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ABSTRACT Esophageal cancer is the eighth most common malignant tumor and the sixth leading cause of cancer-related death worldwide. 

Esophageal squamous cell carcinoma (ESCC) is the main histological type of esophageal cancer, and accounts for 90% of all cancer 

cases. Despite the progress made in surgery, chemotherapy, and radiotherapy, the mortality rate from esophageal cancer remains high, 

and the overall 5-year survival rate is less than 20%, even in developed countries. The C-X-C motif chemokine ligand 12 (CXCL12) 

is a member of the CXC chemokine subgroup, which is widely expressed in a variety of tissues and cells. CXCL12 participates in the 

regulation of many physiological and pathological processes by binding to its specific receptor, C-X-C motif chemokine receptor type 

4 (CXCR4), where it causes embryonic development, immune response, and angiogenesis. In addition, increasing evidence indicates 

that the CXCL12/CXCR4 axis plays an important role in the biological processes of tumor cells. Studies have shown that CXCL12 

and its receptor, CXCR4, are highly expressed in ESCC. This abnormal expression contributes to tumor proliferation, lymph node 

and distant metastases, and worsening prognosis. At present, antagonists and imaging agents against CXCL12 or CXCR4 have been 

developed to interfere with the malignant process and monitor metastasis of tumors. This article summarizes the structure, function, 

and regulatory mechanism of CXCL12/CXCR4 and its role in the malignancy of ESCC. Current results from preclinical research 

targeting CXCL12/CXCR4 are also summarized to provide a reference for the clinical diagnosis and treatment of ESCC.
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Introduction

Esophageal cancer is the eighth most common cancer world-

wide1,2, and includes the following two main tissue subtypes: 

esophageal squamous cell carcinoma (ESCC) and esophageal 

adenocarcinoma. ESCC, which is the main histological type of 

esophageal cancer, accounts for approximately 90% of cases 

worldwide1. In recent years, the mortality rate from esoph-

ageal cancer has remained high despite advances in surgical 

techniques, chemotherapy, and radiotherapy strategies. Most 

patients are diagnosed at an advanced stage, often with lymph 

node or distant metastasis, and the 5-year survival rate is less 

than 20%, even in developed countries3-5. However, the 5-year 

survival rate in patients with early diagnosis can be consid-

erably improved using endoscopic or surgical treatment6. 

Therefore, identifying a biomarker that can predict tumori-

genesis at an early stage would be very advantageous.

The human chemokine system contains approximately 

50 different chemokines and 20 chemokine receptors7. 

Chemokines are soluble small molecule secretory proteins 

with a molecular weight of approximately 8 kDa. According 

to the position of their cysteine residues, chemokines can be 

divided into 4 subgroups (CX3C, CXC, CC, and C, the C rep-

resents a cysteine residue, and the X/X3 represents 1 or 3 non-

cysteine amino acids at conserved locations)8,9. Chemokine 

receptors are a class of 7 transmembrane spanning domains, 

G-protein coupled receptors (GPCR), characterized according 

to their preference for specific chemokines10,11. The C-X-C 

motif chemokine ligand 12 (CXCL12) is one of the most stud-

ied CXC chemokine ligands. CXCL12 participates in many 

aspects of tumor progression, including survival, proliferation, 
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angiogenesis, and metastasis, by interacting with its CXCR4 

receptor12,13.

The molecular mechanisms involved in the origin and 

development of ESCC is unclear, and limit the effective 

treatment options available for this highly invasive tumor. 

However, in recent years, the role of the CXCL12/CXCR4 axis 

in ESCC has received increasing attention. Understanding 

such mechanisms will help to design new targeted therapies 

to block  chemokine-induced metastasis and diffusion. This 

manuscript aims to describe the role of the CXCL12/CXCR4 

axis in promoting the malignant processes in ESCC, and to 

describe antagonists and imaging agents available for tar-

geting CXCL12/CXCR4, to help guide clinical diagnosis and 

treatment.

CXCL12/CXCR4 axis structure and 
function

The CXCL12 gene is located on chromosome 10q11 and has 6 

different splice variants in humans, including α, β, γ, δ, ε, and 

ψ14. CXCL12 is a type of homeostatic chemokine, which was 

originally identified as a pre-B cell growth factor and was found 

to be essential for homeostatic maintenance15,16. CXCL12 is 

constitutively expressed by bone marrow stromal cells and is 

therefore referred to as stromal cell-derived factor-117. CXCR4 

is a member of the GPCR family, comprising 352 amino acid 

residues, and is expressed in hematopoietic stem/ progenitor, 

pre-B, and endothelial cells18-21. CXCR4 is reported to be 

upregulated in at least 23 different hematopoietic and nonhe-

matopoietic tumors, including esophageal cancer22-37.

The CXCL12/CXCR4 axis is involved in embryonic devel-

opment, immune and inflammatory responses, and stem cell 

migration and homing38-43. This axis is also involved in the 

malignant development of various tumors, by promoting pro-

liferation, angiogenesis, invasion, and metastasis44. CXCL12 

works synergistically with vascular endothelial growth factor 

to induce neovascularization by attracting endothelial progen-

itor cells into the tumor microenvironment, resulting in a suf-

ficient oxygen supply for tumor maintenance25. CXCL12 can 

promote the tumor process in four ways: it can promote neo-

vascularization and provide oxygen supply to tumor cells45, 

it can directly promote tumor cell survival and proliferation 

in a paracrine manner46, it can cause tumor cell metastasis 

by interacting with its receptor (CXCR4), and finally, CXCR4 

positive tumor cells may have stem cell characteristics and 

therefore a high potential for metastasis47,48.

Regulation of the CXCL12/CXCR4 
axis in cancer

The expression of CXCL12/CXCR4 can be regulated at three 

levels: epigenetic, transcriptional, and post-transcriptional. 

Epigenetic silencing leads to an imbalance in CXCL12/CXCR4 

expression, and hypermethylation of the CXCL12 promoter, 

which is related to its metastatic potential, and has been 

detected in various tumors49-51. However, loss of methylation 

from the CXCR4 promoter leads to upregulation of CXCR4 

expression52,53. Tumor cells that maintain CXCR4 overexpres-

sion, but lack CXCL12 expression, can be directionally trans-

ferred to target organs with high levels of CXCL12 secretion.

Some studies have also found that CXCL12/CXCR4 is regu-

lated by many factors at the transcriptional level. The CXCR4 

gene promoter contains the hypoxia response element, and 

under hypoxic conditions, hypoxia-inducible factor-1 binds to 

the hypoxia response element region of the promoter, causing 

the induction of CXCR4 gene transcription and expression54. 

Furthermore, recent studies have reported that nuclear factor 

kappa-B promotes tumor growth by increasing the expres-

sion of CXCL1255. Matrix metalloproteinase 10 promotes 

angiogenesis, growth, and diffusion of human hepatocellular 

carcinomas by regulating the CXCL12/CXCR4 axis, and the 

phosphatase and tensin homolog can negatively regulate the 

expression of CXCL12/CXCR4 in prostate tumors, thereby 

controlling tumor growth56-58. In Jurkat T cells, the lipid phos-

phatase activity of the phosphatase and tensin homolog neg-

atively regulates CXCR4-mediated chemotaxis. Other factors, 

such as transforming growth factor β59, transcription factor 

1260, and vascular endothelial growth factor61 have all been 

reported to control the expression of CXCR4, thereby regulat-

ing malignant tumor progression.

In addition to the two regulatory mechanisms previously 

mentioned, CXCL12 and CXCR4 can be regulated by micro-

RNAs (miRNA) at the post-transcriptional level. MiRNAs are a 

group of highly conserved, small molecular weight noncoding 

RNAs that participate in the post-transcriptional regulation of 

gene expression by base complementarity at the 3′-UTRs of 

target mRNAs, leading to mRNA silencing or transcriptional 

inhibition62. Control of the expression of CXCL12 in cancer 
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cells is due to it being targeted by numerous microRNAs, and 

this targeting of the CXCL12/CXCR4 axis may inhibit the 

development and progression of tumors63-67.

The CXCL12/CXCR4 signaling 
pathway

The interaction of CXCL12 with its G-protein coupled 

CXCR4 receptor causes dissociation of its heterotrimeric 

G protein into Gαi and Gβγ subunits and converts guano-

sine diphosphate to guanosine triphosphate68. Gαi inhibits 

cAMP production, and causes the inhibition of adenylate 

cyclase activation, resulting in the activation of downstream 

pathways, such as phosphatidylinositol 3-kinase/protein 

kinase B (PI3K/AKT) and mitogen-activated protein 

kinase (MAPK)40,69. Gβγ activates phospholipase C (PLC), 

which causes the  synthesis of diacylglycerol and inositol 

1,4,5-triphosphate (IP3). Next, IP3 binds to specific recep-

tors on the endoplasmic reticulum, causing the mobiliza-

tion of Ca2+ from  intracellular stores, resulting in a transient 

increase in intracellular Ca2+70. This interaction induces the 

activation of various intracellular pathways, including PI3K-

Akt, Ca2+-dependent tyrosine kinases such as PYK2, and 

MAPK signaling pathways, such as P38, JNK, and ERK71-73. 

In addition, related studies have found that CXCL12/CXCR4 

can also induce the Janus kinase signal and transcriptional 

activator (JAK/STAT) pathway independently of G-protein 

involvement74. β-arrestin can also regulate the CXCR4 sign-

aling pathway and mediate CXCR4 receptor internalization 

and desensitization75,76. CXCL12 can also mediate signal 

transduction through a different receptor, CXCR7. No clas-

sical GPCR-mediated signal transduction was observed when 

CXCR7 was activated by CXCL12; however, the β-arrestin 

pathway was activated and scavenging of CXCL12 was pro-

moted77. CXCR7 can also improve cell survival through the 

PLC/MAPK signaling pathway78. In addition, CXCR7 can 

change the conformation of the CXCR4/G-protein complex, 

to form heterodimers with CXCR4, and abrogate the CXCR4-

mediated signal transduction79,80. The CXCL12-mediated 

signaling pathway is shown in Figure 1.

Studies have also found that expression of CXCR4 in ESCC 

is higher than that in its corresponding normal tissues. CXCR4 

also promotes tumor growth and invasion by activating the 

PI3K/AKT pathway and upregulating Rho family members81. 

However, the role of the CXCL12/CXCR7 signaling axis in 

ESCC is unclear.

The relationship between CXCR4 and 
ESCC

CXCR4 expression in ESCC

CXCL12 and CXCR4 are expressed in ESCC, and the level 

of CXCR4 in primary and metastatic lesions is significantly 
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Figure 1 Schematic diagram of the CXCR12/CXCR4 signaling pathway.
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increased compared to normal tissues. The increased expres-

sion levels of CXCL12 and CXCR4 detected by immunohis-

tochemistry in cancer tissues were 50%–78% and 61%–80%, 

respectively, showing significantly higher levels than found 

in the corresponding normal tissues82,83. Meta-analyses have 

found that CXCR4 was significantly expressed in ESCC when 

compared to normal tissues84. CXCR4 is a 7 transmembrane 

spanning domain receptor, and studies have found that it is 

mainly expressed in the cytoplasm and nucleus22. This phe-

nomenon may be due to the activation of CXCR4 by CXCL12 

and its translocation from the cell membrane to the cyto-

plasm, thereby inducing CXCR4 internalization and specific 

downstream signals. The expression profiles of CXCL12 and 

CXCR4 are closely related to the biological behavior of ESCC. 

The expression of CXCL12 affects multiple phenotypes in 

ESCC, including tumor stage, lymphatic invasion, and dis-

tant metastases83. The expression of CXCR4 in primary 

tumors is positively correlated with micrometastases to the 

lymph nodes and bone marrow, and negatively correlated 

with overall disease-specific survival85,86. Lukaszewicz-Zajac 

et al.87 showed that the concentrations of serum CXCL12 

and CXCR4 in patients with esophageal cancers were signifi-

cantly higher for CXCL12, but significantly lower for CXCR4, 

when compared to healthy controls. This increase in serum 

CXCL12 concentration and the concomitant decrease in its 

receptor may lead to enhancement of the binding capability 

of CXCR4 for CXCL12.

CXCR4 promotes ESCC cell metastasis

ESCC is a highly invasive and metastatic tumor with a high 

tendency for lymph node metastasis. Metastasis of ESCC may 

involve the CXCR4 receptor because of its unique metastatic 

pattern and the high constitutive expression of CXCL12 at 

these metastatic sites88,89. Studies have found that CXCR4 is 

a major chemotactic receptor that mediates lymph node and 

distant organ metastases in ESCC90. The inhibition of CXCR4 

with shRNA can significantly reduce the metastatic and prolif-

erative potentials of esophageal cancer91.

CXCR4 positive tumor cells metastasize to organs with 

high expression of CXCL12, such as lymph nodes, liver, 

lungs, and bone marrow88,89. Clinical data from ESCCs 

have found that the expressions of CXCL12 and CXCR4 are 

closely related to increased lymph node metastasis, and fur-

ther studies have confirmed that CXCL12/CXCR4 promotes 

lymph node metastasis86. CXCL12 is highly expressed in 

lymph nodes and can stimulate lymphangiogenesis by induc-

ing the migration of lymphangiogenic endothelial cells. The 

expression of CXCR4 is upregulated in lymphangiogenic 

endothelial cells, but the expression level is low in mature 

lymphatic vessels92.

The role of CXCR4 in ESCC cell proliferation

In addition to metastasis, the CXCL12/CXCR4 signaling 

pathway also contributes to the growth and proliferation of 

ESCC93. When the CXCR4 knockdown cell line, Eca109, was 

inoculated subcutaneously into BALB/c-nu/nu mice, the 

tumor mass formed at the inoculation site was significantly 

smaller than the control group. Moreover, in vitro experiments 

showed that the proliferative capability of Eca109-shCXCR4 

cells was significantly lower than that of the parent or control 

cells. The proliferative capability of human esophageal epithe-

lial cells overexpressing CXCR4 was increased when compared 

to the control group81.

The molecular mechanisms by which CXCR4 promotes 

tumor growth have been widely studied and are summarized 

as follows: (1) CXCL12 produced in the tumor microenviron-

ment allows the entrance of circulating endothelial progeni-

tor cells to the primary tumor site and produces additional 

microvessels, thereby increasing the oxygen supply to the 

tumor14,94. (2) Common signaling pathways related to cell 

proliferation, such as PI3K/AKT, Src/ERK1-2, and STAT3, are 

activated81,95,96. (3) CXCR4/CXCL12 signaling participates in 

Treg cell bone marrow homing and plasmacytoid dendritic 

cell trafficking, suppressing antitumor immunity, and pro-

moting tumor growth97-99.

CXCR4 and ESCC prognosis

Studies have evaluated the effect of CXCR4 expression on 

ESCC prognosis. Gockel et al.100 found that the median sur-

vival time for patients with high expression of CXCR4 was 

20 months, whereas patients with low expression was 76 

months, and this difference was statistically significant (P < 

0.05). Furthermore, Wu et al.101 conducted a meta-analysis 

comprising 1,055 participants from Germany, China, and 

Japan. Their results showed that overexpression of CXCR4 

was related to tumor depth (P < 0.01), lymph node status 

(P < 0.01), tumor node metastasis stage (P < 0.01), and histo-

logical type (P = 0.03). They also found that the overexpres-

sion of CXCR4 significantly decreased the overall survival rate 
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(P < 0.01). CXCR4 therefore appears to be a reliable prognos-

tic marker for ESCC.

In vivo and in vitro studies have shown that lentiviral  

shRNA-induced CXCR4 gene silencing can inhibit the pro-

liferation and metastasis of ESCC cell lines91. However, the 

specific mechanism by which CXCR4 promotes the malignant 

development of ESCC is unclear. Recent studies have found a 

rare population of tumor cells whose characteristics are like 

stem cells. These cells have been referred to as cancer stem cells 

(CSCs), which mediate tumor growth, metastasis, recurrence, 

and therapeutic drug resistance. CXCR4 is highly expressed in 

esophageal tumor stem cells, and the expression of CXCR4 in 

CSCs increases the malignant potential of ESCC and is asso-

ciated with ESCC recurrence and metastasis102. CD133+ eso-

phageal CSCs contain a subgroup of cells characterized by the 

co-expression of CXCR4 and can evade the primary tumor 

and establish distant metastasis47.

Future therapeutic directions

The overexpression of CXCR4 in tumor tissue is related to 

tumor proliferation, tumor invasion, increased risk of metas-

tasis, and poor survival outcomes. Many small molecule 

CXCR4-based inhibitors have been developed because of 

the important role of CXCR4 in oncology. These inhibitors 

have been reviewed in several studies. CXCR4 antagonists 

can be divided into the following 4 categories: small peptide 

CXCR4 antagonists, non-peptide CXCR4 antagonists, anti-

bodies against CXCR4, and SDF-1-modified agonists and 

antagonists.

AMD3100 (Mozobil™) was originally designed for the 

treatment of AIDS103,104. However, an increase in leukocyte 

count was observed in phase I clinical trials after AMD3100 

administration. Further studies found that AMD3100 could 

mobilize CD34+ hematopoietic stem cells in peripheral 

blood and when combined with granulocyte colony-stim-

ulating factor, could recruit more CD34+ cells than granu-

locyte colony-stimulating factor alone105,106. The US Food 

and Drug Administration (FDA) has currently approved 

AMD3100 for the treatment of patients with hematological 

malignancies106.

CTCE-9908 is a small peptide analog designed to antago-

nize the CXCR4 receptor and can reduce the lung metastasis 

of osteosarcoma and melanoma cells in a mouse model107. 

CTCE-9908 has been tested in phase I/II clinical trials 

as monotherapy for solid tumors. In July 2005, the FDA 

approved CTCE-9908 as an orphan drug for the treatment 

of osteosarcoma.

Olaptesed Pegol (NOX-A12) is an L-stereoisomer RNA oli-

gonucleotide, linked to 40 kDa polyethylene glycol, and this 

anti-CXCL12 compound can bind and neutralize CXCL12 

with high affinity and specificity. NOX-A12 mobilizes hemato-

poietic stem cells and leukocytes from the bone marrow to the 

periphery108. In 2014, NOX-A12 combined with radiotherapy 

was approved by the FDA for the treatment of malignant gli-

oma and is currently being tested in phase IIa clinical trials for 

the treatment of multiple myeloma and chronic lymphoblastic 

leukemia109,110. In addition, other CXCR4 inhibitors are in dif-

ferent stages of clinical trials (Table 1).

CXCR4 antagonists play an important role in sensitizing 

tumor cells to chemotherapy, and existing imaging agents tar-

geting CXCR4 have the potential to guide and monitor cancer 

treatment. The overexpression of CXCR4 in cancer directly 

affects the chemotaxis of tumor cells to the SDF-1 gradient. 

Highly expressed CXCL12 has been found in the most com-

mon sites of tumor metastasis, including lymph nodes, lung, 

liver, and bone marrow. Thus, the application of CXCR4 in 

the field of diagnostic oncology has received increasing atten-

tion. Nimmagadda et al.111 used Iodine-125-labeled anti-

CXCR4 monoclonal antibody to develop CXCR4-targeted 

tracers. Hanaoka et al.112 revealed that the peptide antagonist, 

Ac-TZ14011, labeled with Indium-111 is a potential agent for 

imaging the expression levels of CXCR4 in metastatic tumors 

in vivo. In addition, AMD3100 has been labeled with copper 

64 to visualize CXCR4-positive tumor cells in vivo and can be 

used to guide and monitor anti-CXCR4 tumor treatment113. 

Several other agents, such as CXCL12-based imaging agent 

and bioluminescence, have been developed for tumor diag-

nostic imaging114-116.

For locally advanced and unresectable ESCC patients, 

the combination therapy of fluoropyrimidine-based and 

platinum-based drugs is the first-line treatment. Persistent 

high expression of CXCR4 after chemoradiotherapy pre-

dicts tumor recurrence and poor prognosis117. Blocking 

the CXCL12-CXCR4 axis can enhance the sensitivity of 

tumor cells to chemotherapy drugs and reduce tumor 

volume82,93,118,119. In addition, it has been reported that 

AMD3100 can regulate immunosuppression in  tumors120,121. 

These results indicate that blocking the CXCL12/CXCR4 

axis is a potential target to improve the prognosis of ESCC 

on the basis of existing chemotherapy, radiotherapy, or 

immunotherapy.
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Conclusions

Overall, current data show that the CXCL12/CXCR4 axis pro-

motes the proliferation, invasion, and metastasis of ESCC, 

resulting in poor patient prognosis. However, the efficacy of 

CXCR4 antagonists or imaging agents in ESCC has not been 

fully tested in clinical trials. Additional research and clinical 

evaluations are therefore needed to determine the benefits of 

CXCL12/CXCR4 antagonism and imaging agents in patients 

with ESCC.
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