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Abstract

In biomedical applications of machine learning, relevant information often has a rich structure that 

is not easily encoded as real-valued predictors. Examples of such data include DNA or RNA 

sequences, gene sets or pathways, gene interaction or coexpression networks, ontologies, and 

phylogenetic trees. We highlight recent examples of machine learning models that use structure to 

constrain model architecture or incorporate structured data into model training. For machine 

learning in biomedicine, where sample size is limited and model interpretability is crucial, 

incorporating prior knowledge in the form of structured data can be particularly useful. The area of 

research would benefit from performant open source implementations and independent 

benchmarking efforts.

Introduction

It can be challenging to distinguish signal from noise in biomedical datasets, and machine 

learning methods are particularly hampered when the amount of available training data is 

small. Incorporating biomedical knowledge into machine learning models can reveal 

patterns in noisy data [1] and aid model interpretation [2]. Biological knowledge can take 

many forms, including genomic sequences, pathway databases, gene interaction networks, 

and knowledge hierarchies such as the Gene Ontology [3]. However, there is often no 

canonical way to encode these structures as real-valued predictors. Modelers must creatively 

decide how to encode biological knowledge that they expect will be relevant to the task.
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Biomedical datasets often contain more input predictors than data samples [4,5]. A genetic 

study may genotype millions of single nucleotide polymorphisms (SNPs) in thousands of 

individuals, or a gene expression study may profile the expression of thousands of genes in 

tens of samples. Thus, it can be useful to include prior information describing relationships 

between predictors to inform the representation learned by the model. This contrasts with 

non-biological applications of machine learning, where one might fit a model on millions of 

images [6] or tens of thousands of documents [7], making inclusion of prior information 

unnecessary.

We review approaches that incorporate external information about the structure of desirable 

solutions to learn from biomedical data. One class of commonly used approaches learns a 

representation that considers the context of each base pair from raw sequence data. For 

models that operate on gene expression data or genetic variants, it can be useful to 

incorporate networks or pathways describing relationships between genes. We also consider 

other examples, such as neural network architectures that are constrained based on 

biological knowledge.

There are many complementary ways to incorporate heterogeneous sources of biomedical 

data into the learning process, which have been covered elsewhere [8,9]. These include 

feature extraction or representation learning before modeling and/or other data integration 

methods that do not necessarily involve customizing the model itself.

Sequence models

Early neural network models primarily used hand-engineered sequence features as input to a 

fully connected neural network [10,11] (Figure 1). As convolutional neural network (CNN) 

approaches matured for image processing and computer vision, researchers leveraged 

biological sequence proximity similarly. CNNs are a neural network variant that groups 

input data by spatial context to extract features for prediction.

The definition of ‘spatial context’ is specific to the input: one might group image pixels that 

are nearby in 2D space, or genomic base pairs that are nearby in the linear genome. In this 

way, CNNs consider context without making strong assumptions about exactly how much 

context is needed or how it should be encoded; the data inform the encoding. A detailed 

description of how CNNs are applied to sequences can be found in Angermueller et al. [12].

Applications in regulatory biology

Many early applications of deep learning to biological sequences were in regulatory biology. 

Early CNNs for sequence data predicted binding protein sequence specificity from DNA or 

RNA sequence [13], variant effects from noncoding DNA sequence [14], and chromatin 

accessibility from DNA sequence [15].

Recent sequence models take advantage of hardware advances and methodological 

innovation to incorporate more sequence context and rely on fewer modeling assumptions. 

BPNet, a CNN that predicts transcription factor binding profiles from DNA sequences, 

accurately mapped known locations of binding motifs in mouse embryonic stem cells [16••]. 
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BPNet considers 1000 base pairs of context around each position when predicting binding 

probabilities with a technique called dilated convolutions [17], which is particularly 

important because motif spacing and periodicity can influence binding. cDeepbind [18•] 

combines RNA sequences with information about secondary structure to predict RNA 

binding protein affinities. Its convolutional model acts on a feature vector combining 

sequence and structural information, using context for both to inform predictions. 

APARENT [19] is a CNN that predicts alternative polyadenylation (APA) from a training set 

of over three million synthetic APA reporter sequences. These diverse applications 

underscore the power of modern deep learning models to synthesize large sequence datasets.

Models that consider sequence context have also been applied to epigenetic data. 

DeepSignal [20] is a CNN that uses contextual electrical signals from Oxford Nanopore 

single-molecule sequencing data to predict 5mC or 6 mA DNA methylation status. MRCNN 

[21] uses sequences of length 400, centered at CpG sites, to predict 5mC methylation status. 

Deep learning models have also been used to predict gene expression from histone 

modifications [22,23•]. Here, a neural network model consisting of long short-term memory 

(LSTM) units was used to encode the long-distance interactions of histone marks in both the 

3′ and 5′ genomic directions. In each of these cases, proximity in the linear genome helped 

model the complex interactions between DNA sequence and epigenome.

Applications in variant calling and mutation detection

Identification of genetic variants also benefits from models that include sequence context. 

DeepVariant [24••] applies a CNN to images of sequence read pileups, using read data 

around each candidate variant to accurately distinguish true variants from sequencing errors. 

CNNs have also been applied to single molecule (PacBio and Oxford Nanopore) sequencing 

data [25], using a different sequence encoding that results in better performance than 

DeepVariant on single molecule data. However, many variant calling models still use hand-

engineered sequence features as input to a classifier, including current state-of-the-art 

approaches to insertion/deletion calling [26,27]. Detection of somatic mutations is a distinct 

but related challenge to detection of germline variants, and has also recently benefitted from 

use of CNNs [28].

Network-based and pathway-based models

Rather than operating on sequences, many machine learning models in biomedicine operate 

on inputs that lack intrinsic order. Models may make use of gene expression data matrices 

from RNA sequencing or micro-array experiments in which rows represent samples and 

columns represent genes. To account for relationships between genes, one might incorporate 

known interactions or correlations when making predictions or generating a low-

dimensional representation of the data (Figure 2). This is comparable to the manner in which 

sequence context pushes models to consider nearby base pairs similarly.
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Applications in transcriptomics

Models built from gene expression data can benefit from incorporating gene-level 

relationships. One form that this knowledge commonly takes is a database of gene sets, 

which may represent biological pathways or gene signatures for a biological state of interest. 

PLIER [29••] uses gene set information from MSigDB [30] and cell type markers to extract 

a representation of gene expression data that corresponds to biological processes and reduces 

technical noise. The resulting gene set-aligned representation accurately decomposed cell 

type mixtures. MultiPLIER [31] applied PLIER to the recount2 gene expression 

compendium [32] to develop a model that shares information across multiple tissues and 

diseases, including rare diseases with limited sample sizes. PASNet [33] uses MSigDB to 

inform the structure of a neural network for predicting patient outcomes in glioblastoma 

multiforme (GBM) from gene expression data. This approach aids interpretation, as pathway 

nodes in the network with high weights can be inferred to correspond to certain pathways in 

GBM outcome prediction.

Gene-level relationships can also be represented with networks. Network nodes typically 

represent genes and real-valued edges may represent interactions or correlations between 

genes, often in a tissue or cell type context of interest. Network-based stratification [34] is an 

early example of a method for utilizing gene interaction network data in this manner, applied 

to improve subtyping across several cancer types. More recently, netNMF-sc [35••] 

incorporates coexpression networks [36] as a smoothing term for dimension reduction and 

dropout imputation in single-cell gene expression data. The coexpression network improves 

performance for identifying cell types and cell cycle marker genes, as compared to using raw 

gene expression or other single-cell dimension reduction methods. Combining gene 

expression data with a network-derived smoothing term also improved prediction of patient 

drug response in acute myeloid leukemia [37•] and detection of mutated cancer genes [38]. 

PIMKL [39•] combines network and pathway data to predict disease-free survival from 

breast cancer cohorts. This method takes as input both RNA-seq gene expression data and 

copy number alteration data, but can also be applied to gene expression data alone.

Gene regulatory networks can also augment models for gene expression data. These 

networks describe how the expression of genes is modulated by biological regulators such as 

transcription factors, microRNAs, or small molecules. creNET [40••] integrates a gene 

regulatory network, derived from STRING [41], with a sparse logistic regression model to 

predict phenotypic response in clinical trials for ulcerative colitis and acute kidney rejection. 

The gene regulatory information allows the model to identify the biological regulators 

associated with the response, potentially giving mechanistic insight into differential clinical 

trial response. GRRANN [42], which was applied to the same data as creNET, uses a gene 

regulatory network to inform the structure of a neural network. Several other methods 

[43,44] have also used gene regulatory network structure to constrain the structure of a 

neural network, reducing the number of parameters to be fit and facilitating interpretation.
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Applications in genetics

Approaches that incorporate gene set or network structure into genetic studies have a long 

history [45,46]. Recent applications include expression quantitative trait loci (eQTL) 

mapping studies, which aim to identify associations between genetic variants and gene 

expression. netReg [47] implements a graph-regularized dual LASSO algorithm for eQTL 

mapping [48] in a publicly available R package. This model smoothens regression 

coefficients simultaneously based on networks describing associations between genes (target 

variables in the eQTL regression model) and between variants (predictors in the eQTL 

regression model). eQTL information is also used in conjunction with genetic variant 

information to predict phenotypes, in an approach known as Mendelian randomization 

(MR). In [49], a smoothing term derived from a gene regulatory network is used in an MR 

model. The model with the network smoothing term, applied to a human liver dataset, more 

robustly identifies genes that influence enzyme activity than a network-agnostic model. As 

genetic datasets grow, we expect that researchers will continue to develop models that 

leverage gene set and network databases.

Other models incorporating biological structure

Knowledge about biological entities is often organized in an ontology, which is a directed 

graph that encodes relationships between entities (see Figure 3 for a visual example). The 

Gene Ontology (GO) [3] describes the relationships between cellular subsystems and other 

attributes describing proteins or genes. DCell [50••] uses GO to inform the connectivity of a 

neural network predicting the effects of gene deletions on yeast growth. DCell performs 

comparably to an unconstrained neural network for this task. Additionally, it is easier to 

interpret: a cellular subsystem with high neuron outputs under a particular gene deletion can 

be inferred to be strongly affected by the gene deletion, providing a putative genotype-

phenotype association. DeepGO [51•] uses a similar approach to predict protein function 

from amino acid sequence with a neural network constrained by the dependencies of GO. 

However, a follow-up paper by the same authors [52] showed that this hierarchy-aware 

approach can be outperformed by a hierarchy-naive CNN, which uses only amino acid 

sequence and similarity to labeled training set proteins. This suggests a trade-off between 

interpretability and predictive accuracy for protein function prediction.

Phylogenetic trees, or hierarchies describing the evolutionary relationships between species, 

can be useful for a similar purpose. glmmTree [53] uses a phylogenetic tree describing the 

relationship between microorganisms to improve predictions of age based on gut 

microbiome data. The same authors combine a similar phylogeny smoothing strategy with 

sparse regression to model caffeine intake and smoking status based on microbiome data 

[54]. Phylogenetic trees can also describe the relationships between subclones of a tumor, 

which are fundamental to understanding cancer evolution and development. Using a tumor 

phylogeny inferred from copy number aberration (CNA) sequencing data as a smoothing 

term for deconvolving tumor subclones provided more robust predictions than a phylogeny-

free model [55]. The tree structure of the phylogeny and the subclone mixture model are fit 

jointly to the CNA data.
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Depending on the application, other forms of structure or prior knowledge can inform 

predictions and interpretation of the model’s output. CYCLOPS [56] uses a circular node 

autoencoder [57] to order periodic gene expression data and estimate circadian rhythms. The 

authors validated the method by correctly ordering samples without temporal labels and 

identifying genes with known circadian expression. They then applied it to compare gene 

expression in normal and cancerous liver biopsies, identifying drug targets with circadian 

expression as candidates for chronotherapy. NetBiTE [58••] uses drug-gene interaction 

information from GDSC [59], in addition to protein interaction data, to build a tree ensemble 

model with splits that are biased toward high-confidence drug-gene interactions. The model 

predicts sensitivity to drugs that inhibit crucial signaling pathways in cancer, showing 

improved predictive performance compared to random forests, another commonly used tree 

ensemble model.

Conclusions and future directions

As the quantity and richness of biomedical data have increased, sequence repositories and 

interaction databases have expanded and become more robust. This raises opportunities to 

integrate these resources into the structure of machine learning models. There have been 

several past attempts to benchmark and compare approaches to integrating structured data 

into predictive models in biomedicine, including the evaluation in Ref. [60] and more recent 

studies in Refs. [61] and [62]. Extending and broadening benchmarking efforts such as these 

will be vital, improving our understanding of the suitability of problem domains and datasets 

for the classes of methods described in this review.

Many methods described in this review have open-source implementations available; 

however, increased availability of performant and extensible implementations of these 

models and algorithms would facilitate further use and development. In the future, we 

foresee that incorporating structured biomedical data will become commonplace for 

improving model interpretability and boosting performance when sample size is limited.
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Figure 1. 
Contrasting approaches to extracting features from DNA or RNA sequence data. Early 

models defined features of interest by hand based on prior knowledge about the prediction or 

clustering problem of interest, such as GC content or sequence melting point, as depicted in 

the left branch in the figure. Convolutional models, depicted in the right branch, use 

sequence convolutions to derive features directly from sequence proximity, without requiring 

quantities of interest to be identified before the model is trained. Red or blue emphasis 

denotes inputs to the predictive model (either the hand-defined numeric features on the left 

or the outputs of convolutional filters on the right).
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Figure 2. 
The relationships between genes provide structure that can be incorporated into machine 

learning models. One common approach is to use a network or collection of gene sets to 

embed the data in a lower-dimensional space, in which genes that are in the same gene sets 

or that are well-connected in the network have a similar representation in the lower-

dimensional space. The embedded data can then be used for classification or clustering 

tasks. The ‘x’ values in the data table represent gene expression measurements.
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Figure 3. 
Directed graph-structured data, such as an ontology or phylogenetic tree, can be 

incorporated into machine learning models. Here, the connections in the neural network 

used to predict a set of labels parallel those in the tree graph. This type of constraint can also 

be useful in model interpretation: for example, if the nodes in the right tree branch have high 

neuron outputs for a given sample, then the subsystem encoded in the right branch of the 

tree graph is most likely important in making predictions for that sample. The ‘x’ values in 

the data table represent gene expression measurements.
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