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Abstract: Triple- negative breast cancer (TNBC) incidence rate has regularly risen over the last
decades and is expected to increase in the future. Finding novel treatment options with minimum
or no toxicity is of great importance in treating or preventing TNBC. Flavonoids are new attractive
molecules that might fulfill this promising therapeutic option. Flavonoids have shown many bio-
logical activities, including antioxidant, anti-inflammatory, and anticancer effects. In addition to
their anticancer effects by arresting the cell cycle, inducing apoptosis, and suppressing cancer cell
proliferation, flavonoids can modulate non-coding microRNAs (miRNAs) function. Several pre-
clinical and epidemiological studies indicate the possible therapeutic potential of these compounds.
Flavonoids display a unique ability to change miRNAs’ levels via different mechanisms, either
by suppressing oncogenic miRNAs or activating oncosuppressor miRNAs or affecting transcrip-
tional, epigenetic miRNA processing in TNBC. Flavonoids are not only involved in the regulation of
miRNA-mediated cancer initiation, growth, proliferation, differentiation, invasion, metastasis, and
epithelial-to-mesenchymal transition (EMT), but also control miRNAs-mediated biological processes
that significantly impact TNBC, such as cell cycle, immune system, mitochondrial dysregulation,
modulating signaling pathways, inflammation, and angiogenesis. In this review, we highlighted
the role of miRNAs in TNBC cancer progression and the effect of flavonoids on miRNA regulation,
emphasizing their anticipated role in the prevention and treatment of TNBC.
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1. Introduction

Globally, breast cancer (BC) is the major and most common repeatedly diagnosed can-
cer in women, which accounts for 30% of new female cancer cases [1], and also the second
cause of death in women worldwide [2]. Approximately 1 million breast cancer cases are
diagnosed annually worldwide [3]. In the United States, more than 276,000 new breast can-
cer cases were estimated by the end of 2020, and 12.9% of all women will be diagnosed with
breast cancer over their lifetime [4–7]. Approximately 15% of breast cancers are categorized
as triple- negative breast cancer (TNBC), characterized by a poor prognosis, early relapse,
distant recurrence, unresponsiveness to conventional treatment, aggressive tumor growth,
aggressive clinical demonstration, and lowest survival rate [8]. Compared with other BC
subtypes, TNBC is more often associated with hereditary conditions. Evidence showed
that among newly diagnosed BC patients, around 35% of BC suppressor protein1 (BRCA1)
and 8% of BC suppressor protein2 (BRCA2) mutations in this population were TNBC [9].
Lack of progesterone (PR), estrogen (ER), and human epidermal growth factor receptor 2
(HER2) receptors are the major features of TNBC [10]. Recently, according to intrinsic gene
signature, TNBC can be classified into six main types: basal-like 1 and 2, mesenchymal
stem-like, immunomodulatory, mesenchymal, and luminal androgen receptor [11]. Of
the TNBC cases, an estimated 75% are basal-like [12]. The prevalence of TNBC in African
American women is higher than non-African American women. Indeed, 39% of African
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American premenopausal women diagnosed with BC are TNBC [13]. Previously reported
studies revealed the continuous increase in BC incidence rate over the last decades and in
the future [14].

Chemotherapy and radiotherapy are the two most common treatment strategies for
TNBC patients in the early or advanced stages [15]. Compared to hormone receptor-
positive patients, TNBC patients initially respond to conventional chemotherapy. However,
the frequent disease relapse results in the worst outcome and low survival rate due to high
metastasis rates and lack of effective treatment after relapse [16,17]. Although chemoresis-
tance is a challenge that accounts for a significant share of drug failures [18], chemotherapy
remains the primary cancer treatment approach. It is the only agent approved by the
Food and Drug Administration (FDA) in treating nonmetastatic TNBC [19]. Even though
the mechanism of resistance depends on the chemotherapeutic agent and patient; drug
inactivation, drug target alteration, DNA damage repair, cell death inhibition, cancer cell
heterogeneity, epigenetic alteration, and epithelial–mesenchymal transition or combina-
tion of these are the major direct or indirect contributing factor for developing resistance
against cancer chemotherapeutic agents [18]. In TNBC cells, epigenetic mechanisms are
implicated in chemotherapy resistance. For instance, an inherent defect in drug uptake and
a lack of reduced folate carrier expression is the main cause of methotrexate resistance in
MDA-MB-231 cells. However, treating MDA-MB-231 cells with DNA methylation inhibitor
or reduced folate carrier cDNA was previously reported to restore methotrexate uptake
and enhance sensitivity to methotrexate [20].

MicroRNAs were identified to be correlated with chemoresistance in TNBC. For
instance, resistance to neoadjuvant chemotherapy was strongly linked to upregulated miR-
181a [21]. Similarly, in the MDA-MB-231 cell line, upregulation of miR-21-3p, miR-155-5p,
miR-181a-5p, miR-181b-5p, 183-5p and downregulation of miR-10b-5p, miR-31-5p, miR-
125b-5p, miR-195-5p, and miR-451a were associated with doxorubicin resistance [22,23].
Moreover, downregulation of miR-200c was associated with doxorubicin resistance, poor re-
sponse to radiotherapy, and increased multidrug resistance mediated gene expression [24].
Taken all together, chemoresistance is still a challenge in preventing and treating TNBC,
and finding the best options is needed to manage the disease by developing drugs that
combat the resistance gene or any target molecules of TNBC, miRNAs.

This review focuses on the anticancer properties of flavonoids in TNBC through
miRNA regulation, utilizing compounds that target various pathways involved in cancer
initiation, growth, proliferation, differentiation, survival, migration, invasiveness metasta-
sis, and epithelial-to-mesenchymal transition (EMT). Additionally, the miRNA mechanism
of action on cancer proliferation, cell cycle, immune system, mitochondrial dysregulation,
modulating signaling pathways, inflammation, angiogenesis, invasion and metastasis, and
apoptosis will be examined.

2. The Microenvironment of TNBC

The tumor microenvironment (TME) refers to the cellular environment in which
tumor cells exist. The interaction between cancer and non-cancerous cells is a critical
regulator of carcinogenesis that controls the sequence of cancer cell growth and pro-
gression. Indeed, TME highly determines the initiation, development, proliferation, an-
giogenesis, invasiveness, metastasis, and tumor behavior progression. These biological
properties nominated TME as a very promising target for treating cancer cells, including
TNBC [25]. It encompasses the surrounding immune cells, extracellular matrix, blood ves-
sels, lymphocytes, fibroblasts, adipocytes, inflammatory cells, and signaling molecules [26].
MicroRNAs are involved in regulating various signaling pathways within the tumor
microenvironment [27].

Among the cellular components in TME, endothelial cells play a crucial role in tumor
development, protect tumor cells from the immune system, and activate new angiogenic
vessels that offer nutritional support for growth and development [28]. The expression
of vascular endothelial growth factor (VEGF), a pro-angiogenesis factor that binds to
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the endothelial cell surface receptor, is significantly higher in TNBC than in non-TNBC
tumors [29]. Evidence showed that VEG-induced adhesion and migration of MDA-MB-
231 cells occurs in co-transfected with endothelial cells [30]. Endothelial-specific micro
RNAs like miR-126 are reported to promote angiogenesis by upregulating VEGF [31].
Fibroblast is another component of TME that allows tumor cell migration from the original
location into the bloodstream for systemic metastasis and is involved in passing endothelial
cells undergoing angiogenesis in the tumor [32]. Cancer-associated fibroblasts (CAF) are
correlated with increased tumor progression by enhancing activation of TGF-β in the MDA-
MB-231 TNBC cell line [33]. Moreover, coculturing basal-like cancer cells with fibroblasts
induced the expression of various interleukins and chemokines such as IL-6, IL-8, CXCL1,
and CXCL3 [34] and enhance metastasis through upregulating matrix metalloproteinase-9
(MMP-9) [35]. Additionally, α-smooth muscle actin (α-SMA), a specific biomarker used
to detect CAFs in the tumor, increases in MDA-MB-231 cells after co-culturing with CAF
compared to positive breast cancer cells. In parallel, genes that encode CAFs [36] and
genes expressed by CAFs [37] are associated with chemoresistance. A study conducted
on breast tumor tissues identified 11 dysregulated miRNAs in CAFs, in which miR-31-3p,
miR-221-5p, and miR-221-3p were upregulated let-7g, miR-26b, miR-10, miR-141, miR-200b,
miR-200c, miR-205, and miR-342 were downregulated [38].

The immune system cells, such as macrophages, lymphocytes, and granulocytes, are
strongly involved in various immune responses and inflammatory reactions that enhance
tumor cell survival [39]. Tumor-associated macrophages enhance tumor progression
by stimulating tumor cell migration, angiogenesis, and extravasation at the metastatic
area and reduce antitumor immunity. Several studies report dysregulation of miRNA
in tumor-associated macrophages including, miR-27a, miR-29-b-1, miR-132, miR-193b,
and miR-222 [40,41]. In general, all these data suggested that miRNAs can regulate TME
components that promote tumor progression in TNBC cases.

3. Epigenetic Modification and TNBC

Myriads of studies have already reported that epigenetic alteration is a prominent
feature in cancer initiation and development. Cancers, including TNBC, are driven by
the accumulation of genetic abnormalities involving mutations in tumor suppressors
and/or oncogenes [42]. However, cancer initiation and progression are a multistep process
involving epigenetic and genetic changes [43]. Various epigenetic modifications with
diagnostic, prognostic, or therapeutic significance have previously been described in many
malignancies, including TNBC [44].

Several epigenetic modifications have been reported in TNBC, including histone
modification (e.g., acetylation, methylation, phosphorylation, sumoylation, ubiquityla-
tion), DNA methylation, and noncoding RNAs [45], as well as chromatin remodeling,
nucleosome positioning, and chromosomal looping are the common epigenetic alterations.
However, DNA methylation, histone modification, and miRNA are the major epigenetic
modifications that interfere with genes’ expression and are thus strongly associated with
cancer development [46]. Recently, approaching epigenetic modifications in treating TNBC
have increased attention. DNA methyltransferase inhibitors and Histone deacetylase in-
hibitors were shown to enhance antitumor activity in TNBC via epigenetic alterations of
EMT [47].

It is believed that miRNAs are susceptible to epigenetic modulation [48,49]. MicroR-
NAs are important in silencing the expression of genes in TNBC either by sup-pressing
or activating various genes at the pre- and post-transcriptional levels, respectively. Even
though miRNAs are observed in exons of genes, most are located in endo-nuclear noncod-
ing regions, such as introns of protein-coding genes [50]. Since most human miRNAs are
encoded in fragile chromosomal regions sensitive to deletion, amplification, or transloca-
tion during initiation and development of cancer, any epigenetic and genetic alterations
lead to deregulation of miRNA [51]. Changes can vary microRNAs function and tran-
scription in the epigenetic modifications, hereditary mutations in the DNA encoding the
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miRNA, activities of proteins involved in the process of miRNAs biogenesis [52], single
nucleotide polymorphisms in the miRNA sequence [53], or mutations in miRNA genes [54].
In general, the provided evidence indicates that miRNAs are significantly involved in the
process of TNBC carcinogenesis.

4. MicroRNA Biogenesis and Function

MicroRNAs (miRNAs) are non-coding, small endogenous, single-chain RNAs com-
posed of 21–23 nucleotides, expressed in most organisms [55], and are important to regulate
gene expression post-translationally [56]. MicroRNAs account for 1–5% of the total hu-
man genome (approximately 28,000 miRNAs), regulating at least 30% of protein-coding
genes [57]. The miRNA biogenesis process is initiated by transcribing primary miRNAs
(pri-miRNAs) through RNA polymerase II/III in the nucleus. Post-transcriptional mod-
ifications such as capped with 7-methyl guanosine and polyadenylated are taken place
on pri-miRNA to form precursor microRNA (pre-miRNAs). There-after, pre-miRNAs
move into the cytoplasm via exportin 5, with stem-loop structures, and are processed into
mature miRNAs by Drosha, Dicer (RNase III), RNA polymerase III, and other related
molecules [58]. These mature miRNAs then bind the RNA-induced silencing complex
(RISC), and the resulting co-complex directly binds the 3′-untranslated regions (3′-UTRs) of
target mRNAs, acting as a suppressor of translation or helping to increase degradation [59].
Thus, dependent upon the target mRNAs’ identity, miRNAs control various physiological
functions, including cell growth, proliferation, differentiation, development, reproduc-
tion, apoptosis, metabolism, and its abnormal expression in various cancers, including
TNBC [60].

5. Types of miRNA in TNBC

Depending on their target’s cell function, miRNAs could serve as either a tumor
suppressor or oncogene [61]. Upregulation of specific mRNAs may result in the repression
of tumor suppressor gene expression. Simultaneously, down-regulation could lead to an
increased oncogene expression, which both induce malignant effects on cell differentiation,
proliferation, and apoptosis, resulting in cancer cell growth and progression. A single
mRNA can target multiple miRNAs, and similarly, one miRNA can have several mRNA
targets. The oncogenic miRNAs could be mediated by targeting many tumor suppressor
molecules. Moreover, tumor suppressor miRNAs may inhibit tumor cell initiation, prolifer-
ation, metastasis, or induction of apoptosis by suppressing several signaling molecules.
MicroRNAs involved in TNBC carcinogenesis processes which were extensively described
in the literature are summarized below.

5.1. Oncogenic miRNAs

Numerous studies showed that a plethora of miRNAs have shown oncogenic activity
in many cancers. For instance, miR-155 is the most frequent upregulated type of microRNA
in BC. MiR-155 is involved in tumor cell survival, growth, invasion, migration, EMT, and
immune response. In BC, overexpression of miR-155 significantly inhibited the tumor
suppressor gene suppressor of cytokine signaling 1 (socs1) and leads to constitutive activa-
tion of signal transducer and activator of transcription 3 (STAT3) via the Janus-activated
kinase pathway(JAK) [62]. In TNBC, miR-155 is overexpressed and involved in metastasis
and poor prognosis by inhibiting von Hippel-Lindau (VHL) tumor suppressor expression
and induction of angiogenesis [23]. Moreover, miR-155 induced stemness and decitabine
resistance by inhibiting the direct target gene tetraspanin-5 (TSPAN5) in TNBC. This was
further confirmed by the overexpression of TSPAN5 that abolished the effect of miR-155 in
enhancing stemness and decitabine resistance in TNBC cell lines [63].

5.2. Tumor Suppressor miRNAs

Generally, tumor suppressor miRNAs prevent tumors’ development by negatively
regulating genes and/or oncogenes that regulate initiation, differentiation, cancer cell pro-
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gression, or apoptosis. The highly conserved and most abundant miRNA, Let-7c, inhibits
cancer cells’ survival by regulating cell proliferation and apoptosis [64], is downregulated
in BC cells [65]. MicroRNA-205 is downregulated in TNBC, and its upregulation suppresses
invasion and metastasis by inhibiting the expression of ErB3 and VEGF-A in the MDA-
MB-231 cell line [66]. Furthermore, over expression of miR-205 can inhibit cell invasion,
differentiation, and proliferation by targeting homemobox D10 (HOXD10), which enables
to induce P53 and suppress the level of Snail 1 in TNBC cell line [67].

Briefly, dysregulated miRNAs serve as oncogenic or tumor suppressors and may act
as potential tools for critical biomarkers in TNBC, which have been involved in cancer stem
cell maintenance, epigenetic alteration, apoptosis, proliferation, EMT, invasion, metastasis,
prognostic, and radio- and chemotherapy resistance (Figure 1).
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Figure 1. Upregulation and downregulation of specific miRNAs could result in TNBC cell differentiation, cell proliferation,
induction of malignant effects, and reduction of apoptosis. Upregulated oncogenic miRNAs enhance EMT and metastasis,
induce proliferation, invasion, migration, increase cancer cells’ stemness, and reduce apoptosis [68–103]. Oncosuppressor
miRNAs were downregulated and are associated with chemoresistance, tumor proliferation, poor survival rates, distal
metastasis, poor prognosis, promoting EMT, invasion, migration, and reducing apoptosis. On the contrary, overexpression of
these miRNAs represses EMT, suppresses cell growth, proliferation, migration, invasion, tumor cell motility, and promotes
apoptosis in TNBC [92,104–152]. TNBC—Triple negative breast cancer, EM—epithelial-to-mesenchymal transition.
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6. Role of miRNA in Tumorigenesis, Proliferation, and Progression in TNBC

Several studies had already elucidated that miRNAs have played a critical role in
tumor cell development, proliferation, migration, invasion, and metastasis in TNBC. Tumor
cell invasion is the first step in cancer progression that involves transferring cancerous cells
from their origin to neighboring tissues. EMT is the primary mechanism of cancer cells
becoming invasive and migratory in which miRNA is involved. In TNBC, miRNAs play
a major role in carcinogenesis. However, they have a dual role in tumor-promoting and
suppression, oncogenic or oncosuppressor activities. The former involved in the inhibition
of endogenous tumor suppressor genes and the later target oncogenes. Altogether, altering
miRNA expression is associated with stemness, differentiation, proliferation, autophagy,
apoptosis, and several other biological pathways in TNBC [153].

According to previous preclinical and clinical studies, oncogenic miRNAs, such
as miR-9, miR-10b, miR-103/107, miR-155, miR-181a, and miR-221/222 [68–75], were
upregulated and oncosuppressor miRNAs, including miR-200 family (miR-200c, miR-
200b, miR-200b-3p), miR-141, miR-205, miR-199a-5p, miR-3178, miR-212-5p/655, and
miR-199/214 cluster [92,105–115,154], were downregulated, resulting in EMT progress
promotion by targeting various endogenous molecules. Furthermore, oncogenic miR-
NAs, such as miR-20a, miR-21, miR-181 family, miR-199a, miR-495, and miR-221/222
[74,76–81,155], and tumor suppressor miRNAs, including miR-7, Let-7 family, miR-15b,
miR-16, miR-30, mir-33b, miR-34a, miR-103, miR-107, miR-128b, miR-137, miR-145, miR-
200 family miR-203, miR-205, miR-223, miR-335, and miR-4319 [116–123,156–163], were
involved in the maintenance of cancer cell stemness. Additionally, miRNAs associated
with metastasis progress included the overexpressed oncogenic miR-10b, miR-18, miR-21,
miR-17/92 cluster, miR-125b, miR-181a, miR-373, miR-455-3p, and miR-629-3p [72,82–91],
as well as under-expressed tumor suppressor Let-7, miR-26a miR-30a, miR-33b, miR-124,
miR-126-3p, miR-130a, miR-145, miR-146a-5p, miR-148a, miR-150, miR-200a/b/c, miR-205,
miR-206, miR-190a/940, miR-508-3p, miR-519d-3p, and miR-613 [108,124–136,164–171].
Moreover, miRNAs correlated with promoting proliferation in TNBC include the up-
regulated oncogenic miR-20a-5p, miR-21, miR-25-3p, miR-135b miR-146a, miR-146b-5p,
miR-182, miR-206, miR-498, and miR-502 [77,82,92–97,103], as well as downregulated
tumor suppressors miR-17-5p, miR-26a, miR-34a, miR-125b, miR-143-3p, miR146a-5p,
miR-200c, miR-203, miR-205, miR-211-5p, miR-217, miR-490-3p, miR-539, miR-940 miR-589,
and miR-1301 [66,127,135,137–145,164,172–176]. Similarly, several miRNAs are associated
with anti-apoptotic properties, such as over-expressed miR-17-5p/20a, miR-21, miR-155-
5p, miR-182, miR-429, miR-301b, and miR-4458 [77,82,98–102], and also downregulated
anti-oncomiR, including miR-10a, miR-31, miR-145, miR-199a-5p, miR-200c, miR-509, miR-
890, and miR-1296 [111,146–152,164]. Comprehensive systematic analysis of existing data
showed that oncogenic miR-9, miR-10a, miR-21, miR-29, miR-221/22, and miR-373 were
upregulated. Additionally, tumor suppressor miR-145, miR-199a-5p, miR-200 family, miR-
203, and miR-205 were downregulated; all are associated with EMT/cancer stem cell (CSC)
and invasion in TNBC [153]. Various miRNAs involved in the carcinogenesis of TNBC are
summarized in Figure 2.
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tensin homology, TRPS1—trichorhinophalangeal 1, ADIPOR1—adiponectin receptor 1, CCAAT—enhancer binding protein
beta (C/EBPβ), FN1—fibronectin 1, MSN—moesin, NTRK2 or TrkB—neurotrophic tyrosine receptor kinase type 2, LEPR—
leptin receptor, ARHGAP19—Rho GTPase activating protein 19, BCSC—breast cancer stem cell, ATM—Ataxia telangiectasia
mutated, FOXP2—factor Forkhead-box P2, HMGA2—high-mobility group A protein 2, BT-ICs—breast tumor-initiating
cells, Ubc9—ubiquitin-conjugating enzyme 9, ITGB3 (integrin beta3, CSC—cancer stem cell, IGFII—insulin-like growth
factor II (mRNA binding protein (IMP3), SETDB1—SET domain bifurcated 1, PFN1—profilin 1, LIFR—leukemia inhibitory
factor receptor, EI24—etoposide induced 2.4, APC—adenomatous polyposis coli, XIAP—X linked inhibitor of apoptosis,
UBASH3B—ubiquitin-associated and SH3 domain-containing B, v-myc—myelocytomatosis viral oncogene homolog (c-
Myc), ZEB1—zinc finger E-box binding homeobox 1, ARF—ARF proteins, MUC1—Mucin1, CORO1C—Coronin 1C,
RoR—regulator of reprogramming, ROR1—RTK-like orphan receptor 1, RGS3—G protein signaling 3, BTG2—B-cell
translocation gene 2, RUNX3—runt-related transcription factor 3, BIRC5—baculoviral IAP repeat-containing protein 5,
LASP1—Lim and SH3 domain protein 1, EZH2—enhancer of Zeste homolog 2, MTDH—Metadherin, AEG-1—astrocyte
elevated gene 1, TNKS2—tankyrase 2, LIMK1—LIM kinase-1, LIMK2—LIM kinase-2, ETV1- ETS variant 1, LAMA4—
laminin subunit alpha 4, KLF5—Krüppel-like factor 5, MTA2—metastasis-associated protein 2, RIP1—receptor-interacting
protein 1, CYLD—cylindromatosis, DR4/5death receptor 4/5, SOCS1—cytokine signaling 1, cIAP1—cellular inhibitor
of apoptosis.

7. TNBC miRNA Therapeutic Targets

Treatment of TNBC patients remains a challenge due to many factors, including the
lack of specific target sites, heterogeneity of the disease, rapidly developing resistance
to chemotherapy, and limited immunotherapy response. Unlike mutation, epigenetic
alterations are reversible in neoplasia, which offers a new opportunity for TNBC treatment.
MicroRNAs can be used as anticancer drugs by either increasing or decreasing miRNA
levels or improving conventional chemotherapy efficacy in TNBC. Oligonucleotide analogs
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and antagonists signify the two most common miRNA therapies, but there are also miRNAs
involved in increasing tumor cells’ sensitivity to chemotherapy. Below we discussed the
pre-clinical and clinical studies regarding these three therapeutic targets that may serve as
a potential option in the prevention and treatment of TNBC.

7.1. miRNAs Mimics

The downregulation or loss of tumor suppressor miRNA can be overcome by either
using ectopic expression of synthetic miRNA mimics [177,178] or utilizing adenovirus-
associated transduction vectors of target cells [179–181]. MicroRNA analogs are used to
restore miRNAs function; this approach is known as miRNA replacement therapy. It has
been shown that over-expression of miR-199a-5p was associated with a reduction of cell
proliferation, migration, and invasion by altering EMT-related expression of genes includ-
ing CDH1 and ZEB1 [182], at the same time transfecting miR-199a-5p mimic into BC cell
reduced cell proliferation [111]. Micro RNA-125b was suggested to regulate tumorigenesis,
tumor progression, poor prognosis, and chemoresistance in TNBC. Studies established
on TNBC showed downregulation of miRNA-125b. At the same time, its overexpression
promoted the reduction of tumor cell migration and invasion and inhibited EMT in TNBC
cell (Hs578T) by targeting mitogen-activated protein kinase kinase 7 (MAP2K7) [143]. It
is well known that overexpression of Prxx1 and RASAL2 in BC is associated with tumor
cell invasion and migration. Overexpression of miRNA-655 and miR-136 by targeting
prxx1 (paired-related homeobox 1) and RASAL2, respectively, suppresses EMT. These two
anti-invasive miRNAs are downregulated in TNBC and preventing tumor cell migration
and invasion during cancer progression. This study suggests that the mir-655/rxx1 and
mir-136/RASAL2/MET axis acts as a suppressor of TNBC metastasis [114,183].

MicroRNA-145 is a tumor suppressor gene that inhibits cancer cell growth, invasion,
migration and enhances radio-or chemosensitivity to various cancers using its target site
ROCK1. The overexpression of miR-145 downregulates ROCK1 in TNBC, suggesting a
potential therapeutic and diagnostic target for TNBC treatment [184]. Similarly, other
studies have reported that the cellular inhibitor of apoptosis (clAP1) was suggested as
another target for miR-145. Overexpression of clAP1 reduced TNF-α induced apoptosis in
MDA-MB-231 cells. At the same time, TNF-α-induced apoptosis was promoted by miR-
145 transfection in TNBC, showing that the miR-145-clAP1 axis is a potential therapeutic
target site for treating TNBC [150].

Overexpression of miR-200b-3p and miR-429-5p strongly inhibits migration, invasion,
and proliferation of TNBC cells by targeting LIM domain kinase 1 (LIMK1) [185], indicating
a potential therapeutic target modality of TNBC. Upregulation of miRNA-203 strongly re-
pressed tumor cell proliferation, migration, and invasion in TNBC by targeting baculoviral
IAP repeat-containing protein 5 (BRIC5) and Lim and SH3 domain protein 1 (LASP1) [172].
Coronin 1C (CORO1C), an actin-binding protein critical for the control and remodeling
of the actin filament network, is increased in TNBC cells, decreasing its mRNA and pro-
tein levels by upregulation of miR-206, leading to significantly decreased migration and
proliferation [171]. Cyclin D 1 (CCND1), induced by several oncogenic stimuli, plays a
vital role in regulating G1-S phase transition and tumorigenesis. This protein is overex-
pressed in BC and identified as a target of miR-1296 in TNBC, and further confirmed by
the over-expression of miR-129 that downregulates the expression of CCND1 and vice
versa [151]. BRCA1 is the target of miR-146a and miR-146b-5p associated with proliferation
by negatively regulating BRCA1 [93]. In MDA-MB-231 and MDA-MB-468 TNBC cell
lines, SOX5 is upregulated while miR-146b-5p is downregulated. MiR-146a-5p as a tumor
suppressor is implicated in reducing cell proliferation, migration, invasion, and EMT by
targeting SOX5 [127]. CDC27 is a core element of the anaphase-promoting complex (APC)
and is associated with controlling mitotic checkpoints to ensure chromosomal integrity,
and APC or CDC27 was downregulated in breast cancer. Overexpression of MiR-27a in
TNBC by regulating CDC27 or APC in the MDA-MB-231 cell line increased response to
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radiotherapy [186], indicating that expression of miR-27a might be a promising target for
TNBC patients benefited from radiotherapy based therapeutic approach.

7.2. miRNA Suppression

Single-stranded oligonucleotides with miRNA matching series are utilized to silence
the miRNA function of target proteins. On the other side, miRNA antagonists can suppress
the function of miRNAs in TNBC. It is successful in knocking down specific miRNA ex-
pression. Locked nucleic acid (LNA) antimiR is another approach. The ribose ring is locked
by a methylene bridge and displays unprecedented hybridization affinity towards com-
plementary single-stranded RNA and complementary single double-stranded DNA [187].
In addition to LNA antimiR, miRNAs sponges are used to inhibit miRNA activity com-
petitively. MicroRNA sponges are transcripts that contain multiple and tandem binding
sites to a miRNA of interest which inhibits specific miRNA function [188]. Mir-Mask
and small-molecule inhibitors are also other strategies to decrease oncogenic miRNAs’
upregulation [189,190]. A common oncogene miR-21 is upregulated in TNBC, and its
inhibition reduces the proliferation, viability, and invasiveness and enhances apoptosis in
the MDA-MB-468 cell line [191]. Similarly, miR-20a-5p was over-expressed in TNBC and
involved promoting migration and invasion by targeting RUNX3 and Bim [192]. A novel
target of miR-221, urokinase-type plasminogen activator, which plays an essential role in
cell invasion and metastasis via the extracellular matrix’s degradation, contributes to the
potential target therapy BC patients [193].

7.3. miRNAs Increased Sensitivity to Anticancer Agents

Various studies have reported that miRNAs directly or indirectly enhance cancerous
cells’ sensitivity to chemo-or radiotherapy and/or contributed to the delayed chemo- or
radioresistance initiation to many cancers, including TNBC. This statement is supported
by the evidence that upregulation of miR-451a or miR-130a-3p in TNBC cell MDA-MB-
231 strongly enhanced sensitivity to doxorubicin [21] and overexpression of miR-638 in-
creased sensitivity to cisplatin and DNA damaging ultraviolet agents in TNBC [194].
Similarly, up-regulation of miR-200b-3p and miR-190a and low expression of miR-512-5p
in TNBC patients are strongly associated with better pathologic response to preopera-
tive chemotherapy [195]. Furthermore, TNBC cell lines (MDA-MB-231-wild type and
MDA-MB-436-mutated cells) were treated with gemcitabine alone and combined with
PARP1 inhibitor (Poly-ADP-ribose polymerase-1) they revealed an increased expression
of miR-26a, -29b, -100, and -148a in MDA-MB-231. Moreover, the addition of PARP1 in-
hibitor reduced the expression of miR-206 in MDA-MB-231 and increased its expression in
MDA-MB-436, suggesting miR-206 may serve as a potential target PARP1 inhibitor [196].
Additionally, overexpression of miR-3613-3p by targeting SMAD2 showed significant inhi-
bition of migration and proliferation and increased sensitivity of the MDA-MB231 cell line
to Palbociclib, a selective and potent CDK4 and 6 kinases inhibitor [197].

SIRT1 is a common gene that limits longevity, regulates cellular senescence and serves
as a potential target of miR-34 that regulates p53 mediates apoptosis, cell cycle progres-
sion, and cellular senescence, where miR-34 inhibits SIRT1 [198]. Similarly, miR-34a and
miR-31 targeting the HDAC1/HDAC7-HSP70 K246 axis and protein kinase C epsilon, re-
spectively, increased sensitivity of the DA-MB-231 cell line to anticancer treatment [146,199].
These studies suggest that using mimicking or suppressing miRNA may be an alternative
potential therapeutic target in the prevention and treatment of TNBC, and may be used to
improve the efficacy of conventional treatment agents (Figure 3).
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8. Flavonoids: Classes, Subclasses, and Dietary Sources

Naturally-derived products play a significant role in the anticancer drug discovery
field, seen by the most frequently used anticancer drug paclitaxel [200]. Flavonoids, plant-
based secondary metabolites, are natural products with a polyphenolic structure widely
found in different medicinal, nutraceutical, and pharmaceutical applications. They are
a large class of compounds ubiquitously found in vegetables, seeds, fruits, cereals, tea,
and some beverages, like wine, with anti-inflammatory, antioxidant, anticarcinogenic, and
antimutagenic properties [201]. The variety of flavonoids, their widespread distribution,
and their low toxicity, relative to other plant active metabolites, guarantee the safety of
consuming significant quantities by human beings [202]. Evidence showed that flavonoids
impact various cancer processes such as growth, proliferation, differentiation, inflammation,
angiogenesis, invasion, and metastasis [203].

8.1. Classifications of Flavonoids

More than 5000 different flavonoids are structurally described so far [204]. Flavan is
the basic backbone chemical structure of all flavonoids, characterized by two phenolic rings
(named A and B) joined by an oxygen-containing heterocycle (C) (Figure 4) [205]. Based on
the features of basic structures, flavonoids are classified into six subcategories: flavonols,
flavanones, isoflavones, flavan-3-ols (also known as flavanols or cate-chins), flavones, and
anthocyanidins (Figure 5) [206].

8.2. Dietary Sources of Flavonoids

Since flavonoids are found in many foods and plant-origin beverages, they are termed
dietary flavonoids. Flavonoids are the most popular and the largest plant polyphenols found
from the everyday plant-source diet. Fruits, vegetables, grains, flowers, stems, roots, bark, tea,
and wine are rich natural sources of flavonoids. Studies conducted in 738 men with dietary
history to measure the flavonoids quercetin, kaempferol, myricetin, apigenin, and luteolin in
foods have shown that tea was the major source that constitute 61% and vegetables and fruits
were about 38% of flavonoids [207]. Several previous studies identified and documented the
common dietary sources of flavonoids depicted in Figure 6 [208–212].
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9. Flavonoids in the Prevention and Therapy of TNBC

Anticancer drugs for treating TNBC patients are currently limited since this type of
BC lacks the expression of hormone receptors and HER2 amplification [213,214]. Hence,
extensive research is directed to the disease’s molecular features, seeking naturally found
agents with potential in preventing and treating cancers, including TNBC. Plants (fruits,
vegetables, herbs), animals, and microbes, including natural products and secondary
metabolites, are sources of many bioactive compounds that have been innovated into
drugs to treat disease. Currently, more than 60% of anticancer drugs are obtained from
natural products [215]. Active ingredients such as flavonoids, alkaloids, polysaccharides,
terpenoids, and saponins derived from natural products have potent anticancer, analgesia,
immunomodulation, antioxidant, anti-inflammatory, ant-viral, and antibacterial activi-
ties. Since chemoresistance is becoming more frequent and a challenge in treating cancer
patients, including TNBC, discovering novel anticancer drugs from natural sources is a
priority. Studies have shown that flavonoids have been used in managing TNBC [216].
Moreover, flavonoids also exhibit a strong potential to enhance the effectiveness of currently
used conventional chemotherapeutic drugs and, most importantly, they are cost-effective
and environmentally friendly [217].

Tumor metastasis is a common feature of TNBC and the major cause of BC-related
mortality. In a previous study on the TNBC cell line MDA-MB-231, authors found that
Glabridin, an isoflavone from licorice root, strongly inhibited cell metastasis and invasion
and decreased tumor angiogenesis [218]. Myricetin-treated MDA-MB-231 cells showed a
significant reduction of cell viability, migration, metastasis, invasion, and adhesion through
repressing the protein expression of MMP-2/9 [219]. Similarly, studies reported that
exposure of the MDA-MB-231 TNBC cell to epigallocatechin-3-gallate, abundantly found in
consumed tea, strongly repressed cell proliferation and invasion, caused G0/G1 cell-cycle
arrest, reduced activation of MMP-2/9, suppressed expression of Bcl-2/Bax, decreased
expression of c-Met receptor and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kβ) proteins levels, reduced phosphorylation of Akt, and promoted cell death
by apoptosis [220]. Furthermore, in vitro studies on breast cancer cases showed that a
time-dependent exposure of cells to kaempferol induced G2/M arrest by repressing cyclin
A, Cyclin B, and CDK1 as promoted apoptosis by p53 phosphorylation in MDA-MB-
231 TNBC cell [221]. Additionally, kaempferol induced caspase-3-dependent apoptotic
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cell death and reduced tumor growth by inhibiting angiogenic and antiapoptotic gene
expressions [222]. Daidzein, one class of isoflavonoid, found in different plants and herbs,
has been reported to decrease cell viability, cell migration, and TNBC cell line invasion of
MDA-MB-231 cells [223–225].

Dysregulation of miRNA is associated with cancer progression and could be an ef-
fective target in treating various cancers, including TNBC. Studies have reported that
quercetin could modulate oncogenic miRNAs such as Let-7, miR-21, and miR-155, leading
to inhibition of cancer initiation, development, proliferation, and apoptosis induction and
increased sensitivity of cancer cells to chemotherapy [226]. Furthermore, quercetin inhibits
breast cancer cell proliferation and invasion by upregulation of tumor suppressor miR-
146a [227]. Likewise, quercetin could modulate the expression of a plethora of miRNAs
(48 unique miRNAs). Quercetin strongly repressed tumor metastasis and invasion medi-
ated miRNAs such as miR-146a/b; reduced cell proliferation mediated miRNAs including
Let-7 family, and induced apoptosis mediated miRNAs such as miR-605. Quercetin also
upregulated tumor suppressor miRNAs such as miR-381 [228]. Exposure of TNBC cells
to resveratrol significantly upregulated tumor suppressor miRNAs such as miR-26a in
MDA-MB-231 cells [229].

10. Molecular Mechanism of Action of Flavonoids in the Prevention and Therapy of TNBC

In general, the molecular mechanism of flavonoids’ action is determined by the
compound’s bioavailability at the target tissue in the body. Studies demonstrated that the
concentrations of flavonoids and their metabolite byproducts found in vivo are relatively
lower compared to other nutrients [230]. Flavonoids undergo extensive metabolism in the
large and small intestine, while a great portion of flavonoids that are not absorbed in the
intestine reach the colon, where the microbiota catabolizes the unabsorbed flavonoids into
smaller molecules, which facilitates the absorption and enhance the bioavailability [231].
Interestingly, modification of the flavonoid chemical structure and conjugation with metal
ions significantly enhance the bioavailability of flavonoids [217].

Although most flavonoids are considered safe, excessive consumption may be asso-
ciated with adverse health effects, including gastrointestinal symptoms, allergy, anemia,
and hepatotoxicity [232]. Following consumption, flavonoids have shown preventive or
curative effects in different diseases, including TNBC, by modulating various cellular
pathways involved in developing various diseases [233].

Extensive studies showed that flavonoids and their metabolites exert modulatory
actions in cells through impacting—stimulating or inhibiting—several signaling pathways.
These natural products affect the expression of genes. They may be associated with cellular
growth, proliferation, angiogenesis, migration, invasion, differentiation, apoptosis, mito-
chondrial dysregulation, alteration of the cell cycle, induction, or inhibition of autophagy,
and affecting downstream signaling transduction. In brief, we have discussed the modula-
tory effects of several flavonoids that could be attractive targets for drug development to
be used in the prevention and therapy of TNBC.

10.1. Mitochondrial Regulation

Mitochondria is the powerhouse of the cell that mainly produces ATP. Still, it is also
involved in the generation of ROS, redox molecules and metabolites, regulation of biosyn-
thetic metabolism, and cell signaling and cell death. Evidence demonstrated that impaired
mitochondrial function is found in TNBC cells due to switching to higher glycolysis rates
and producing a high lactate amount. Observed lower expiration rate, associated with
reduced expression of complexes I and III protein components and increased Akt activation,
further promotes glycolysis. In TNBC cells, this high glucose demand enables the tumor
to provide the energy essential for proliferation. Therefore, TNBC is very sensitive to
glycolytic inhibitor agents compared to positive estrogen cells [234]. Furthermore, loss of
p53 could impair the mitochondrial respiratory chain activity and enhance the shift from
oxidative phosphorylation to glycolysis [235]. The most well-studied flavonoid, luteolin,
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enhances the tumor suppressor P53 and increases apoptosis by upregulation of miR-34a-5p
and downregulation of miR-21 [236–238], indicating that repression of p53 through reg-
ulating miRNAs (miR-34a-5p/21) could reverse the impaired mitochondrial respiratory
chain activity.

Apoptosis is an attractive target in cancer therapy. It is frequently produced by mito-
chondrial dysfunction, by opening a non-specific mitochondrial permeability transition
pore in the inner mitochondrial membrane to release the mitochondrial components into
the cytoplasm. One of these components, ROS, is the key inducer of apoptosis [239,240],
as revealed by previous studies on the MDA-MB-231 TNBC cell line. This study reported
that overexpression of miR-223 dysregulated the mitochondria/ROS pathway, ultimately
inducing apoptosis and activating effector caspases 3, 7, and 9 [121]. Moreover, studies
proved that a myricetin-derived flavonoid, oncamex, reduced cell viability and promoted
cytotoxicity and apoptosis and increased caspase activation in a mitochondrial-dependent
pathway of MDA-MB-231 and other TNBC cell lines [241]. Therefore, the flavonoid role in
regulating miRNAs might be a promising agent in controlling mitochondrial respiratory
chain activity and promoting apoptosis in the mitochondrial-dependent pathway.

10.2. Induction of Apoptosis

Compounds which induce apoptosis represent a significant part in the treatment and
prevention of tumor. In cancer pathogenesis, evasion of apoptosis is one of the mechanisms
that has been utilized by cancer cells. Therefore, apoptosis induction is considered one
of the novel strategies for anticancer drug development. Indeed, many tumor suppressor
miRNAs are involved in the induction of apoptosis in TNBC through regulating various
endogenous signaling molecules associated with apoptosis [146–148]. This impact was
exhibited by several flavonoids.

Fisetin, a class of flavones, induces apoptosis in MDA-MB231 and MDA-MB-468 TNBC
cells through inhibition of Aurora B kinase and initiator activation caspases as well as effec-
tor caspase target PARP1 molecules. Similarly, exposure of the MDA-MB-231 TNBC cell line
to fisetin showed a reduction in cell division and promoted apoptosis through activation of
initiator caspases 8 and 9 and poly ADP-ribose polymerase-1 cleavage. In TNBC cells, the
noticeable reduction in apoptosis upon treating cells with caspase inhibitor suggested the
caspase-dependent apoptosis induction mechanism in this subtype of BC8 [242].

Myricetin, another class of flavonoids, induced apoptosis in TNBC through intra-
cellular ROS induction, promoting activation of extracellular regulated kinases 1/2 and
p38 mitogen-activated protein kinase mitochondrial membrane disturbance, cytochrome C
release, and double-strand DNA breaks. This study was further confirmed by using the
antioxidant N-acetyl cysteine, which reverses the myricetin-induced cytotoxicity due to
DNA damage and the inhibition of intracellular and extracellular accumulation ROS using
deferiprone and superoxide dismutase and catalase, respectively [243].

The flavonoid artonin E also has been found to induce apoptosis in a concentration
and time-dependent manner by increasing both caspase 8 and caspase 9 and intracellular
total ROS in TNBC cell MDA-MB-231. Furthermore, this study showed that artonin E
inhibits the expression of anti-apoptotic proteins and apoptosis inhibitors such as HSP70,
Bcl-x, livin, and P53, which are aggressively overexpressed in TNBC cells [244].

In modulating miRNAs, the flavonoid class xanthomicrol promotes apoptosis and
suppresses angiogenesis by upregulating tumor suppressor miRNAs, such as miR-29 and
miR-34 suppression of oncomiR, including miR-21, miR-27, and miR-125 in TNBC [245].

10.3. Induction of Cell-Cycle Arrest

Several mechanisms are controlling the processes of the cell cycle to ensure proper cell
division. For instance, cyclin-dependent kinases (CDKs) regulated by cyclins are involved
in the mediating cell cycle. Disturbance of the cell cycle due to dysregulated CDKs has
been one of the main hallmarks of many cancers, associated with induction of unscheduled
cell proliferation as well as chromosomal and genomic instability [246,247].
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PTEN acts as a tumor suppressor with the potential to induce cell-cycle arrest by
negatively regulating PI3K/Akt signaling pathway. Previous studies on the MDA-MB-
231 cell line have shown the implication of miR-498 in the elevated cell proliferation and
cell cycle progression by suppressing PTEN and activating PI3K/Akt signaling [248]. On
the contrary, miR26b was found to increase G0/G1 cell-cycle arrest and reduce cellular
proliferation through targeting CDK8 in the MDA-MB-231 TNBC cell line [249].

Through regulation of miRNAs, Flavonoids have been shown to enhance cell-cycle
arrest in many cancers, including TNBC. It has been reported that fisetin-treated TNBC
cells showed fewer cells in the G1 phase of the cell cycle, while an increased percentage
of G2/M phase cells was detected, suggesting the induction of G2/M phase arrest [242].
Similarly, artonin E arrested the cell cycle at the G2/M phase in TNBC. Incubating MDA-
MB-231 TNBC cells with artonin E showed a significant increase in the percentage of cells
at the G2/M phase compared to the control while accumulating cells in the G0/G1 phases,
indicating the existence of necrotic cells [244]. Moreover, the flavonoid xanthomicrol
increased the induction of cell-cycle arrest (G1-arrest) and apoptosis by downregulating
oncogenic and upregulating tumor suppressor miRNAs, leading to shrinkage of TNBC
tumors in mice [245].

10.4. Induction of Autophagy

Autophagy, also known as self-eating, is a lysosomal degradation process found at low
levels under normal physiological conditions to maintain cellular homeostasis by balancing
catabolic and biosynthetic processes. Still, it is induced in response to stressful conditions for
removing damaged proteins and organelles [250]. Autophagy involves five critical steps: induc-
tion, nucleation, vesicle lengthening and maturation, vesicle fusion, and, lastly, degradation and
recycling. These vital processes are controlled by recruiting an autophagy-related protein (ATG)
repressed by mTOR1 (mechanistic target of rapamycin complex1). In cancer cells, autophagy
is a “double-edged sword.” At the early stage of the disease, this mechanism acts as a tumor
suppressor by degrading oncogenic protein, reducing inflammation and chronic tissue damage,
preventing mutations and genetic instability; however, late-stage cancer uses autophagy for
survival cellular stress situations [204,247,248].

Many studies have shown that a high autophagy level is associated with chemo-
resistant and maintenance of aggressive tumor behavior in TNBC [251]. For instance,
authors reported that the yes-associated protein’s pivotal element in promoting autophagy
is upregulated in TNBC cells compared to hormone-positive breast cancer cells [252].
Similarly, treating MDA-MB-231 TNBC cells with the autophagy inhibitor chloroquine
enhanced the cytotoxicity potency of drugs and inhibited the autophagic flux [253]. On
the contrary, modulation of autophagy was reported to stimulate the antitumor immune
response. Autophagy deficiency promoted TNBC resistance to T cell-mediated cytotox-
icity by blocking tenascin-C degradation, suggesting an important immunosuppressive
factor regulating the activity and infiltration of cytotoxic T cells in TNBC [254]. Several
miRNAs, including miR-7, 21, 25, 99a, 338, 375, 382, 290-295, 133a-3p, 244-3p and miR-
409-3p, regulate autophagy through modulation of various signaling pathways, such as
PI3K/Akt/mTOR [255].

Evidence has shown that flavonoids induce autophagy and apoptosis and inhibit cell
proliferation through downregulation of the PI3K-mediated PI3K/AKT/mTOR signaling
pathway in human breast cancer, including MDA-MB-231 TNBC cells [256]. In parallel, api-
genin induces autophagy and apoptosis simultaneously in MDA-MB-231 cells by inhibiting
the PI3K/AKT/mTOR pathway [257].

10.5. Inhibition of Cell Migration, Metastasis, Invasion, and EMT

EMT endorses the tumor cells to detach from the original cancer site and travel into
the distant normal tissue, blood, and lymphatic system to form metastatic lesions [258].
Normal cells undergo an apoptotic process, known as anoikis, immediately after losing
contact with an extracellular matrix or neighboring cells [259].
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Increasing evidence indicates that many miRNAs are involved in tumor cell migration,
metastasis, invasion, and EMT. Authors have reported tumor inducer miRNA, let-7g, miR-
21, miR-101, miR-125a-5p, miR-424, miR-579, and miR-627 are strongly involved in the
induction of EMT, cell migration, metastasis, and invasion in TNBC [191,260]. Similarly, in
TNBC, miR-655 is downregulated, and its overexpression strongly reduced EMT. Emerging
evidence confirmed that ectopic expression of miR-655 in MDA-MB-231cells induced
up-regulation of cytokeratin, downregulated the expression of vimentin, and repressed
migration and invasion mesenchymal-like cancer cells suggested that miR-655 inhibits
EMT through downregulation of prrx1 [114].

Studies have reported that flavonoids reduced tumor cell migration, metastasis, and
invasion in TNBC. Fisetin, a class flavonoid, has been described to possess anticancer activ-
ity in different cancers, exhibited suppression of cancer cell growth, invasion, migration,
promoted cell-cycle arrest, autophagy mechanism, and apoptosis [261]. Also, increasing
evidence has demonstrated that fisetin significantly reduced cell proliferation, migration,
and invasion and reversed the EMT process in a concentration-dependent manner [262].
Similarly, quercetin significantly downregulated tumor metastasis and invasion miRNAs
such as miR-146a/b, miR-503, and miR-194 [228].

10.6. Enhancement of Immune Responses

The entire immune system plays a crucial role in preventing cancer incidence and
destroying tumors, with no toxicity to normal cells. Both adaptive and innate immune
effector mechanisms could be tools in identifying and controlling cancer cells. NK cells are
the ones that detect the first transformed cells via their counter with particular ligands on
tumor cells, which then leads to the removal of transformed cells. Activated macrophages
and dendritic cells are involved in the removal of transformed fragment cancer cells. Many
inflammatory cytokines are secreted and present tumor cell-derived molecules to B and T
cells upon activation of macrophages and dendritic cells.

Furthermore, these two cells enhance the production of additional cytokines to activate
innate immunity and support the secretion and expansion of tumor-specific T cells and
antibodies [263,264]. The subpopulation of tumor-infiltrating lymphocytes, CD8+ T cell
infiltration, the T cell regulatory molecule, and the programmed cell death protein (PD-L1)
are highly expressed in TNBC; approximately 20% of TNBC tumors express PD-L1 [265].
Cytotoxic T-lymphocyte-associated antigen and PD-L1 are the two immune checkpoints
targeted by anticancer drugs to augment antitumor immunity [265,266].

A comprehensive systematic review of previously published data showed that miR-
NAs regulate the immune response in several ways. This analysis explained miRNAs’ role,
such as miR-146a, miR-155, miR-181a, and miR-223, during immune system activation. For
instance, miR-125b was strongly expressed in human immature CD4+ T cells, regulating
the expression of IL-10 receptor-α, IL-2 receptor-β, and IFN-γ, and it is downregulated
during differentiation effector T cell subsets. Furthermore, from this reviewed data, due
to T cell development and differentiation alteration, miR-20a-5p, miR-24-3p, miR-106a-5p,
and miR-891a are downregulated, suggesting that tumor cells can make alterations of
the immune system to grow and metastasize [267]. In line with this, another extensive
reviewed analysis demonstrated that immune-modulatory miRNAs, including miR-19a-3p,
miR-23/a/24-2/27a, miR-29c, miR-101, and miR-126/126a, are down-regulated, whereas
miR-155, miR-181-1b, miR-223, and miR-494 were upregulated in various types of cancers,
including breast cancer [268].

Flavonoids such as quercetin, luteolin, apigenin, and fisetin could reverse the im-
paired immune system response by repressing inflammatory cytokines, reducing activated
dendritic cells and proliferation of T cells, inhibiting antigen-specific production of IFN-
gamma, reducing mast cell activation and T-helper cell cytokine activation, decreasing T
CD4+, T CD8+ and eosinophils, suggesting another promising potential target site in the
treatment of various cancers, including TNBC [269]. In consistency with this evidence, the
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dietary apigenin significantly decreased LPS-induced expression of miR-155, resulting in
restoring the impaired immune balance of mice during inflammation [270].

10.7. Promotion of Differentiation

Differentiation therapy is one type of promising cancer stem-cell-targeting therapy in
BC, a source of breast tumors including TNBC. Differentiation aims to attack the stemness
of cancer stem cells, leading to the reduction of their chemo-and radioresistance. The main
objective of differentiation therapy is to induce differentiation of tumor cells, consequently
stopping proliferation, and ultimately control tumorigenic and malignant potential [271].

MicroRNAs such as miR-1 and miR-206 promote differentiation in different cancers.
In particular, tissue-specific tumor-suppressing miRNAs can enhance tumor cells’ dif-
ferentiation to their original counterparts and solid malignancies to their normal tissue
types [272]. Cumulative evidence has shown that differentiation therapy possesses a low
toxicity profile [273]. Exposure of MDA-MB-231 to arsenite reduces tumor volume and
weight in mouse xenografts due to the induction of differentiation [274,275].

Flavonoids cause undifferentiated cancer cell lines to differentiate into cells, demon-
strating mature phenotypic characteristics. Authors reported that many flavonoids were
found to promote the differentiation of tumor cells in various cancers. Induction and
promotion of differentiation by flavonoids may lead to an ultimate removal of tumorigenic
cells and rebalance regular cellular homeostasis [276].

10.8. Inhibition of Proliferation

Dysregulation of proliferation appears to be the main hallmark of susceptibility to
tumors [277]. Potent oncogenes, miR-21 and miR-191, are associated with increased tumor
cell proliferation and invasion in the MDA-MB-468 TNBC cell line [191,278]. In preventing
cancer, reversion, inhibition, or hindering cellular hyperproliferation is generally the main
central point.

Plenty of studies have shown that most flavonoids have been demonstrated to sup-
press proliferation in several human cancers, including TNBC [279]. It is proposed that
the possible mechanistic action of flavonoids is through inhibiting the prooxidant process
that causes tumorigenesis. The tumor promoter, xanthine oxidase, may activate proox-
idant enzymes, and at the same time, flavonoids could inhibit polyamine biosynthesis
activated by xanthine oxidase. Moreover, flavonoids could inhibit polyamine biosynthesis
catalyzed by its rate-limiting enzyme ornithine decarboxylase, which is associated with
DNA synthesis and cell proliferation in many tissues. Additionally, flavonoids are involved
in the repression of signal transduction enzymes such as protein tyrosine kinase (PTK),
phosphoinositide-3-kinases (PIP3), and protein kinase C (PKC), which are significantly in-
volved in the regulation of cellular proliferation [280–282]. Similarly, 3,6-dihydroxyflavone
suppresses proliferation by upregulating tumor suppressor miR-34a and downregulating
the oncogenic miR-21 in breast cancer cells, such as MDA-MB-231 [283]. Additionally,
curcumin upregulation of the tumor suppressor miR-34a ultimately suppresses TNBC cell
proliferation [284].

10.9. Inhibition of Oxidative and Nitrosative Stress

Cancer cells grow in hypoxia and adapt their metabolism to fulfill the nutrients and
energy required for proliferation and survival. In response to low oxygen concentration,
elevated levels of reactive oxygen and nitrogen species (RONS) are observed in various
cancer cells, including TNBC [285]. Cellular redox homeostasis is maintained under
normal physiological conditions by balancing the endogenous antioxidant system and
RONS generation. Dysregulation in this balance has been associated with cell proliferation,
differentiation, angiogenesis, evasion of apoptosis, migration, and survival, with the
tendency to introduce and promote tumorigenesis [286–289].

MicroRNAs such as miR-21, miR-miR-28, Mir-93, miR-144,miR-155, and miR-200a,
miR-212 could regulate RONS -antioxidant balance by targeting Nrf2/Keapl, mitochondrial,
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SOD/catalase pathways that affect carcinogenic process [290]. Furthermore, elevated
RONS could also induce abnormal expression of specific miRNAs. Overexpression of
RONS could result in upregulation of miR-21 and downregulation of miR-27, miR-29b, and
miR-328, suggesting that miRNAs are RONS sensitive [291].

Dietary flavonoids are natural antioxidants with the one-electron donor that could act
against cancer by restricting the damage of oxidative reactions in cells, enhancing cancer
growth. Flavonoids serve as antioxidants by scavenging singlet oxygen, superoxide anion,
lipid peroxy-radicals, and /or balancing free radicals involved in the process of oxidation
through complexing with oxidizing species or hydrogenation [286,292]. Additionally,
flavonoids are involved in the downregulation of the oncogenic miR-21, contributing to the
overexpression of RONS [283]. Hence, increased oxidative and nitrosative stress markers
may serve as prognostic predictors and potential targets for therapeutic and/or preventive
strategies in TNBC.

10.10. Reduction of Angiogenesis

Angiogenesis is a strictly regulated process in conventional physiological activity
controlled by different endogenous angiostatic and angiogenic factors. However, disease
conditions, such as cancer, affect these factors and lead to pathological angiogenesis [293].
In the tumor, angiogenesis enhances the proliferation of existing blood vessels entering the
cancer cells, to provide oxygen and nutrients and remove any metabolic waste products
from the tumor. Hence, it is essential for the development, aggression, invasion, and metas-
tasis of solid tumors [294]. Several proangiogenic factors are involved in the angiogenesis
process, including vascular endothelial growth factor, interleukin 6/8, fibroblast growth
factor, transforming growth factor-alpha, and prostaglandin E. Among these, VEGF is
the key regulator proangiogenic element that regulates angiogenesis. Therefore, VEGF
inhibition is a promising target for the prevention and therapy of cancer [295,296].

Emerging evidence has shown that miRNAs are associated with the process of an-
giogenesis through regulating the expression levels of anti-or-pro angiogenic factors. For
instance, a member of the miR-106b~25, miR-93-5p, is up-regulated in various cancer types,
including TNBC, and promotes tumor angiogenesis [76].

Studies both in vitro and in vivo showed that wogonoside, a bioactive flavonoid,
effectively inhibited angiogenesis in TNBC by decreasing the expression of VEGF in MDA-
MB-231 and MDA-MB-468 cells [297]. Additionally, resveratrol was previously found to
down-regulates the expression of miR-93-5p in breast cancer cells [298], suggesting the
importance of flavonoids in decreasing the nutritional source of tumor cells and ultimately
leading to death.

10.11. Modulation of Signaling Transduction

The conversion of external stimuli into intracellular signals mediates gene transcrip-
tion, activating cellular machinery appropriately and has a pivotal role in the normal
cellular signaling process. The systemic function of sequential cascades maintains the
physiological process’ homeostasis, while their abnormal activation results in impaired
cell proliferation, differentiation, and apoptosis. Some of the mechanisms of flavonoids
used in the prevention and treatment of TNBC through modulation of signaling trans-
duction are the protein kinase C (PKC), mitogen-activated protein kinase/extracellular
signal-regulated kinases (MAPK/ERK), phosphatidylinositol 3-kinase (PI3K)/Akt, wnt/β-
catenin, JAK/STAT3, Nrf2/keap1, NF-kβ, and SMAD2/3. Knowingly various signaling
molecules can exert similar effects on the same cell type, and at the same time, individ-
ual signaling molecules can have numerous physiological functions. The complexity of
function because of overlapping downstream signaling pathways attracts attention to
appropriately identifying each signaling molecule’s critical role and their downstream
cascades. Plenty of studies have demonstrated the interference between flavonoids and
these signaling transduction pathways. The elucidation of the cellular and molecular
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events affected by flavonoids reveals novel strategies and molecular targets for developing
similar acting compounds used for the prevention and treatment of TNBC.

10.11.1. PKC Pathway

PKC is a well-known integral part of the cell signaling machinery enzyme. Even
though PKC activation is critical for the signal transduction pathways, the homeostatic
regulation of PKC activation is vital for normal physiological cell function. Meanwhile,
this enzyme’s unusual continuous stimulation may lead to uncontrollable cell growth and
proliferation [299]. PKC theta and alpha isoforms are mainly upregulated in TNBC cells
and enhance the growth, proliferation, EMT, survival, migration, and tumor cell invasion.
However, all of these effects are reversed by PKC inhibitors [300,301].

Emerging evidence showed that the PKC alpha subtype is detected in advanced-grade
TNBC cells. On the other side, miR-200b functions as a tumor suppressor to reduce cell
migration and invasion by targeting PKCα in TNBC cell lines such as MDA-MB-468 [108].
Previous studies using both in vitro and in vivo models revealed that quercetin has an-
tiproliferative activity through inhibiting signal transduction targets such as PKC [302].
These data might suggest that the miRNAs-dependent activation of PKCs is a promising
target for several drugs, including flavonoids.

10.11.2. Nrf2/keap1 Axis

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates
cellular stress caused by electrophiles, xenobiotics, and oxidants. Nrf2 provides cytopro-
tective activities, repressing oxidative stress response levels in many cancer cells. To be
activated, Nrf2 must be detached from an inhibitor Kelch-like ECH-associated protein 1
(Keap1) and shuttles to the nucleus to bind with the target gene and enhance gene expres-
sion, since, under homeostatic conditions, Nrf2 interacts with Keap1 in the cytosol [303].
The cancer-preventive role of Nrf2 has been extensively studied. Nrf2 prevents tumori-
genesis by quenching ROS, ensuring the quick enzymatic modification and excretion
of carcinogenic chemicals, or repairing oxidative-related damage via target gene expres-
sion [304]. However, recent findings describe the “dark side” of Nrf2, as its activation is
involved in promoting metastasis, increasing cancer progression, and conferring resistance
to radiotherapy and chemotherapy [305,306]. Studies showed that overexpression of tumor
suppressor miR-29b-1-5p inhibits Nrf2 in the MDA-MB-231 TNBC cell line [307].

Flavonoids such as chrysin [308], luteolin [309], and apigenin [310] have exhibited
antitumor activity by strongly reducing Nrf2 mRNA through various mechanisms, such
as down regulation of the PI3K/Akt pathway, decreasing antioxidant gene expressions,
inhibiting proliferation, invasion, and migration of tumor cells, as well as increasing
sensitivity to anticancer drugs. Moreover, flavonoids such as epigallocatechin-3-gallate
upregulate tumor suppressor miR-29b-1-5p [311] could repress the expression of Nrf2. A
comprehensive review of existing data showed that flavonoids such as thymoquinone
and epigallocatechin increase activation of Nrf2, indicating a cytoprotective effect against
several diseases, including TNBC [312].

10.11.3. PI3K/Akt/mTOR Signaling Pathway

PI3K/Akt is one of the most pro-survival intracellular signaling systems [313]. PI3K
activation and its downstream effector, Akt, have been shown to repress apoptosis and
promote cells’ survival by enhancing anti-apoptotic proteins’ expression and reducing
pro-apoptotic proteins activity. Additionally, PI3K/Akt inhibition abolishes cell survival
and promotes apoptosis [313–315]. The PI3K/Akt/mTOR pathway is positively associated
with cell proliferation and survival, and any dysregulation of this signaling pathway
significantly mediated the progression of various cancers, including TNBC [316]. PI3Ks
are enzymes activated by receptor tyrosine kinases and non-receptor tyrosine kinases that
mediate cellular signal transduction by phosphorylating membrane inositol lipids and
generating the secondary messenger, PIP3 (phosphatidylinositol 3,4,5- triphosphate), which
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in turn drives a conformational change in Akt/PKβ, leading to activation of mTOR. In
addition, mTOR involves induction of cell survival, cell cycle progression and proliferation,
angiogenesis, and migration [317]. The tumor suppressor PTEN is negatively regulating
Akt via dephosphorylation of PIP3, which is essential for Akt activation, is mostly deleted,
mutated, or reduced in TNBC. MicroRNA-184 modulates the PI3K/Akt/mTOR signaling
pathway [318] and miR-124, a potential oncogenic in breast cancer targets PTEN-PI3K/Akt
pathway [319]. These studies suggested that the PI3K/Akt/mTOR pathway is a promising
chemotherapeutic target in treating TNBC and other cancers.

Flavonoids modulate the cell survival signaling pathway through its interaction with
PI3K/Akt [320]. Quercetin, a class of flavonoids, acts as an Akt inhibitor that suppresses tumor
cell survival, migration, and metastasis. Moreover, upregulation of PI3K/Akt is associated with
a decrease in docetaxel effectiveness, and in combination with quercetin, the response rate was
enhanced. This study suggested that quercetin improves chemotherapy’s efficacy and increases
the accumulation of drugs in the tumor site through inhibition of the Akt/MMP-9 pathway,
indicating a promising potential target in treating metastatic TNBC [321].

10.11.4. MAPK/ERK Signaling Pathway

MAPK is a family of distinct signaling cascades in the cell and acts as a central point in
reaction to different extracellular stimuli [322]. MAPKs regulate the expression of genes that
control inflammation, proliferation, cell survival, inducible nitric oxide synthase, cytokine
expression, and collagenase production [323]. MAPKs have three main classes: ERK, c-
Jun N-terminal kinase(JNK), and P38 [324]. MAPK/ERK is the most determinant of cell
differentiation, cell growth, cell survival, and motility via activation of the cAMP response
element-binding protein, upregulation of anti-apoptotic protein Bcl-2, and inhibition of
Bcl-Xl/Bcl-2 associated with death promotion [325]. The MAPK/ERK signaling pathway
is significantly activated in TNBC, and the high protein expression levels correlate with a
shorter survival rate in TNBC patients [326].

MAPK pathways are characterized by various key genes, such as Ras, Raf, MEK,
and ERK. Notably, activation of Ras results in Raf phosphorylation, thereby enhancing
MEK and ERK activation, and ultimately leads to tumor cell proliferation and cell survival.
These cascades are significantly regulated by various miRNAs described else-where [327].
Studies have reported that downregulation of miR-489 was associated with overexpressed
MAPK signaling pathways. A significant reduction in cell growth and tumorigenicity was
found in BC with upregulated expression of miR-489 [328].

Emerging evidence has shown that myricetin protects oxidative stress-induced cytotoxicity
by inhibiting the P38/MAPK/JNK/ERK signaling pathway. The finding was further confirmed
by the addition of p38 MAPK inhibitor and resumed the protective effect of myricetin [329].

10.11.5. NF-Kβ Signaling Pathway

NF-kβ is an essential transcription factor for regulating apoptosis, cell proliferation,
and several pro-inflammatory proteins such as chemokines, cytokines, prostaglandins,
nitric oxide, leukotrienes, and adhesion molecules [330]. Any dysregulation in the acti-
vation of NF-kβ enhances cancerous cells’ survival and contributes to an increment of
chemotherapy resistance [331].

NF-kβ activation involves induction of the EMT process, increased CXCR-4 expression,
promotion of metastasis, and enhancement of chemotherapy resistance [332]. Tumor cells also
enhance NF-kβ activity by enhancing cytokine release from stromal cells and fibroblasts in
the tumor microenvironment. Furthermore, many external stimulators like ROS and hypoxia-
induced factors can increase NF-kβ activation [333–335]. In TNBC, overexpression of NF-kβ
has been significantly demonstrated [336]. Several studies elucidated the main consequences
of NF-kβ activation, including enhancing invasiveness of tumors, promoting cell detachment,
increasing neoangiogenesis, upregulating MMPs expression, inducing tumor proliferation,
polarization of tumor cells, production, and overexpression of inflammatory reparative response,
which is ultimately causing further development of tumors [337].
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A comprehensive review of existing data showed that miR-146 negatively regulates the
expression of NF-Kβ, exhibited an essential role in reducing tumorigenesis and progression
by suppressing tumor cell migration and invasion. Similarly, upregulation of miR-21 and
miR-301a activates NF-Kβ in various types of cancers, including TNBC [338].

Flavonoids like fisetin inhibit the activation of the NF-kβ signaling pathway, leading
to down-regulation of gene products that decrease apoptosis and enhance tumor cells’
metastasis [339,340]. Similarly, treating MDA-MB-231 TNBC cells with flavonoids were
previously found to induce significant inhibition in NF-kβ signaling through different genes
regulating this pathway, as revealed by the downregulation of cyclooxygenase-2 (COX-2)
and MMP9 [341]. In MDA-MB-231 cells, flavonoids potentially suppress carcinogenesis
through overexpressing tumor suppressor miR-34a and repressing the oncogenic miR-
21 [283], indicating that altering miRNAs by flavonoids might be essential to prevent
NF-Kβ signaling-dependent induction of tumorigenesis in TNBC.

10.11.6. JAK2/STAT3 Signaling Pathway

Signal transducer and activator of transcription (STAT) is a common transcription
factor that binds to DNA and induces various gene expressions. There are many isoforms
of STAT, from STAT 1–3. However, STAT3 is the most studied sub-family that binds to DNA
in response to cytokines (IL-6) and epidermal growth factor, and is significantly associated
with cancer development, proliferation, migration, angiogenesis, metastasis, immune
suppression, poor prognosis, apoptosis, and chemoresistance in TNBC [342]. Activation of
the JAK2/STAT3 pathway is evaluated by phosphorylated STAT3 using a kinase protein
JAK. Inhibiting this pathway impairs tumor growth and metastasis, indicating an effective
therapeutic target in TNBC [343,344].

Upregulation of oncogenic miRNAs, such as miR-18a, miR-30, miR-155, and miR-221,
leads to elevated JAK2/STAT3 expression, ultimately resulting in tumorigenesis [345].
Due to its involvement across various types of cancers, including TNBC, the JAK/STAT
pathway is a potentially attractive therapeutic target in the prevention and treatment of
TNBC. It has been reported that dietary flavonoids luteolin and quercetin inhibit migration
and invasion of cancer cells by reducing the JAK/STAT signaling molecule [346].

10.11.7. Wnt/β-Catenin Signaling Pathway

Wnt, a highly conserved group of secreted glycoproteins, correlates with several
cellular functions, such as stem cell renewal, organ formation, and cell survival, and is
secreted by cells into the extracellular space to activate receptor-mediated signaling in the
immediate vicinity [347].

The Wnt pathway’s ability to trigger different intracellular signaling pathways high-
lighted its importance as one of the essential molecular cell-to-cell signaling mechanisms.
It is noteworthy that this pathway with adequate regulation mechanisms is essential in
physiological conditions. A classical signaling pathway in the Wnt signaling route is a
β-catenin-mediated path, in which β-catenin plays a role in preventing the movement
of cells by forming a complex with E-cadherin. Augmentation of Wnt signaling enables
the accumulation of β-catenin in the cytoplasm and transfers into the nucleus, leading to
activation of proto-oncogenic genes like cym c cy-clinD1, and eventually, cancer initiation
and development [348].

Mutations in the component of Wnt/β-catenin could also endorse the inappropriate
regulation of this pathway, are frequently associated with many cancers, and induce tumor
recurrence [349,350]. Wnt/β-catenin signaling super-activation is positively correlated
with high grade, metastatic, and poor prognosis in TNBC cells [351,352]. Studies have been
reported that upregulation of Wnt/β-catenin was shown to be one of the mechanisms to
resist PI3k inhibitors. In addition, the use of β-catenin inhibitors sensitizes breast cancer
cells to PI3K inhibitors [353].

Emerging evidence showed that upregulation of miR-21 enhances cancer cell pro-
liferation and metastasis through a significant activation of the Wnt/β-catenin signaling
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pathway [354]. Similarly, miR-301a strongly induces Wnt/β-catenin signaling in breast
cancer cells by targeting PTEN, a master regulator of several oncogenic pathways such as
PI3K/Akt [355]. The role of oncogenic and tumor suppressor miRNAs in controlling the
activation of the Wnt/β-catenin signaling pathway was described elsewhere [356].

Studies demonstrate that flavonoids such as quercetin, apigenin, and fisetin could
interact with β-catenin and accelerate its degradation and disruption of Wnt/β-catenin
signaling in many cancers, including breast cancer [357]. Similarly, treating cancer cells
with genistein can repress the Wnt/β-signaling pathway through downregulation of the
oncogenic miR-1260b [358].

10.11.8. SMAD Signaling Pathway

Smooth-muscle-actin and MAD-related proteins (SMAD), which have seven major
classes of SMAD proteins (SMAD 1-7), is a family of proteins, a component of an evolution-
arily conserved pathway in humans. SMAD is a crucial downstream of TGF-β signaling
regulating the transcriptional response for TGF-β functions [357]. SMAD family member 2
(SMAD2) is overexpressed in BC and promotes tumor progression [356].

It has been reported that inhibitors that reduce SMAD2 and SMAD3 by interrupting
the TGF-β signaling pathway could help treat and prevent human cancers, including TNBC.
Indeed, miRNAs such as miR-27a and miR-3613-3p were significantly reduced in TNBC pa-
tients. Recent studies have demonstrated that miR-27a by regulating SMAD2 inhibits tumor
growth and migration by interrupting TGF-β signaling, ultimately leading to inhibition of
cancer cell proliferation, induction of apoptosis, and decreased tumor cell migration [357].
Similarly, overexpression of miR-3613-3p decreased tumor proliferation and migration in
TNBC cells via targeting SMAD2 and EZH2, EZH2 like SMAD2/3, significantly promoting
cancer cell proliferation in many cancer cells, including breast cancer [197]. Flavonoids like
curcumin upregulate miR-27a in various types of cancer, including breast cancer, leading
to reduced carcinogenesis [358].

The modulation of signaling transduction pathways by flavonoids is summarized in Table 1.

Table 1. Modulation of the signaling transduction pathway by flavonoids in TNBC through targeting micro RNAs. This is
the summary table in which the detailed description and references are described in the text.

Flavonoids Targeted Pathways Micro RNA Involved in the Pathway Main Effects of Flavonoids
on the Pathway

Quercetin PKC miR-200b Inhibit

Chrysin

Nrf2/keap1 miR-29b-1-5p

Inhibit

Luteolin Inhibit

Apigenin Inhibit

Epgallocatechin-3-gallate Inhibit/Activate

Thymoquinone Activate

Quercetin PI3K/Akt miR-184 Inhibit

Myricetin MAPK/ERK miR-489 Inhibit

Fisetin NF-Kβ miR-21 Inhibit

Luteolin
JAK/STAT3 miR-18a, mir-30, miR-155, miR-221 Inhibit

Quercetin

Quercetin

Wnt/β-catenin miR-1260b InhibitApigenin

Fisetin

Curcumin SMAD miR-27a, miR-3613-3P Inhibit

Abbreviations: PKC—Protein kinase C, Nrf2—Nuclear factor erythroid 2–related factor 2, Keap1—Kelch–like ECH–associated protein 1,
PI3K/Akt—phosphatidylinositol 3-kinase/Protein kinase B, JAK/STAT3—Janus-activated kinase pathway/Signal transducer and activator
of transcription 3, NF-Kβ—nuclear factor kappa-light-chain-enhancer of activated B cells, Wnt—Wingless and Int–1, MAPK/ERK—
mitogen-activated protein kinase/extracellular signal-regulated kinases, SMAD—Smooth-muscle-actin and MAD-related proteins.
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Taken together, dietary flavonoids have shown various mechanistic actions that might
be useful in the prevention and treatment of TNBC, as summarized in Figure 7.
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11. Conclusions

The complexity of signal networks driving tumorigenesis in TNBC, with the absence
of a specific target for treatment, contributes to a poor clinical outcome in patients. Ongoing
and completed preclinical and clinical studies have examined and reported flavonoids’
efficacy and safety as anti-cancer agents. Flavonoids are generally nontoxic and demon-
strate a broad-spectrum range of advantageous physiological activities. Numerous studies
reported and widely discussed the role of dietary flavonoids in cancer prevention and
cancer, including TNBC. Since they are widely distributed in fruits and vegetables, many
in vitro and in vivo studies have generated data that high dietary intake of flavonoids could
be associated with a low prevalence of cancer in humans. Flavonoids have been shown
to have effects such as: Antiproliferation, anti-angiogenesis, regulation of mitochondrial
and autophagy activities, carcinogen in-activation, promotion of apoptosis, antioxida-
tion, promotion of differentiation, regulation of different signaling pathways, augmented
chemotherapeutic drugs, and reversal of multidrug resistance. These promising effects of
flavonoids are utilized as the basis drug development from dietary flavonoids to prevent
and treat TNBC.

MicroRNAs are largely dysregulated and expressed in most cancers, including TNBC
which has been associated with tumor initiation and progression, and represent a desirable
and potential target for the treatment and prevention of TNBC. Flavonoids display a unique
ability to change miRNAs’ levels via different mechanisms, including transcriptional,
epigenetic, and miRNA processing, downregulating oncogenic miRNAs, and upregulating
tumor suppressor miRNAs. Additionally, flavonoids can promote chemotherapeutic drugs’
sensitivity, indicating a promising potential anti-cancer drug for TNBC.

Since bioavailability is the major challenge for flavonoids, it can be overcome by
chemical modification, delivery by nanoparticles, synthetic formulation, and conjugation
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with metal ions. In conclusion, dietary flavonoids can be exploited for designing therapeutic
approaches, in combination or alone, in the prevention and treatment of the clinically
challenging cancer, TNBC, through the regulation of miRNAs.
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