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During systems consolidation, memories are spontaneously replayed favoring information transfer from hippocampus to

neocortex. However, at present no empirically supported mechanism to accomplish a transfer of memory from hippo-

campal to extra-hippocampal sites has been offered. We used cultured neuronal networks on multielectrode arrays and

small-scale computational models to study the effect of memory replay on the formation of memory traces. We show

that input-deprived networks develop an activity⇔connectivity balance where dominant activity patterns support

current connectivity. Electrical stimulation at one electrode disturbs this balance and induces connectivity changes.

Intrinsic forces in recurrent networks lead to a new equilibrium with activity patterns that include the stimulus response.

The new connectivity is no longer disrupted by this stimulus, indicating that networks memorize it. A different stimulus

again induces connectivity changes upon first application but not subsequently, demonstrating the formation of a

second memory trace. Returning to the first stimulus does not affect connectivity, indicating parallel storage of both

traces. A computer model robustly reproduced experimental results, suggesting that spike-timing-dependent plasticity

and short time depression suffice to store parallel memory traces, even in networks without particular circuitry constraints.

In vivo, consolidation of declarative memory can be subdivided
into two specific processes (Squire et al. 1984). Rapidly after learn-
ing, memories are temporarily stored in hippocampus, a process
generally referred to as synaptic consolidation. During the second
phase, systems consolidation, memories are slowly transferred
to the neocortex. This stage of memory encoding probably re-
quires repeated activation of cortical areas by the hippocampus
(Sutherland and McNaughton 2000; Frankland and Bontempi
2005; Karlsson and Frank 2009; Nakashiba et al. 2009). Long-
term potentiation is generally assumed to be the underlying pro-
cess in synaptic consolidation (Bramham and Messaoudi 2005).
However, whether and to what extent the signs of reactivation
play a functional role in consolidating respective neural memory
representations or merely reflect use-dependent phenomena of
inert neural activity is presently not clear (Gais and Born 2004).
At present, no empirically supported mechanism to accomplish
a transfer of memory from hippocampal to extra-hippocampal
sites has been offered (Nadel et al. 2007) and the “algorithms”
that create memory traces remain unclear, forming a major obsta-
cle in the search for memory traces.

Studies of artificial neural networks suggested that the sta-
bilization of reverberating neural activity underlying short-
term memory produces long-term memory (Gerard 1949; Hebb
1949). Later basic theories proposed that activity patterns in arti-
ficial recurrent excitatory networks are dictated by attractors, local
minima in the energy landscape that are associated with certain
activation patterns. External input substantially changes the set
of attractors of a network (Amit 1989), and thus the palette of ac-
tivation patterns, which may reflect memory traces. However,
these theories cannot be straightforwardly validated in biological
networks, because simultaneous activity of multiple neurons is

difficult to record in vivo and consequently, it is hard to provide
accurate estimates of the synaptic coupling in vivo.

Dissociated cortical neurons cultured on multielectrode
arrays provide a useful platform to study network aspects of neu-
ronal tissue, including memory. A week after seeding cultures be-
come spontaneously active, to reach a mature state after �3 wk
(van Pelt et al. 2004; Stegenga et al. 2008). Beyond 3 wk, activity
patterns and connectivity stabilize, but a slow drift of observed ac-
tivity patterns (on timescales of hours to days) remains (Stegenga
et al. 2008). Activity patterns are determined by a certain con-
nectivity, and conversely, activity patterns affect connectivity
through plasticity mechanisms like spike-timing-dependent plas-
ticity (STDP). Networks develop an activity–connectivity balance,
where activity patterns support current connectivity, connectivi-
ty appears relatively constant, and activity may fluctuate within a
fixed set of possible patterns. Responses to electrical stimulation
usually differ from spontaneously occurring patterns and there-
fore disturb the activity–connectivity balance, yielding a change
in connectivity.

We hypothesize that networks will develop a new activity–
connectivity equilibrium, such that the new spontaneous activity
patterns include the network response to the applied stimulus. If
so, the first application of a certain stimulus should activate new
patterns, and induce connectivity changes. Repeated application
of that same stimulus should not lead to further connecti-
vity changes as the stimulus response becomes part of the sponta-
neous repertoire, and imposes no further drive away from the
equilibrium. This reasoning provides a tool to verify the
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hypothesis without a priori knowledge of the actual encoding of
memory traces.

Results

We investigated the effect of repeated stimuli on connectivity in
21 experiments in 20 cultured cortical networks on multielec-
trode arrays, and in 36 simulations with a computer model of a
100-neuron cortical network.

Experiments
In all experiments, long-term recordings were subdivided into
data blocks. We determined the connectivity Matrix S for each
data block (see Materials and Methods) to assess connectivity
changes. Without external input, functional connectivity was
quite stable: on average, strengths of functional connections var-
ied ,25% of their mean value for the duration of our experiments
(5–10 h). In stimulation experiments, all evaluation periods be-
tween the stimulation periods contained multiple data blocks,
each having their own connectivity S, with a certain distance to
the initial connectivity. We calculated the mean distance to the
initial connectivity, ED0, for all evaluation periods. Figure 1A
shows the temporal evolution of ED0 in control cultures (n ¼ 4,
dashed line) and cultures that received 15 min of tetanic stimula-
tion (see Materials and Methods) after every hour of no stimula-
tion (n ¼ 13, solid line). There is no significant difference
between the starting points of both curves (t-test P . 0.38).
One-way ANOVA showed that ED0 significantly increased in stim-
ulated cultures (P , 0.03), whereas control cultures showed no
significant change (P . 0.4).

Low-frequency stimulation (0.2 Hz, during 15 min) yielded
comparable results, ED0,norm increased significantly in stimulated
cultures (ANOVA, P , 0.003). The distance between the connec-
tivity before and after the first period of stimulation (EDstim[1])
was much larger than EDstim around subsequent stimulation pe-
riods (Fig. 1B, solid line). After normalization, all distances except
EDstim[2] were significantly smaller than EDstim[1] (t-test: P ,

0.03). The distance across stimulation periods did not drop to
zero, but as shown in Figure 1B, the remaining connectivity dif-
ferences did not yield an increasing distance from the initial con-
nectivity (ED0, dashed line). Figure 1C shows the mean area
under the post-stimulus time histogram (PSTH) upon each stim-
ulus pulse. The mean amount of action potentials in response
to stimulation did not change during the experiment (P ¼ 0.97,
one-way ANOVA). Finally, we estimated similarity between
events (stimulus responses or spontaneous network bursts re-
corded before or after the stimulation period) using the EC mea-
sure (see Materials and Methods). Stimulus responses tended to
have higher similarity to post-stimulation spontaneous bursts
than to prestimulation burst, but the difference was not
significant.

In seven cultures, we investigated the effect of stimulation at
a second electrode. Both electrodes were selected to yield clearly
detectable network responses (see Materials and Methods), with-
out further restrictions related to their location. The distance be-
tween the stimulation electrodes ranged from 200 mm (adjacent
electrodes) to 1.34 mm (see Table 1). Results obtained with adja-
cent stimulation electrodes were similar to those obtained with
larger distances between the stimulation electrodes, but we did
not specifically search for possible distance dependencies.
Similarity between responses to stimulation at one electrode, as
assessed by event correlation (EC, see Materials and Methods), av-
eraged 0.61, and was much higher than EC between the first stim-
ulations at different electrodes. Figure 2A,B shows an example of

two responses to stimulation at different electrodes A and B,
with EC(A[1], B[1]) ¼ 0.32.

Periods of spontaneous activity were divided into 16.7+1.4
data blocks to determine the temporal development of functional
connectivity (see Materials and Methods). In all experiments,
connectivity changes across stimulation periods leveled off
when the first electrode was stimulated during four stimulation
periods.

Subsequent switch to another electrode again yielded large
connectivity changes upon the first stimulation followed by
smaller changes after successive stimuli at that electrode.
Finally, returning to the first stimulation electrode did not induce
connectivity changes larger than spontaneous fluctuations.
Figure 2C shows connectivity changes in response to stimulation
at electrode A or B, with respect to the connectivity just before
the first application of that stimulus (i.e., switching to a new
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Figure 1. Connectivity changes in control recordings and repeatedly
stimulated cultures. Long-term recordings were divided into data
blocks, in each data block we calculated the connectivity matrix and we
calculated the Euclidean distance from the initial connectivity matrix
(ED0). (A) Connectivity changes in control recordings (W, dashed line;
n ¼ 4) and repeatedly (tetanus) stimulated cultures (D, solid line; n ¼
13). Horizontal axis indicates stimulation periods (15 min of tetanic stim-
ulation), the intervals in between denote 1 h of spontaneous activity. The
average distance in the first evaluation period reflects spontaneous fluctu-
ations. Error bars indicate SEM and reflect differences between experi-
ments. (B) Connectivity changes during repeated low-frequency
stimulation (0.2 Hz for 15 min, n ¼ 4). From the periods of spontaneous
activity (1 h each) between stimulation periods, we calculated connectiv-
ity matrices and the distances from the initial connectivity (dashed line, W)
and from the connectivity before the last stimulation period (solid line, V).
Error bars indicate SEM and reflect differences between experiments. (C)
Average area under the PSTH of all stimuli within each stimulation period.
On average there were no significant changes in the number of stimulus
induced action potentials throughout the experiments (ANOVA P ¼
0.97). Total time along horizontal axis in B and C was �12 h.
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stimulation electrode was associated with a new reference for
ED0). Differences across first stimulation periods at either elec-
trode were substantially larger than those across subsequent stim-
ulation periods, or periods of equal
duration of no stimulation. Returning
to stimulus A, we found no connectivity
changes larger than spontaneous fluctua-
tions. On average, the array wide sponta-
neous activity remained constant during
the experiments (ANOVA: P . 0.99, see
Fig. 2D).

Computer modeling
A model of 100 neurons coupled by syn-
apses with short-term facilitation (STF)
and depression (STD) and STDP, robustly
reproduced the in vitro finding that net-
works develop an activity–connectivity
balance. We used several network realiza-
tions, two different implementations of
STDP, various patterns of synaptic noise,
and low-frequency or tetanic stimula-
tion. With additive STDP, the percentage
of extreme synaptic weights (.90% of
their maximum or ,10%) increased dur-
ing the whole simulation and averaged
73% at the end of the simulation. With
tetanic stimulation, the fraction of
synapses with an extreme value de-
creased during all stimulation periods
in all simulations, although in some peri-
ods this decline was small. Whereas
low-frequency stimulation and additive

STDP often led to many synapses with extreme values, the combi-
nation of the multiplicative STDP model and tetanic stimulation
generally yielded unimodally distributed synaptic strengths.

Activity and connectivity robustly stabilized in all networks
explicitly tested (n ¼ 5). To quantify the stability of connectivity,
we calculated the temporal development of ED0. Connectivity sta-
bilized as the slope of the ED0 curve against time approached zero
(see Materials and Methods). The slope dropped below 0.5% with-
in �30 min. In all other models connectivity also stabilized, be-
fore we applied stimulation.

The models also reproduced the experimental finding that a
first external stimulus induced large connectivity changes, reflect-
ed by large EDstim values. Connectivity changes in response to
low-frequency stimulation were substantially larger than those
in response to tetanic stimulation. Although the differences
were much smaller, we saw a similar trend in the experimental
data. Subsequent stimuli did not induce large connectivity chang-
es (tetanic stimulation), or to a rapidly decreasing extent (low-
frequency stimulation), as illustrated in Figure 3A.

In 12 simulations, we stimulated the network model for 2 h
at 0.125 Hz. To investigate the similarity between stimulus re-
sponses and spontaneous pre- and post-stimulation burst pat-
terns, we calculated the events correlations EC (see Materials
and Methods). The example in Figure 3B shows that stimulus re-
sponses progressively resembled their neighbors, indicating a sta-
bilization of the response. Furthermore, the average similarity of
stimulus responses to post-stimulation spontaneous bursts was
significantly higher than that to prestimulation bursts (one-sided
Wilcoxon signed rank, P , 0.001).

A typical example of the responses to two different stimuli A
and B (Fig. 4A) shows that the main difference occurred in the first
part of the response. The later part of the response was generally
relatively similar for different stimuli. Overall similarity of the re-
sponse to these two stimuli was 0.95, which would be indicated as
green in Figure 3B. Provided that synaptic strengths did not reach

1.0

3.0

5.0

7.0

0.0 2.5 5.0 7.5 10.0 12.5

Eu
cl

id
ea

n 
di

st
an

ce

Time [hour]

×10-3

A     A     A     A B     B     B     B     A    A     A     A

0

2

4

6

8

0 50 100 150 200

M
ea

n 
N

o
sp

ik
es

 /5
 m

s b
in

Latency [ms]

0
10
20
30
40
50
60

-50 0 50 100 150 200

El
ec

tr
od

e 
N

r.

Time [ms]

A

B

C

D

Figure 2. Network response to two different stimuli. (A) Example raster plots of responses to stimulus
A (D) and B (†) EC ¼ 0.32. (B) Mean stimulus response to both stimuli (nA ¼ 20, nB ¼ 20) in that exper-
iment. (C) Euclidean distance from the initial connectivity matrix without stimulation (†, n ¼ 4 exper-
iments), or across periods of tetanic stimulation at electrode A or B, as indicated (D, n ¼ 7 experiments).
For comparison, all distances are calculated to the last connectivity matrix before stimulation at that par-
ticular electrode (A or B). (D) Box plot of the spontaneous array wide firing rate. On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points considered to be not outliers, and the outliers are plotted individually. The
firing rate remained unchanged during these experiments (one-way ANOVA, P . 0.99).

Table 1. Overview of cultures used

Culture DIV Stim type Electrode(s)
Stimulation
electrode

1 33 Tetanus A(4x)
2 15 Tetanus A(4x)
3 33 Tetanus A(4x)
4 20 Tetanus A(4x)
5 14 Tetanus A(4x)
6 30 Tetanus A(4x)
7 18 Tetanus A(4x), B(4x), A(4x) A ¼ 17, B ¼ 77
7 20 Tetanus A(4x), B(4x), A(4x) A ¼ 57, B ¼ 48
8 21 Tetanus A(4x), B(4x), A(4x) A ¼ 17, B ¼ 37
9 25 Tetanus A(4x), B(4x), A(4x) A ¼ 74, B ¼ 73
10 19 Tetanus A(4x), B(4x), A(4x) A ¼ 53, B ¼ 78
11 19 Tetanus A(4x), B(4x), A(4x) A ¼ 62, B ¼ 32
12 20 Tetanus A(4x), B(4x), A(4x) A ¼ 12, B ¼ 75
13 21 Low frequency A(10x)
14 47 Low frequency A(10x)
15 53 Low frequency A(10x)
16 18 Low frequency A(10x)
17 40 None
18 29 None
19 35 None
20 36 None

(DIV) days in vitro. Stimuli consisted of biphasic current pulses (12–24 mA;

200-msec per phase), which were delivered during stimulation periods of

10–15 min as low-frequency pulses (inter-pulse interval: 3–5 sec), or as

tetani (trains of 10 pulses at 100 Hz, inter-train interval: 5 sec). Cultures were

stimulated either at a single electrode (A) or at two different electrodes (A

and B). The numbers between brackets indicate the number of stimulation

periods. Electrode numbers refer to column and row; e.g., electrode 32 is

the second electrode of the third column of the MEA.
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extreme values after application of the first stimulus (which in
general was the case when tetanic stimulation was applied), a sec-
ond, different stimulus also induced large connectivity changes
at first, but not after subsequent stimulation periods. Return to
the first stimulus did not induce EDstim values that significantly
exceeded spontaneous fluctuations. Figure 4 also displays ED0

(solid line, open circles) for easy comparison with Figure 2C.

Discussion

Spontaneous neuronal activity patterns reflect connectivity and
closely timed spikes in coupled neurons may potentiate or depress
the efficacy of transmission in the connecting synapse. Without
external input, dissociated cortical networks develop rather stable
firing patterns (Stegenga et al. 2008), as well as a stable connectiv-
ity (le Feber et al. 2007). This implies that the occurring patterns
do not affect connectivity, and therefore, activity and connectiv-
ity are in balance. Activity and connectivity are maintained
because these networks are easily excitable and highly recurrent
(le Feber et al. 2014), which leads to bursting firing patterns,
with many action potentials within the time window of STDP.

Self-stabilizing activity is also obtained in artificial recurrent neu-
ral networks, and stable patterns are referred to as attractors (Amit
and Brunel 1997). Although activity patterns in cultures stabilize
after 3 wk, a slow drift of observed activity patterns (on timescales
of hours to days) remains (Stegenga et al. 2008). A similar slow
drift of self-sustained activity patters is observed in continuous at-
tractor network models (Carter and Wang 2007).

Computer simulations robustly reproduced the experimen-
tally observed stabilization of connectivity. To realize sufficient
ongoing network activity and network bursts, the degree of con-
nectivity (the relative number of connections per neuron) and
the level of synaptic noise in the model were higher than bio-
logically plausible. The relatively high degree ensured that all net-
work models were highly recurrent and, combined with relatively
high synaptic noise, produced bursting activity patterns. The
current study confirms that isolated recurrent networks develop
a stable connectivity. In biological networks, the development
toward this stable connectivity is governed by the “rules” of
STDP (le Feber et al. 2009), indicating that this process depends
on synaptic plasticity.

An external input usually initiates deviating patterns, which
may drive the network away from the existing balance. In vitro,
we used a single stimulation electrode to directly (non-
synaptically) activate multiple neurons (Marom and Shahaf
2002; Wagenaar et al. 2004; Reinartz et al. 2014), and in simula-
tions, we directly activated a set of neurons, which was usually suf-
ficient to trigger a network burst. Stimuli were applied either as
low-frequency pulses or as tetani. Tetanic stimulation has been
shown to affect connectivity in a wide range of frequencies (20–
250 Hz), inter-train intervals (2–10 sec), and numbers of pulses
per train (10–100, see e.g., Jimbo et al. 1998, 1999; Ruaro et al.
2005). The exact parameter setting does not seem very critical,

Figure 3. Connectivity changes following repeated stimulation in the
computer model. (A) Squares show the effect of low-frequency stimula-
tion (0.2 Hz for 15 min), triangles show tetanic stimulation. Both curves
indicate connectivity changes across stimulation periods, averages+
SDs of four simulations are shown. No stimulation (circles) was simulated
once. Significant differences (ANOVA and Tukey HSD test, P , 0.01) are
indicated by an asterisk. (B) Typical example of the similarity between
all events in a simulation: 66 prestimulation bursts (labeled in green),
876 stimulus responses (labeled in red), and 128 post-stimulation bursts
(labeled in blue). The figure shows color-coded values of all EC (n,m),
0 , n, m ≤ (66 + 876 + 128). Twenty-four of the 900 stimulations did
not evoke a network response.
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Figure 4. Response to two different stimuli in simulated network. (A)
example of stimulus response rasterplots (similarity: EC(A[1], B[1]) ¼
0.95). Neurons (0,1,2) (stim A, D), or (3,4,5) (stim B, †) were stimulated
at t ¼ 0. Neurons 80–99 were inhibitory. (B): Euclidean distances
between connectivities across subsequent stimulation periods (vertically
hatched bars). First, stimulus A was applied four times, then four times
stimulus B and then again stimulus A (n ¼ 4 simulations), horizontally
hatched bars indicate distances between equidistant periods without
stimulation (n ¼ 1). Significant differences (ANOVA + Tukey’s HSD, P ,

0.05) are indicated by an asterisk.
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as long as the amplitude is sufficient to induce a network re-
sponse. This view is supported by the current finding that low-
frequency and tetanic stimulation yielded very similar results.
Following a period of external stimulation, networks developed
a new balance due to the mutually affective forces between activ-
ity and connectivity, with activity patterns including the stimulus
response pattern. In simulations, adaptation of network connec-
tivity was reflected by gradually changing stimulus responses
during the early phase of the stimulation period toward a stabile
response in the second half of the stimulation period. Further-
more, in all simulations the similarity between stimulus respons-
es, particularly stabile stimulus responses, and post-stimulation
bursts was significantly higher than that between stimulus
responses and prestimulation bursts. This indicates that the stim-
ulus response patterns appeared in the post-stimulation sponta-
neous activity. We saw a similar but non-significant trend in the
experimental data. Indirect support that the new equilibrium in-
cludes the stimulus response patters, comes from the observation
that subsequent application of the same input no longer affects
connectivity. Although the connectivity changes across stimula-
tion periods did not drop to zero, the remaining connectivity
changes did not yield an increasing distance from the initial con-
nectivity and therefore probably reflect fluctuations around a
stable point. Apparently, the stimulus no longer formed a reorga-
nizing force to drive connectivity further away from the initial
state. The small values of ED, in the order of 1023, reflect the
strengths of functional connections, which usually ranged from
1024 to 1022 (e.g., le Feber et al. 2007) and should therefore not
be interpreted as minor connectivity changes. Investigation of ar-
tificial neural networks showed that external input usually chang-
es the set of attractors in a network (Amit 1989). The changes in
the connectivity matrix S probably reflect such a change in the
set of attractors, and the correspondingly adapted activity pat-
terns can be interpreted as memory traces.

Nakazawa et al. (2004) defined four key features of a memory
trace: (1) the memory trace should form in an experience-
dependent manner, (2) the trace should be specific to the informa-
tion that is acquired, (3) the trace must outlast the period during
which the animal is exposed to the information, and (4) the sub-
sequent presentation of at least part of the original cues should re-
activate the trace. The connectivity changes in this study comply
with conditions 1–3 and probably also with the fourth condition.
Connectivity changes occur upon external stimulation, which
can be seen as experience-dependent formation. Different inputs
induce different connectivity changes and therefore the trace is
specific to the acquired “information,” and connectivity changes
clearly outlasted the stimulation period. The current study fo-
cused on the formation of memory traces, and not on memory
recollection. Therefore, compliance with the fourth criterion
could only be deduced from indirect evidence. The finding that
stimulus responses stabilized, probably means that subsequent
presentation of the cue reactivated the trace and did not interfere
with the established activity–connectivity equilibrium. Marom
and coworkers showed that repeated stimulation of cultured cor-
tical networks induced site-specific responses that enabled deduc-
tion of the stimulation site during up to 24 h (Shahaf et al. 2008;
Kermany et al. 2010). This further supports the view that presen-
tation of the original cue reactivates the trace.

From the waning effect of a repeated stimulus on connectiv-
ity, we can conclude that inputs are stored in network connectiv-
ity, but the encoding scheme remains unclear. Our findings imply
that there is no univocal relationship between the stimulus and
its encoding, as it depends not only on the stimulus but also on
connectivity at the moment of arrival of the stimulus. Simulations
showed that stimulus responses and spontaneous patterns devel-
oped toward each other, until the stimulus response no longer

exerted a driving force away from the existing equilibrium. Spon-
taneous appearance of response patterns may be interpreted as a
memory trace. Similar findings were obtained in vivo by Yao
et al. (2007), who showed that response patterns to visual stimuli
in cat visual cortex also appeared in spontaneous patterns. Their
study, however, did not address network connectivity, and a
mechanism to explain the appearance of the response patterns
in the post-stimulation spontaneous activity patterns was not
determined.

Stimulation at a second, different electrode, induced connec-
tivity changes similar to the first stimulus. Again, large connectiv-
ity changes occurred across the first stimulation period, and much
smaller changes upon subsequent periods. This pattern indicates
that the network also memorized the second input. Moreover, it
confirmed that the network was still able to adapt to external in-
puts, and that the unaffected connectivity after several repetitions
of the first stimulus was not due to impeded network plasticity.
This strongly supports the view that there was no longer a driving
force away from the existing connectivity.

Returning to the first stimulus did not affect network connec-
tivity, indicating that the first memory trace was not erased by ap-
plication of the second stimulus. Instead, both memory traces
existed in parallel, at least for the 4-h periods in our experiment.
The longer-term characterization of memory traces remains sub-
ject to further study, but should be feasible with the current ap-
proach. We were able to detect memory traces after a few hours,
whereas memory transfer from hippocampus to cortex probably
takes at least several days (Wang et al. 2006; Rudy and Sutherland
2008). This accelerated formation of detectable traces may be re-
lated to model artifacts, like the relatively small network size. Al-
ternatively, it may be easier to track memory traces through
functional network connectivity than by extensively searching
for certain patterns in recorded spontaneous activity. Thus, newly
formed memory traces may be detected earlier. The simplicity and
relatively long duration of our cues possibly further accelerated
the formation of memory traces. In general, longer stimulation
periods led to faster establishment of a new balance (data not
shown), indicating that the duration of the stimulus may influ-
ence the time required before a memory trace can be detected.

The computational model, with three incorporated plasticity
mechanisms: STF, STD, and STDP, perfectly reproduced these ex-
perimental findings. STD has been shown to destabilize attractors
in artificial neural networks (Sandberg et al. 2003), but it is added
to the computational model to avoid endless bursts of activity, in
analogy to the presumed mechanism of burst termination in cul-
tured networks (Eytan and Marom 2006). The implemented STDP
enabled network connectivity to adapt to different inputs.
However, occasionally stimulation leads to connectivity close to
the borders of the connectivity space, with many synapses near
their maximum strength or zero. In such cases, more extensive
stimulation was required to pull the network out of this state to-
ward another equilibrium. In simulations, tetanic stimulation
was more suitable than low-frequency stimulation for retaining
connectivity away from these borders. Network activation in the
computer model tended to potentiate strong synapses and to
depress weaker synapses. Second and subsequent pulses of a teta-
nus coinciding with an induced network burst, frequently forced
synapses away from their extreme values, and kept networks in a
state more susceptible to memorizing new inputs. Possibly, addi-
tion of a third, homeostatic plasticity mechanism that has been
demonstrated in in vitro networks, synaptic scaling (Turrigiano
et al. 1998), to the computer model could avoid these artifacts.
Larger network models imposed a very high computational load
and were not necessary to reproduce the experimental findings.
However, it has been shown that the storage capacity of artifi-
cial neural networks, or the number of possible stable states
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(attractors), scales linearly with the number of synapses per neu-
ron (Amit 1989) and, therefore, parallel storage of memory traces
may even be better facilitated in larger networks.

We conclude that cultured cortical networks memorize ex-
ternal inputs. A second input did not erase the first memory trace,
but both traces were stored in parallel. Three synaptic plasticity
mechanisms, STDP, STF, and STD were sufficient to enable parallel
memorization of different inputs, in networks without specific
circuitry constraints.

Materials and Methods

Cell culturing and stimulation
We obtained cortical cells from newborn Wistar rats at postnatal
Day 1. All surgical and experimental procedures complied with
Dutch and European laws and guidelines and were approved by
the Utrecht University Animal Experiments Review Committee.
After trypsin treatment cells were dissociated by trituration.
About 400,000 dissociated neurons (400mL suspension) were plat-
ed on a multielectrode array (MEA; Multi Channel Systems), pre-
coated with polyethyleneimine. This procedure resulted in an
initial cell density of �5000 cells/mm2, with aging cell densities
gradually decreased to �2500 cells/mm2. Neurons were cultured
in a circular chamber with inner diameter d ¼ 20 mm, glued on
top of an MEA, which contained 60 titanium nitride electrodes
with a 30-mm diameter and 200-mm pitch (Fig. 1A). The culture
chamber was filled with �700 mL R12 medium (Romijn et al.
1984). MEAs were stored in an incubator, under standard condi-
tions of 37˚C, 100% humidity, and 5% CO2 in air. For recording,
we firmly sealed the culture chambers with watertight but O2 and
CO2 permeable foil (MCS; ALA scientific), and placed the cultures
in a measurement setup outside the incubator. During recording,
we kept the CO2 level of the environment �5% and we main-
tained humidity. For details about the recording setup see
Stegenga et al. (2008). Recordings began after an accommodation
period of at least 20 min.

We used 20 different cultures for 21 experiments, which
were performed 27+10 d after plating of the cells (see Table
1). Cultures were electrically stimulated with biphasic current
pulses, of 200 msec per phase. Figure 5B shows an example of 5
min of recorded activity. Each tick after one of the electrodes
0–59 indicates an action potential recorded at that channel.
The first 75 sec of this recording contained low-frequency stim-
ulation, indicated by ticks at channel 60. Figure 5C shows exam-
ples of a stimulus response (left) and a spontaneous network
burst (right).

All electrodes were probed at several amplitudes in random
order, to find suitable electrodes for stimulation. There were no
constraints related to the location of the stimulation electrodes.
The amplitude was set to a level that usually (.50% of stimuli)
triggered a network burst in response to a stimulus pulse at the se-
lected electrode (12–24 mA). At these currents, voltages remained
sufficiently low to avoid electrolysis. Pulses were applied at a sin-
gle electrode, either as low-frequency pulses for 10 min (inter-
pulse interval: 3–5 sec), or as tetani (trains of 10 pulses at 100
Hz, inter-train interval: 5 sec, duration: 10–15 min). Subsequent
stimulation periods were separated by 1 h of no stimulation.
Periods of no stimulation were used to record spontaneous activ-
ity, needed to infer functional connectivity. In low-frequency
stimulation experiments, we calculated the area under the PSTH
to quantify the network stimulus response. In tetanus experi-
ments, this was not possible because the mean stimulus response
time window largely exceeded the inter-pulse interval. In tetanus
experiments, we monitored the array wide activity level during
periods of no stimulation to verify that the cultures did not dete-
riorate during the experiments.

First experiments showed quickly decreasing connectivity
changes in response to repeated periods of stimulation at a certain
electrode. After 3–4 stimulation periods at a certain electrode only
minor connectivity changes were found, not or hardly exceeding
spontaneous fluctuations (see Fig. 1B). In experiments with sepa-

rate periods of stimulation at different electrodes, we aimed to
reach this “saturation point” for each electrode, while keeping
the total experimental time as short as possible to avoid spontane-
ous connectivity changes, preferably ,15 h (Stegenga et al. 2008).
Multiple stimulation site experiments contained four stimulation
periods at one electrode, then four periods of stimulation at a sec-
ond electrode and finally four stimulation periods at the first elec-
trode, and lasted �12–13 h.

Connectivity analysis
We used periods of spontaneous activity, including population
bursts as well as periods of more dispersed firing, to analyze net-
work connectivity. Long-term recordings were divided into data
blocks of 213 spiking events. The 1-h epochs between subsequent
stimulation periods were long enough to obtain multiple data
blocks in all experiments, and short enough to keep the total
experimental time below 15 h. In each data block, we used condi-
tional firing probabilities (CFPs) to determine functional connec-
tivity (le Feber et al. 2007). For all possible pairs of active electrodes
(.250 spikes/data block) we calculated CFPs as the probability to
record an action potential at electrode j at t ¼ t (t . 0), given that
one was recorded at electrode i at t ¼ 0. If a CFP curve was not flat
(for exact criteria see le Feber et al. (2007), the two neurons were
functionally connected. Functional connections were character-
ized by two parameters: their strength and latency. These param-
eters may be used to follow the development of a functional
connection in time.

In each data block, the strengths of all connections were
combined into a connectivity matrix S, where S(i,j) contains the
strength of the functional connection from i to j. The magnitude
of changes between subsequent data blocks was assessed by the
Euclidean distance (ED) between connectivity matrices at time t

Figure 5. Multielectrode array (MEA) and recorded activity. (A) MEA,
zoom at one of the electrodes and several neurons, and an example of ex-
tracellularly recorded action potentials. (B) Raster plot of recorded activity.
Vertical axes indicate all electrodes, action potentials are shown as ticks in
the row corresponding to the recording electrode. Ticks in row 60 indicate
stimulus pulses. (C) Examples of a stimulus response (left) and a spontane-
ous network burst (right).
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and time t0 (Equation 1).

EDt0
(t) =

���������������������������∑n

i=1

∑n

j=1

[Sij(t) − Sij(t0)]2
√√√√ (1)

t0 was always smaller than t and chosen as:

The first data block of a recording, or in the case of stimulation
(possibly at multiple electrodes), the last data block before
stimulation at that specific electrode. These distances were in-
dicated by ED0; or
the last data block that was separated from t by a stimulation
period. These distances were indicated by EDstim.

The total number of functional connections widely differed be-
tween cultures, and consequently, absolute ED values covered a
wide range. Therefore, we normalized all ED curves per culture
to their mean value before statistical testing.

Activity pattern analysis
During phases of no stimulation, network bursts were extracted
using the algorithm by Eckmann et al. (2008) and categorized as
pre- and post-stimulus bursts. To assess the similarity between
stimulus responses and spontaneous bursts, we adopted a method
by Segev et al. (2004), which was adapted to yield normalized val-
ues between 0 and 1. In short, at all electrodes signals were repre-
sented as point processes and convoluted with a normalized
Gaussian. We calculated cross correlations per electrode, and
used the maximum mean cross correlation (at one certain latency)
as a measure of similarity (events correlation; EC).

Computer modeling
We used a 100-neuron computer model to verify that (1) without
external input networks established a stable connectivity, (2) ex-
ternal input disrupted this equilibrium, (3) networks reached a
new stable connectivity, and (4) this new equilibrium was no lon-
ger disrupted by external input.

To simulate the firing activity, we used a (pulse-coupled) spik-
ing neural network model as described in Gritsun et al. (2010,
2011). We used a set of neuronal parameters that adequately repro-
duced the dynamics of cortical neurons (Izhikevich 2003), for de-
tails see “Neuron model.” This set contained a mixture of all
neuronal cell types that exist in the cortex, which gave our simula-
tions a certain degree of robustness against variations of cell prop-
erties. However, it should be noted that our results might be
affected by changes in cell properties. On average, each neuron
had 50 connections. This implicates that the probability that any
pair of two neurons were monosynaptically connected was 50%.
This very high connection probability was necessary to enable
the neurons to trigger each other, and ensured a highly recurrent
network. The connections were modeled by synapses that ex-
pressed STF and STD as described by Markram et al. (1998). In addi-
tion to the model by Gritsunet al., synapsesalso expressed additive
(Song et al. 2000) or multiplicative STDP (Van Rossum et al. 2000),
implemented with a symmetric implementation of a nearest
neighbor pairing scheme. We applied parameter values obtained
byGuptaetal. (2000)andMarkrametal. (1998)todescribe thephe-
nomenological synaptic model of short-term plasticity, including
STDandSTF, fordetailsonthesynapsemodel see“Synapsemodel.”

Ongoing spontaneous activity was initiated by white synap-
tic noise as implemented by Gritsun et al. (2012), see “Synaptic
noise and model sensitivity.” Synaptic noise was set to a level
high enough to ensure that all models displayed spontaneous ac-
tivity, including network bursts. This indicated that neurons were
not solely driven by noise input, but were able to trigger each oth-
er. Connectivity matrices containing the strengths of all synapses
were stored every minute to observe the development of con-
nectivity under various conditions of stimulation or no stimu-
lation. To validate the solidity of our findings, we repeated all

experiments in multiple simulations, based on different network
realizations (different set of neurons and a different connectivity
matrix), different noise realizations (with the same stochastic
characterization), and different STDP models (see “Synaptic noise
and model sensitivity”). A more thorough sensitivity analysis of
this type of models can be found in Gritsun et al. (2010, 2011,
2012). The model was implemented in Matlab and C++, codes
are available upon request.

We aimed to start stimulation only in networks with stabi-
lized connectivity. To quantify the stability of connectivity, we
calculated ED0 for all connectivity matrices. Connectivity stabi-
lized as the slope of the ED0 curve against time approached zero.
Connectivity was considered stable when this slope dropped be-
low 1% of the slope based on the first five data points. Before com-
puter models were stimulated, we ensured that sufficient time was
allowed to develop a stable connectivity. This stable connectivity
was used as the reference to calculate ED0.

To simulate electrical stimulation, we simultaneously acti-
vated a random set of three (all excitatory) or nine neurons (two
inhibitory and seven excitatory), which was in general sufficient
to trigger a network response. This approach is conceptually con-
gruent with experimental stimulation, where even stimulation
through a single electrode activates a set of nearby neurons and
neurons that have an axon passing close to the stimulation elec-
trode, which together may trigger a reverberating network re-
sponse. Stimulation was applied as either low-frequency stimuli
(0.2 Hz, for 15 min at 9 neurons, see Fig. 3A, or 0.125Hz for 2 h
at 3 neurons, see Fig. 3B) or tetani, as described under cell cultur-
ing and stimulation. To calculate EDstim in simulations, we used
the mean weights of all synapses during the last 15 min before
stimulation and the first 15 min after stimulation. EDstim values
that significantly exceeded those of connectivity matrices with-
out stimulation in between were indicative of a disturbed balance,
whereas EDstim values in the range of spontaneous fluctua-
tions confirmed that the stimulus was compatible with the
connectivity.

Neuron model
The structure of the network was based on the network model by
Gritsun et al. (2010). Eighty percent of the neurons in the model
were excitatory and 20% were inhibitory. Each neuron i spiked
when the intracellular potential fi reached the threshold of 30 mV:

xi(t) =
1 if fi ≥ 30 mV
0 otherwise

{
(2)

Each time step the postsynaptic potentials (pspij) of all presynap-
tic neurons were added to the membrane potential vi:

fi(vi, pspij) = vi(t) +
∑n

j=1
pspij (3)

with n the number of neurons.
The membrane potential was described using two differential

equations as described in Izhikevich (2003):

dvi

dt
= 0.04v2

i + 5vi + 140− ui + I (4)
dui

dt
= ai(bivi − ui) (5)

with a resetting of the variables v and u after spiking:

if vi ≥ 30 mV, then
vi � ci

ui � ui + di

{
(6)

Here, vi and ui are the membrane potential and the recovery cur-
rent. The recovery current represents the activation of K+ and
the inactivation of Na+ currents. The time scaling of recovery
was described by ai, with lower ai resulting in slower recovery. bi

described the sensitivity of ui for subthreshold variations of vi ci
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and di describe the after-spike reset value of vi and ui . ci represents
the fast high-threshold K+ conductance and di the slow high-
threshold K+ and Na+ conductances. I was the input to the neuron
with arbitrary units and can be used for synaptic currents or in-
jected DC currents. All models contained a mixture of the differ-
ent inhibitory (fast spiking and low-threshold-spiking neurons)
and excitatory neuron types (regular spiking, intrinsically burst-
ing, and chattering neurons). The mixture was created by assign-
ing the following values to the parameters for excitatory neurons:

(ai, bi) = (0.02,0.2)

(ci, di) = (−65,8) + (15,−6)ri
2 (7)

and to the inhibitory neurons:

(ai, bi) = (0.02,0.25) + (0.08,−0.05)ri

(ci, di) = (−65,2)
(8)

in which ri is a random variable uniformly distributed over [0;1].
In Equation (7) ri was squared to create a bias toward RS neurons
(Izhikevich 2004).

Synapse model
Upon the arrival of new synaptic input the postsynaptic potential
was increased (excitatory input) or decreased (inhibitory), the
amplitude of this change reflected the synaptic efficacy (seij). Oth-
erwise, the PSP declined to baseline with time constant tsyn. We
took tsyn ¼ 5 msec for both excitatory and inhibitory neurons,
based on the time constants of the AMPA and the GABAA synaptic
conductances (5.3 and 5.6 msec, respectively (Dayan and Abbott
2000)).

dpspij

dt
= −

pspij

tsyn
+ seijeijd(t − t

sp
j − lij) (9)

where, t
sp
j is the time of spiking of the postsynaptic neuron, eij is 1

when the presynaptic neuron ( j) was excitatory, 21 when this
neuron was inhibitory, and 0 if there was no connection between
the neurons.

The latency (lij) is defined as the total delay between genera-
tion of the action potential in neuron j and arrival of the postsyn-
aptic potential in neuron i. iij is normally distributed between 3.5
and the maximal latency (Dmax). Dmax is estimated to be 25 msec
in cortical cultures (Gritsun et al. 2010). We maintained this value
of Dmax, even in the current, much smaller network model to
avoid that a small Dmax of a few milliseconds, combined with
the time step of 1 msec would give all neuron pairs approximately
the same latency.

The synaptic efficacy represented different processes of syn-
aptic plasticity: seij = F · aij · rij · yij · wij, in which rij, yij, and wij

are variables giving the relative strength of the synapse. rij is relat-
ed to the fraction of neurotransmitter available and represents
short-term depression, yij represents STF, and wij is a factor deter-
mined by STDP. Initial values are shown in Table 2. F and aij are

parameters that give the baseline strength of the synapse. The val-
ue of aij depends on the type of synapse as shown in Table 3. With
these values of aij, the value of se corresponds to biologically plau-
sible EPSP values if F ¼ 1. F, a compensation factor to achieve
bursting patterns in the small network with few inputs per neuron
was equal for all synapses and was set to a value necessary for
bursting.

Short-term plasticity

STF and depression were implemented using the model of
Markram et al. (1998).

With presynaptic spikes, r and y were updated according to
the following equations:

rk
ij = rk−1

ij (1− yk
ij)e
−DtSTP/trec + 1− e−DtSTP/trec (10)

yk
ij = yk−1

ij e−DtSTP/tfacil + uij(1− yk−1
ij e−DtSTP/tfacil ) (11)

In these equations, DtSTP is the time difference between the previ-
ous and the current presynaptic spike, uij is the release probability
for the first spike and trec and tfacil are time constants for the recov-
ery and facilitation, respectively. k is the running variable for the
spikes. For instance, rk

ij refers to the fraction of neurotransmitter
available with the current spike in the synapse between neuron j
and i. Table 3 shows the values for uij, trec, and tfacil.

Spike-timing-dependent plasticity

Both the additive and the multiplicative STDP model update w at
every pre- and postsynaptic spike: wk+1

ij = wk
ij + Dw. STDP was only

implemented in excitatory connections; if the presynaptic neu-
ron was inhibitory, w was constant and equal to 0.5. Both models
were based on measurements of EPSC. This means that they actu-
ally model how the EPSC instead of the EPSP is influenced by
STDP. However, it was assumed that these were linearly correlated;
so these equations could also be used to model the influence of
STDP on the EPSP.

The additive STDP model (Song et al. 2000) used the follow-
ing update rules:

Dwij = A−eDtSTDP/t− if DtSTDP < 0
A+e−DtSTDP/t+ if DtSTDP ≥ 0

{
(12)

with A+ ¼ 0.005, A2 ¼ 21.05 A+, and t2 ¼ t+ ¼ 20 msec.DtSTDP is
the time difference between the presynaptic and the postsynaptic
spike, DtSTDP ¼ tpost2(tpre + lij). Furthermore, we limited wij to 0 ≤
wij ≤ 1 to avoid instability.

The value of A– followed from the restriction that the prod-
uct of the probability of potentiation and amount of potentiation
should equal the product of the probability of depression and
amount of depression. The probability of a postsynaptic spike
just after a presynaptic spike is higher than a presynaptic spike
just after a postsynaptic spike, because presynaptic spike can

Table 2. Initial values of the variables

Variable Initial value Comment

vi 265 mV
fi 265 mV
ui bi

.vi Dependent on neuron type
rij 1
yij uij Dependent on synapse type
wij Between 0 and 1 Dependent on synapse type,

initially uniformly distributed

( fi) intracellular potential, (vi) membrane potential, (ui) recovery current.

rij represents short-term depression, yij represents STF, and wij is a factor

determined by STDP.

Table 3. Values of the parameters used in the synapse model for
different synapse types

uij trec (ms) tfacil (ms) aij (mV)

EE 0.59 813 0 1.8
EI 0.049 399 1797 5.4
IE 0.16 45 376 7.2
II 0.25 706 21 7.2

EE is a synapse between two excitatory neurons, EI between an excitatory

(presynaptic) and inhibitory (postsynaptic), IE between inhibitory and excit-

atory and II between two inhibitory neurons. aij gives the baseline strength

of the synapse, uij is the release probability for the first spike and trec and tfacil

are time constants for the recovery and facilitation. The values of uij, trec, and

tfacil are taken from Gritsun et al. (2010), the values of aij from Tsodyks et al.

(2000).
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initiate postsynaptic spike, but not vice versa. Thus, the mean
amount of depression should be lower than the mean amount
of potentiation (Song et al. 2000).

The multiplicative model (Van Rossum et al. 2000) was al-
most equal to the additive model, except that the weight update
of the depression depended on the weight. The same parameter
values were used, but the value of A2 was adapted to depend on
the current weight.

This gave the following update rules for the multiplicative
model:

Dwij = A−wije
DtSTDP/t− if DtSTDP < 0

A+e−DtSTDP/t+ if DtSTDP ≥ 0

{
(13)

Here, we took A2 ¼ 20.0105, assuming that wij averaged �0.5.
In this, STDP model boundaries were not necessary.

Synaptic noise and model sensitivity
Synaptic noise initiated network spiking and bursting behavior.
Synaptic noise was injected as white noise added to the synaptic
current I (see Equation 4). This approach avoided an undesired in-
fluence of the time step size on the solution of the differential
equations.

The mean value of the synaptic noise (m) was 0. Simulations
with different values of the compensation factor of the synaptic
strength (F), the standard deviation of the noise (s), and the max-
imal latency (Dmax) were done to assess the influence of these pa-
rameters on the number of bursts, the duration of these bursts and
the spike frequency during these bursts. This was done with the
additive as well as the multiplicative STDP model. The simulation
time was 5 min and the initial weights of the synapses (w) were
uniformly distributed between 0 and 1. The neuron parameters
(a, b, c, and d) and the connectivity matrix (L) were equal in all
simulations, except for the simulations in which Dmax was varied,
when all latencies increased or decreased proportionally to Dmax.
Simulations with the following parameter values were performed:

† F ranged between 4 and 10 with steps of 1. These simulations
were done with s ¼ 2.0 or s ¼ 2.5. Dmax was 25 msec.

† s Varied between 2.0 and 3.0 with steps of 0.1. F was 5 and Dmax

was 25 msec.
† Dmax was 3.5, 5, 10, 15, 20, and 25 msec. In all these simula-

tions, F ¼ 5 and s ¼ 2.1.
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