evaluated the model performance for predicting organ-
specific metastasis in the cohort with distant metastasis
(Figure 4; Table 4). The sensitivity in bone metastasis, brain
metastasis and liver metastasis were 0.913, 0.906 and
0.925, respectively.

Variable Importance Measure
By applying ANN methods with variable importance measures,
the importance of the 13 variables was standardized and the top
10 were showed in Figure 5. The most important variable was
separate tumor nodules with 100% importance. The second
important variable was visceral pleural invasion for distant
metastasis, while histology for organ-specific metastasis. And
the sex variable only appeared in bone metastases. Relatively, the
race and insurance variable were less important in the
whole cohort.
DISCUSSION

With the increasing incidence of distant metastasis of lung
cancer, this field has gradually become one of the hot spots in
clinical research (26–29). Our study suggested that distant
metastasis was a risk factor for poor prognosis, and the median
CSS for LC patients with bone metastasis, brain metastasis, liver
metastasis and two or three metastases are 4 months, 4 months, 4
months and 3 months, respectively, which was similar to
previous studies (28–32). Thus, early identification and
diagnosis of distant metastasis is meaningful to improve
prognosis and can assist clinicians in making therapeutic choices.

However, the cost of screening in an unselected population is
considerable and the benefit is questionable, given the conflicting
international screening guidelines and clinicians’ possible
tendency to conduct investigations in excess of the
recommended stage (14, 33–35). In this study, we developed a
“two-step” ANN model for predicting synchronous organ-
specific metastasis in LC patients. Our ANN model has high
predictive power, with sensitivity of 0.906 for distant metastasis,
0.913 for bone metastasis, 0.925 for brain metastasis and 0.906
for liver metastasis. It can help predict the possibility of organ-
specific metastasis in LC patients and alert high-risk patients for
further investigation, which can provide clinicians with more
accurate and personalized clinical decisions.
May 2022 | Volume 12 | Article 817372
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TABLE 1 | Baseline demographic and clinical characteristics of patients with lung cancer.

Characteristics Total
patients

Patients with no
metastasis

Patients with
metastases

Patients with bone
metastasis

Patients with brain
metastasis

Patients with liver
metastasis

n=62151 n=49969 n=12182 n=3982 n=3674 n=1307

Age, year
Mean±SD 68±11 68+10 66+11 68±11 64±10 68±10
Median 68 68 66 68 64 68
(IQR 25%-75%) (61-75) (61-76) (59-74) (60-76) (57-72) (61-76)

Sex
Male 31736

(51.1%)
24926 (49.9%) 6810 (55.9%) 2333 (58.6%) 1904 (51.8%) 724 (55.4%)

Female 30415
(48.9%)

25043 (50.1%) 5372 (44.1%) 1649 (41.4%) 1770 (48.2%) 583 (44.6%)

Race
White 50589

(81.4%)
40911 (81.9%) 9678 (79.4%) 3134 (78.7%) 2885 (78.5%) 1076 (82.3%)

Blake 6855
(11%)

5326 (10.7%) 1529 (12.6%) 526 (13.2%) 491 (13.4%) 169 (12.9%)

American Indian/Alaska
Native

291 (0.5%) 241 (0.5%) 50 (0.4%) 17 (0.4%) 18 (0.5%) 4 (0.3%)

Asian or Pacific
Islander

4416
(7.1%)

3491 (7%) 925 (7.6%) 305 (7.7%) 280 (7.6%) 58 (4.4%)

Marital Status
Single (never married) 8840

(14.2%)
6834 (13.7%) 2006 (16.5%) 605 (15.2%) 700 (19.1%) 199 (15.2%)

Married (including
common law)

34269
(55.1%)

27547 (55.1%) 6722 (55.2%) 2235 (56.1%) 1941 (52.8%) 683 (52.3%)

Separated 726 (1.2%) 577 (1.2%) 149 (1.2%) 49 (1.2%) 43 (1.2%) 21 (1.6%)
Divorced 8267

(13.3%)
6637 (13.3%) 1630 (13.4%) 499 (12.5%) 525 (14.3%) 179 (13.7%)

Widowed 10049
(16.2%)

8374 (16.8%) 1675 (13.7%) 594 (14.9%) 465 (12.7%) 225 (17.2%)

Insurance
Uninsured 1602

(2.6%)
1136 (2.3%) 466 (3.8%) 105 (2.6%) 178 (4.8%) 39 (3%)

Insured/Medicaid 60549
(97.4%)

48833 (97.7%) 11716 (96.2%) 3877 (97.4%) 3496 (95.2%) 1268 (97%)

Primary Site
Main bronchus 2036

(3.3%)
1388 (2.8%) 648 (5.3%) 196 (4.9%) 154 (4.2%) 103 (7.9%)

Upper lobe 37284
(60%)

29918 (59.9%) 7366 (60.5%) 2437 (61.2%) 2324 (63.3%) 740 (56.6%)

Middle lobe 3136 (5%) 2600 (5.2%) 536 (4.4%) 170 (4.3%) 158 (4.3%) 58 (4.4%)
Lower lobe 19008

(30.6%)
15486 (31%) 3522 (28.9%) 1146 (28.8%) 1010 (27.5%) 389 (29.8%)

Overlapping lesion of
lung

687 (1.1%) 577 (1.2%) 110 (0.9%) 33 (0.8%) 28 (0.8%) 17 (1.3%)

Histology
Squamous cell

carcinoma
17973
(28.9%)

15782 (31.6%) 2191 (18%) 874 (21.9%) 515 (14%) 331 (25.3%)

Small cell carcinoma 3236
(5.2%)

1807 (3.6%) 1429 (11.7%) 244 (6.1%) 339 (9.2%) 341 (26.1%)

Adenocarcinoma 33036
(53.2%)

26471 (53%) 6565 (53.9%) 2229 (56%) 2185 (59.5%) 429 (32.8%)

Large cell carcinoma 1117
(1.8%)

830 (1.7%) 287 (2.4%) 78 (2%) 101 (2.7%) 32 (2.4%)

Adenosquamous
carcinoma

5244
(8.4%)

3609 (7.2%) 1635 (13.4%) 532 (13.4%) 518 (14.1%) 161 (12.3%)

Sarcomatoid
carcinoma

183 (0.3%) 146 (0.3%) 37 (0.3%) 15 (0.4%) 12 (0.3%) 1 (0.1%)

Carcinoid tumor 1362
(2.2%)

1324 (2.6%) 38 (0.3%) 10 (0.3%) 4 (0.1%) 12 (0.9%)

Grade

(Continued)
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TABLE 1 | Continued

Characteristics Total
patients

Patients with no
metastasis

Patients with
metastases

Patients with bone
metastasis

Patients with brain
metastasis

Patients with liver
metastasis

n=62151 n=49969 n=12182 n=3982 n=3674 n=1307

Well differentiated 7619
(12.3%)

7183 (14.4%) 436 (3.6%) 170 (4.3%) 111 (3%) 37 (2.8%)

Moderately
differentiated

21737
(35%)

18991 (38%) 2746 (22.5%) 1072 (26.9%) 816 (22.2%) 199 (15.2%)

Poorly differentiated 29483
(47.4%)

21774 (43.6%) 7709 (63.3%) 2489 (62.5%) 2406 (65.5%) 785 (60.1%)

Undifferentiated 3312
(5.3%)

2021 (4%) 1291 (10.6%) 251 (6.3%) 341 (9.3%) 286 (21.9%)

Tumor Size, mm
Mean±SD 42±25 39±24 52 51±25 52±25 53±26
Median 35 32 48 46 48 50
(IQR 25%-75%) (22-56) (20-52) (32-69) (32-67) (32-68) (33-70)

Separate Tumor Nodules
STN0 55677

(89.6%)
47096 (94.3%) 8581 (70.4%) 2798 (70.3%) 2788 (75.9%) 945 (72.3%)

STN1 2276
(3.7%)

901 (1.8%) 1375 (11.3%) 445 (11.2%) 365 (9.9%) 145 (11.1%)

STN2 2416
(3.9%)

1187 (2.4%) 1229 (10.1%) 421 (10.6%) 312 (8.5%) 117 (9%)

STN3 1782
(2.9%)

785 (1.6%) 997 (8.2%) 318 (8%) 209 (5.7%) 100 (7.7%)

Visceral Pleural Invasion
PL0 21565

(34.7%)
20633 (41.3%) 932 (7.7%) 278 (7%) 338 (9.2%) 101 (7.7%)

PL1 1758
(2.8%)

1715 (3.4%) 43 (0.4%) 5 (0.1%) 26 (0.7%) 4 (0.3%)

PL2 1513
(2.4%)

1455 (2.9%) 58 (0.5%) 15 (0.4%) 30 (0.8%) 6 (0.5%)

PL3 686 (1.1%) 648 (1.3%) 38 (0.3%) 18 (0.5%) 12 (0.3%) 2 (0.2%)
PLX 36629

(58.9%)
25518 (51.1%) 11111 (91.2%) 3666 (92.1%) 3268 (88.9%) 1194 (91.4%)

T-Stage
T1a 11271

(18.1%)
10696 (21.4%) 575 (4.7%) 183 (4.6%) 214 (5.8%) 69 (5.3%)

T1b 8238
(13.3%)

7397 (14.8%) 841 (6.9%) 288 (7.2%) 267 (7.3%) 86 (6.6%)

T2a 17176
(27.6%)

14653 (29.3%) 2523 (20.7%) 832 (20.9%) 840 (22.9%) 264 (20.2%)

T2b 5989
(9.6%)

4615 (9.2%) 1374 (11.3%) 400 (10%) 485 (13.2%) 143 (10.9%)

T3 9616
(15.5%)

6763 (13.5%) 2853 (23.4%) 951 (23.9%) 869 (23.7%) 293 (22.4%)

T4 9861
(15.9%)

5845 (11.7%) 4016 (33%) 1328 (33.4%) 999 (27.2%) 452 (34.6%)

N-Stage
NX 626 (1%) 346 (0.7%) 280 (2.3%) 93 (2.3%) 83 (2.3%) 32 (2.4%)
N0 32972

(53.1%)
30260 (60.6%) 2712 (22.3%) 863 (21.7%) 1066 (29%) 281 (21.5%)

N1 6262
(10.1%)

5116 (10.2%) 1146 (9.4%) 386 (9.7%) 386 (10.5%) 120 (9.2%)

N2 17174
(27.6%)

11319 (22.7%) 5855 (48.1%) 1885 (47.3%) 1641 (44.7%) 642 (49.1%)

N3 5117
(8.2%)

2928 (5.9%) 2189 (18%) 755 (19%) 498 (13.6%) 232 (17.8%)
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Previously, Zhou et al. used machine learning methods to
analyze the distant metastasis possibility of lung cancer based on
clinical and radiomic features (36). In this study, if only the
features extracted from the CT image were used, the AUC was
72.84%. After combined with the patients’ clinical features,
Frontiers in Oncology | www.frontiersin.org 6
89.09% could be achieved. The authors did not utilize ANN
and included radiomic features, limiting direct comparison with
our model. Recently, Liu et al. constructed a nomogram to
predict bone metastasis of small cell lung cancer (SCL), which
had a c-index of 0.745 in the internal validation set (30).
TABLE 2 | Cancer-specific survival and multivariate analysis for patients with lung cancer.

Site No. (%) Cancer-specific survival Multivariate analysis

Median Mean SD HR (95% CI) P-value

None 19139 (65.3) 10 13.4 12.761 1
Bone 3262 (11.1) 4 6.97 8.061 1.630 (1.568-1.695) <0.001
Brain 2974 (10.2) 4 7.22 8.4 1.698 (1.631-1.768) <0.001
Liver 1126 (3.8) 4 6.46 7.63 1.673 (1.573-1.778) <0.001
Two or Three 2795 (9.5) 3 5.48 7.075 2.025 (1.941-2.112) <0.001
Total 29296 7 11.03 11.769
May 2022 | Volume 12 | Article
SD, standard deviation; HR, hazard ratio; CI, confidence interval.
FIGURE 2 | Kaplan-Meier analysis of cancer-specific survival for patients with lung cancer stratified by organ-specific metastasis.
TABLE 3 | Performance of the artificial neural network (ANN) model with increasing layers for predicting distant metastasis.

Number of the hidden layer AUC Sensitivity Specificity Accuracy FPR FNR LRP LRN

5 0.737 0.776 0.697 0.713 0.303 0.224 2.565 0.321
6 0.747 0.815 0.679 0.705 0.321 0.185 2.536 0.273
7 0.748 0.837 0.660 0.691 0.340 0.163 2.460 0.247
8 0.759 0.889 0.629 0.679 0.371 0.111 2.398 0.176
9 0.759 0.906 0.613 0.669 0.387 0.094 2.339 0.154
10 0.761 0.902 0.620 0.674 0.380 0.098 2.371 0.158
11 0.756 0.896 0.609 0.665 0.391 0.104 2.293 0.170
8

AUC, area under curve; FPR, false positive rate; FNR, false negative rate; LRP, likelihood ratio positive; LRN, likelihood ratio negative.
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Meanwhile, a multivariate model developed by Cacho-Dıáz et al.
was used to predict brain metastases of non-small cell lung
Frontiers in Oncology | www.frontiersin.org 7
cancer (NSCLC) and showed a predictive sensibility of 72% (27).
Although the random forest classifier showed a good
performance in predicting overall survival and the early
response during radiotherapy in NSCLC, it performed
unsatisfactorily in the predictions of our study (37, 38).
Therefore, compared with traditional statistical models, our
ANN model has superior performance.

In this study, we identified important features in the
ANN model, with the top five including separate tumor
nodules, visceral pleural invasion, histology, N-stage and
tumor size, which were in line with the previous studies (27,
28, 30, 32, 36, 39, 40). Similar to our study, sex and N-stage
were reported to be related to the occurrence of bone
metastases (30, 32, 40). Interestingly, the correlation
between larger tumor size and a higher risk of bone
metastasis was uncertain (30, 39). And it was reported that
age, sex, T-stage were independent predictors of brain
metastasis (27, 28, 31, 41). Although the carcinoembryonic
antigen (CEA) levels and epidermal growth factor receptor
gene (EGFR) mutation status were associated with brain
metastasis in patients with newly diagnosed NSCLC, we did
not include these variables because they were not provided in
the SEER database (27, 41).

This study should be considered in the context of several
limitations. First, the study does not include an independent
external cohort to validate the model, which is an important
focus of future research. Nonetheless, we hope that the use of
FIGURE 4 | Receiver operating characteristic curve of the artificial neural
network (ANN) model for predicting organ-specific metastasis.
TABLE 4 | Performance of the artificial neural network (ANN) model for predicting organ-specific metastasis.

Site of the organ-specific metastasis AUC Sensitivity Specificity Accuracy FPR FNR LRP LRN

Bone 0.688 0.913 0.443 0.539 0.557 0.087 1.638 0.197
Brain 0.686 0.906 0.449 0.525 0.551 0.094 1.646 0.209
Liver 0.664 0.925 0.403 0.453 0.597 0.075 1.548 0.187
May 20
22 | Volume
 12 | Article 8
AUC, area under curve; FPR, false positive rate; FNR, false negative rate; LRP, likelihood ratio positive; LRN, likelihood ratio negative.
A B

FIGURE 3 | Receiver operating characteristic curve of (A) the artificial neural network (ANN) model and (B) the random forest (RF) model.
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the SEER database, which accounts for about 28% of the
United States population, will improve generalizability.
Second, due to retrospective studies, the excluded missing
data may lead to selection bias. Therefore, 25% of patients
were randomly assigned to the testing group, which allowed for
pseudo-prospective evaluation of our model and thus
reduced bias.

In conclusion, despite the limitations, we developed and
validated a novel ANN model for the prediction of
synchronous organ-specific metastasis in patients with lung
cancer. This ANN model may help clinicians to make
individualized prediction and rational metastasis screening.
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