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Knowledge of the genetic architecture of key growth and beef traits in livestock species has
greatly improved worldwide thanks to genome-wide association studies (GWAS), which
allow to link target phenotypes to Single Nucleotide Polymorphisms (SNPs) across the
genome. Local dual-purpose breeds have rarely been the focus of such studies; recently,
however, their value as a possible alternative to intensively farmed breeds has become
clear, especially for their greater adaptability to environmental change and potential for
survival in less productive areas. We performed single-step GWAS and post-GWAS
analysis for body weight (BW), average daily gain (ADG), carcass fleshiness (CF) and
dressing percentage (DP) in 1,690 individuals of local alpine cattle breed, Rendena. This
breed is typical of alpine pastures, with a marked dual-purpose attitude and good genetic
diversity. Moreover, we considered two of the target phenotypes (BW and ADG) at different
times in the individuals’ life, a potentially important aspect in the study of the traits’ genetic
architecture. We identified 8 significant and 47 suggestively associated SNPs, located in
14 autosomal chromosomes (BTA). Among the strongest signals, 3 significant and 16
suggestive SNPs were associated with ADG and were located on BTA10 (50–60Mb),
while the hotspot associated with CF and DP was on BTA18 (55–62MB). Among the
significant SNPs some were mapped within genes, such as SLC12A1, CGNL1, PRTG
(ADG), LOC513941 (CF), NLRP2 (CF and DP), CDC155 (DP). Pathway analysis showed
great diversity in the biological pathways linked to the different traits; several were
associated with neurogenesis and synaptic transmission, but actin-related and
transmembrane transport pathways were also represented. Time-stratification
highlighted how the genetic architectures of the same traits were markedly different
between different ages. The results from our GWAS of beef traits in Rendena led to the
detection of a variety of genes both well-known and novel. We argue that our results show
that expanding genomic research to local breeds can reveal hitherto undetected genetic
architectures in livestock worldwide. This could greatly help efforts to map genomic
complexity of the traits of interest and to make appropriate breeding decisions.
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1 INTRODUCTION

Genome-wide association is a powerful analysis that allows to
identify genomic regions associated with phenotype variations in
a target population to understand better the genetic architecture
of the phenotype (Begum et al., 2012); such analysis has proved to
be invaluable in the study of the genetic architecture of livestock
species traits, especially cattle (Schmid and Bennewitz, 2017).
Most of the target traits in livestock are polygenic phenotypes (de
Oliveira Silva et al., 2017), which are suitable for investigation
with robust GWAS. However, the GWAS is only the start of the
investigation of the target traits genetic architecture (Atwell et al.,
2010). Weaker signals that would be missed by GWAS analysis
can be identified and described via pathways enrichment analysis,
under the assumption that these signals are related to genes
involved in complex pathways and biological processes
(Buitenhuis et al., 2014; Pegolo et al., 2020). In beef cattle,
traits such as growth or carcass conformation are critical to
the profitability of meat production since greater growth
means a shorter fattening period, and more conformed
animals have higher economic value (Samorè et al., 2016).
GWAS analysis in different species highlighted the strongly
polygenic nature of these traits (Mateescu et al., 2017; Huang
et al., 2018; Falker-Gieske et al., 2019; Gershoni et al., 2021).

In recent years, many studies have proposed more advanced
approaches to investigate these phenotypes, such as the inclusion
of whole genome sequences (Mao et al., 2016) or the analysis of
growth traits in a longitudinal perspective (Yin and König, 2019).
This latter approach has been scarcely used in beef cattle breeding
(Yin and König, 2019; Gershoni et al., 2021), but there are
dramatic differences in the functional elements involved in
determining morphological traits at different ages (Helgeland
et al., 2019): these differences could be investigated by separate
analyses of the same trait collected at various ages. Investigations
on beef traits (Mudadu et al., 2016) have been extensively
performed in cattle, but most studies have regarded few
cosmopolitan, specialized breeds. Dual-purpose breeds, which
consist of local populations apart from a few exceptions (such as
Simmental cattle), have rarely been the target of GWAS. Local
breeds are genetically more diverse than the cosmopolitan ones
and have generally better health parameters and fitness due to a
much-reduced specialization (Biscarini et al., 2015). Also, the
negative genetic correlations occurring between dairy and beef
traits make the genetic improvement of both aptitudes in dual-
purpose populations far from its optimum (Frigo et al., 2013;
Mazza et al., 2016; Sartori et al., 2018). Moreover, such breeds
often present unique characteristics that allow them to adapt to
harsher conditions (Krupová et al., 2016; Sutera et al., 2021) and
better respond to environmental shifts or challenges (Biscarini
et al., 2015). Thus, these dual-purpose local breeds represent an
unexploited source of diversity for the animal breeding sector and
a rare opportunity to conduct GWAS on key economic traits that
have not been under excessive specialization.

Rendena is an autochthonous breed from Alpine regions of
North-East of Italy with a dual-purpose aptitude for meat and
milk still maintained through the current selection scheme,
assigning 65% of the economic weight to milk and 35% to

meat (Guzzo et al., 2019; for further details on the selection
scheme see Mantovani et al., 1997; and Supplementary
Figure S1).

The dual-purpose aptitude also allows to counteract
inbreeding erosion and maintain good genetic variability
despite the small population size (the current number of
animals is around 7,000 of which 4,000 are cows). Rendena
also presents good fertility and longevity parameters and
excellent adaptability to local environments, ranging from
plains to Alpine pastures (Ovaska and Soini, 2017; Guzzo
et al., 2018). As in various other local breeds, genomic
information of Rendena has started to be available just
recently, after implementing a routine activity of genotyping.
This information might allow identifying and describing genes
and functional pathways involved in the genomic architecture of
traits of economic or functional interest (Senczuk et al., 2020).
Moreover, as genomic selection has just been implemented in
Rendena (Mancin et al., 2021a), investigating these traits could
also be helpful to increase the prediction accuracy (see Tiezzi and
Maltecca, 2015).

In this study, we performed a single-step GWAS and pathway
analysis in Rendena cattle to investigate the genetic architecture
of growth and carcass conformation traits, i.e., body weight,
average daily gain, in vivo dressing percentage, and in vivo
fleshiness (SEUROP grade). Additionally, body weight and
average daily gain were analyzed using records taken at
different ages, to study possible temporal variation in the
genetic architecture of growth at the early stages.

2 MATERIALS AND METHODS

2.1 Animals and Phenotypes
All phenotypic records were collected at the performance test
(PT) station of the National Breeders Association of Rendena
cattle—ANARE, Trento Italy (www.ANARE.it). All phenotypes
belonged to young (on average of 1 month of age) candidate bulls.
About 60 young bulls are tested every year at the PT station for a
total period of 11 months, following the criteria reported in
Mantovani et al. (1997). Records have been collected since
1985, when PT started, until present times. The phenotypes
collected during the PT are body weight (BW), average daily
gain (ADG), carcass fleshiness (CF) and dressing percentage
(DP). Both CF and DP are evaluated in vivo by 3 skilled
operators at the end of the PT period and averaged to obtain
the final score. The CF evaluation applies the same scores of post-
mortem carcass appraisal established by the European Union
Council (SEUROP), where the middle class (R) is equal to 100
points and other classes (upper or lower classes) correspond to
10-points-variations. Furthermore, the evaluation also considers
sub-classes (e.g., R+ and R-for the middle class) that are spaced 3.
33 points from the class score. DP is a visual prediction of the
post-mortem measure of DP: the operator makes a visual
appraisal of the individual at the end of the performance test,
offering an estimate of the expected DP—i.e., conformation—at
slaughter (Mantovani et al., 1997). Average daily gain (ADG) is
calculated as the linear regression of weight (BW) on age. For this
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study, ADG and BWwere collected at different stages of PT. ADG
has been divided into ADG_i and ADG_f: ADG_i covers the daily
gain of the first half of the testing period (since entering the PT
station until the 6th month), while ADG_f covers the daily gain of
the second half (from the 6th month to the end of the period).
ADG covering the entire PT test was labeled as ADG_tot. BWwas
split along the same timeline as ADG: body weight at the entrance
to the station (BW_i), at 6 months (BW_m) and at the end of PT
(BW_f). Data cleaning consisted of removing animals with a
regression of weight on age showing a coefficient of
determination below 0.9 (for further details, see Guzzo et al.,
2019).

2.2 Genomic Data and Quality Control
The biological material of the animals chosen for the genotyping
resulted from salivary swab, hair (at least 30 bulbs), or ear tissue
from biopsy brand, collected by ANARE on females and young
candidate bulls at PT, as well as from semen of proven bulls,
already subjected in the past to PT and progeny test for milk and
to a large extent now eliminated. The Bovine 150K Array GGPv3
Bead Chip (HD, 138,974 SNPs), and Illumina Bovine LD GGPv3
(LD, 26,497 SNPs), were used for genotyping (Illumina, Illumina
Inc., San Diego, CA, United States). The overlapping between the
two panels is about 60%. The HD platform was used for 554
young bulls, while 1,416 individuals (174 males and 1,242
females) were genotyped with LD chips. To achieve a reliable
genomic imputation accuracy, the 174males were animals with at
least one parent and one half-sib genotyped with HD chips. The
genotyped females were individuals with a kinship of at least 0.2
with phenotyped animals.

Before proceeding with imputation, we performed a
preliminary quality control removing SNPs with a minor allele
frequency (MAF) < 0.01 and call rate lower than 0.90, using Plink
program (Purcell et al., 2007). Only the 29 autosomal
chromosomes (BTA) were used for association, and progeny
conflicts were fixed using the seekparentsf90 program (Aguilar
et al., 2018).

AlphaImpute2 was used for imputation (Whalen and Hickey,
2020), as it combines a population imputation algorithm
(Positional Burrows Wheeler Transform) with pedigree-based
imputation (iterative peeling); we used the same parameters as in
Mancin et al. (2021a). The accuracy of the imputations was
roughly estimated as a correlation between true and imputed
SNPs. To this aim, ten rounds of cross-validation were
performed: in each round the overlapping SNPs between the
two panels were removed in ten animals and then imputed using
the HD panel from young bulls as reference population
(Supplementary Table S1). Subsequently, the correlation
between the true and the imputed genotypes was calculated on
these animals.

After imputation, we performed a second genomic quality
control with the preGSf90 program (Aguilar et al., 2018): the
SNPs with MAF lower than 0.05 and SNPs that deviated too
much for the expected value of heterozygosis (i.e., Hardy-
Weinberg Equilibrium) were removed. In accordance to
Wiggans et al. (2012) the threshold for was set to 0.15: SNPs
were deleted if |n of heterozigois

n − 2pq|> 0.15. In addition, SNPs

with a call-rate < 0.90 and animals with a call rate < 0.95 were
excluded. The final genomic database contained 1,690 animals
(698 with both genotypic and phenotypic information), and
113,279 SNPs. Genome-wide linkage disequilibrium (LD)
within chromosome was also calculated, as the squared
correlation of allele counts for two SNP. Principal
Components Analysis (PCA) of G matrix and LD were also
calculated with pregsGSf90.

2.1 Single Step Genome-wide Association
Analyses
Single step genome-wide association (ssGWAS) models were
used to estimate allele substitution effect. In ssGWAS, the
estimation of allele substitution effects was obtained from a
linear transformation of the BLUP of breeding value under
ssGBLUP model (Aguilar et al., 2019). Mancin et al. (2021b)
showed the advantages of this method in terms of QTL detection
and control of populations structure over two-step methods in
which de-regression of breeding value as pseudo phenotype is
required. This issue is particularly evident in the presence of
unbalanced data (i.e., sex-limited traits). In fact, the ssGWAS
allows the use of both male and female genomes even when
analyzing a phenotype collected only in individuals of one sex.

The ssGBLUP model used in this analysis, written in matrix
form, is the following:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X′X X′Z

Z′X Z′Z +H−1σ
2
e

σ2a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ b̂
â
] � [X′y

Z′y ] (1)

Where phenotypes are included in vector y, X is the incidence
matrix of fixed effects (group of contemporaries, cow parity class
and months of birth), b is the vector of these effects. The
contemporary group has 147 levels, with each level consisting
of bulls grouped together at the Performance Test because
homogeneous by age (i.e., born within 1 month of each other; 82.

Animals per group on average, minimum 5 and maximum
142). The parity order of cow has four classes (first parity; second
parity; third to seventh parity; above the eighth parity), and the
classes of months of birth correspond to the single months, as in
Guzzo et al. (2019).

Z represents the incident matrix that relates the random
genetic additive effects to the phenotype, with effects
represented by vector a. The vector of random residual error
(e) has a normal distribution N(0, Iσ2e), where σ2e is the residual
variance. In the ssGBLUP vector of additive genetic effects is
distributed as N(0, Hσ2a), where σ2a is the additive genetic
variance and H is the (co)variances structure which combines
pedigree and genomic relationships (Aguilar et al., 2010). Its
inverse, used in Eq. 1 is described as:

H−1 � A−1 + [ 0 0
0 G−1 − A−1

22
] (2)

whereA−1 andA−1
22 are the inverse of the pedigree kindship matrix

respectively for all animals and for only genotyped animals. Since
the frequencies of current genotyped population are used to
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centerG and pedigree and genomic matrices have different bases,
G was adjusted so the average diagonal and off-diagonal matches
the averages of A22. Pedigree kinship (sub) matrix was estimated
tracing back the pedigree up to 7 generations, i.e., 6,644 animals.
G matrix was built using the methods proposed by VanRaden
(2008), as follows:

G0 � MM′
2∑ pi (1 − pi ) (3)

where M is a matrix of SNP content centered by twice the current
allele frequencies, and pi is the allele frequency for the ith SNP
(VanRaden, 2008).

Additionally, to avoid singularity problems, the final G was
computed as

G � λG0 + βI (4)

Where G is the matrix present in the Eq. 2, I is an identity
matrix of the same dimensions, λ and β are two weighting
coefficients, with λ � 0.99 and β � 0.01. These values were
chosen due to their influence on the power of signal detection of
the GWAS, and because they resulted in inflation close to
optimum values. In addition, G was adjusted to a better
blending with diagonal and off-diagonal of A22 as described
in Vitezica et al. (2011):

δ � 1 − 0.5
n2

⎛⎝∑
i

∑
j

A22(i,j) − ∑
i

∑
j

Gi,j
⎞⎠ (5)

Then, the vector of estimated breeding values was obtained as:

ĝ � λδ
1

2∑pq
M′G−1â22 (6)

Where â22 is the vector of estimated breeding values of genotyped
animals. The prediction error variances ĝ , necessary to calculate
the p-values, were calculated following Gualdrón Duarte et al.
(2014) and computed as in Aguilar et al. (2019), where:

Var(ĝ) � Var(λδ 1
2∑pq

M′G−1â22) (7)

Var(ĝ) � λδ
1

2∑pq
M′G−1Var(â22)G−1M λδ

1
2∑pq

(8)

Since Var(â22) is equal to PEV(â22) − var(a22); thus
Var(â22) � Gσ̂2a − C22. It follows that formula Eq. 8 becomes:

Var(ĝ) � λδ
1

2∑pq
M′G−1(Gσ̂2a − C22)G−1M λδ

1
2∑pq

(9)

C22 is a submatrix of C belonging to the genotyped animals and
represents the prediction error variances of â22. The p-values are
then calculated as

p − valuei � 2(1 −Φ(∣∣∣∣∣∣∣∣ ĝ i
sd(ĝ i)

∣∣∣∣∣∣∣∣)) (10)

Where ĝi is the allele substitution effect of SNP i and sd(ĝi)
represents the square root of Eq. 9,Φ (·) is the cumulative density
function (CDF) of the normal distribution.

Two thresholds were used for the association tests: a
genome-wide 5% significant level of −log10(p) � 5.55 (0.05/
17,766) and a suggestive association with −log10(p) � 4.29
(0.1/17,766). These are the thresholds corrected for multiple
tests i.e., pn where p is the probability level of significance and n
is the corresponding number of independent SNPs (n �
17,766) calculated using the “poolR” R package (https://
cran.r-project.org/web/packages/poolr; R Core Team, 2021),
according to Li and Ji (2005). The number of independent tests
was calculated based on the number of eigenvalues. Instead of
the standard approach of Cheverud (2001), we used the
approach by Li and Ji (2005), a function that decomposes
the eigenvalues in the integral part (Effective Number
Independent Test) and the nonintegral part.

The (co)variance components have been estimated with
REML using Average-Information algorithm (Gilmour et al.,
1995). Approximate standard error of (co)variance
components has also been estimated through Monte Carlo
sampling as in Houle and Meyer (2015), in which standard
deviations were calculated from Monte Carlo chains sampled
from multinormal distribution with covariance being the inverse
of the Average InformationMatrix and the estimated variances as
the expectation. Then the heritability for the 3 phenotypes was
calculated under single trait models as in Eq. 1. Heritability was
calculated as: h2 � σ2a

(σ2a+σ2e ) ; where σ
2
a and σ2e are, respectively, the

additive genetic and the residual variances.
Genetic and phenotypic correlations were estimated with bi-

traits models, which are equivalent to Eq. 1 except for the animal
additive genetic and residual variance, assumed to follow a
multivariate normal distribution with mean 0 and variances G
› H, and R › I, where

G �
∣∣∣∣∣∣∣∣ σ

2
a1 σa1a2

σa1a2 σ2a2

∣∣∣∣∣∣∣∣; R
∣∣∣∣∣∣∣∣ σ

2
e1 σe1e2

σe2e1 σ2e2

∣∣∣∣∣∣∣∣ (11)

where G is the matrix of additive genetic (co)variances σ2a1, σ2a2,
σa1a2 of traits 1 and 2, R the matrix of residual (co)variances σ2e1,
σ2e2 and σe1e2 of traits 1 and 2.

The correlation was estimated as: cov � σ i1i2
(σ i,1 σ i,2)where i stands

for the genetic and phenotypic correlation; 1 and 2 refer to the
different performance test traits, and σ i1i2 is the covariance
between traits 1 and traits 2, off diagonal of Eq. 11. For
phenotypic (co)variance, we mean the sum of the genetic and
the phenotypic (co)variances. Traits that do not include zero in
their correlations Higher Posterior Density Interval (HPD) were
declared significantly correlated.

All the genomic analyses were carried out with BLUPF90
family software (Aguilar et al., 2018) following the procedure
described in Lourenco et al. (2020). Manhattan plots were drawn
using “ggplot” R package (Wickham, 2016), as were the LD
graphs.

2.2 Pathway Analysis
Pathway’s enrichment analysis was conducted to identify which
biological pathways and functional elements were enriched for
the investigated traits. From GWAS results, we selected SNPs
with nominal p-values of < 0.01 which were mapped to genes
based on a distance of 15 kb from the coding region using the
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“biomaRt” R package (Drost and Paszkowski, 2017) and Bos
taurus UMD3.1 assembly as in Pegolo et al. (2020). Functional
enrichment analysis was carried out on the list of significant genes
using the Cytoscape plugin ClueGo (Bindea et al., 2009). As
functional categories, we used cellular component, biological
process, and molecular functions within the Gene Ontology
(GO, http://geneontology.org) database and the Kyoto
Encyclopedia of Genes and Genomes (KEGG, https://www.
genome.jp/kegg/). The Benjamini-Hochberg correction was
applied to declare significant pathways: only pathways showing
FDR < 0.05 were retained. The minimum number of genes in the
pathway was set to 3; the minimum percentage of genes present in
the pathway was set to 4%. To simplify the redundance of GO
terms we provide figures with similar terms grouped based on
their semantic similarity using the R packages “rrvgo” (Sayols,
2020). In addition, we investigated if the candidate regions
declared as significant by our GWAS overlapped with QTL in
animal QTLdb, identified with R package “GALLO” (Fonseca
et al., 2020).

3 RESULTS AND DISCUSSION

3.1 Heritability and Genetic Correlations
Descriptive statistics after data editing of the phenotypes are
shown in Table 1. Phenotypic and genetic correlations and the
heritability (h2) for the analyzed traits are reported in Table 2.
Body weight traits presented an average value of h2 lower than
other traits: BW_i showed the lower heritability (0.130), while
BW_m and BW_f had heritability of 0.220. In fact, as reported
in literature, a large discrepancy of values has been observed
for heritability of body weights, and generally, traits similar to
birth weight or weaning weight have a slightly lower
heritability than weight measured in more advanced stages
(Yin and König, 2018). Average daily gain (ADG_tot)
presented an intermediate heritability of 0.322 partitioned
into 0.164 and 0.220 for ADG in the first and last period.
As for body weight, ADG presents lower h2 in first stages of the
performance test, and h2 values agree with what has been
found in the literature (Yin and König, 2018). The highest
heritabilities were found for the traits related to the carcass
conformation, with a value of 0.45 and 0.47 respectively for CF
and DP, close to what was observed in other local dual-purpose
or beef cattle (Albera et al., 2001; Sbarra et al., 2013; Mancin
et al., 2021c). These traits also appeared highly genetic
correlated. All ADG traits were moderately genetically
correlated with them, with a value of 0.5 on average. On the
contrary, body weight measured at the beginning of the
performance test was not significantly correlated with CF
and DP. Interestingly, the weights measured in more
advanced periods showed an increase of genetic correlation
with a value close to 0.7. Body weight and ADG also presented
a strong genetic correlation with body weight traits, especially
for the traits measured at the final stages of the performance
test. In terms of genetic correlations, the results agree with
what was found in other local dual-purpose or beef breeds
(Veselá et al., 2011; Filipčík et al., 2020). Phenotypic

correlation followed the same trends of genetic correlation
but with a lower magnitude (Table 2, under diagonal).

3.2 Genomic Architecture and Imputation
A homogeneous density distribution (number of SNPs per Mb)
was found throughout the genome, apart from few relatively small
blank areas in 12 chromosomes. For further details on SNP density
on each chromosome after imputation and quality control, see
Supplementary Figure S2. The new imputed panel had a SNPs
density close to the one found in the young bulls genotyped with
HD platforms. A value of imputation accuracy of 0.95 ± 0.05 was
observed via cross-validation in the HD males (Supplementary
Figure S2). Combined with the high correlation between the A and
G matrix, these results confirm the reliability of the new
Alphaimpute2 algorithm for this population.

The PCA scatterplots (Figure 1) illustrate a homogenous
distribution of allele frequencies in individuals that comprised
our study population. No stratification has been observed in the
first two components, suggesting that most G matrix variance is
explained by many eigenvalues with small effect. Genome-wide
linkage disequilibrium and MAF have also been explored since
the availability of high-density SNP platforms permits to
explore the LD decay at an unprecedented resolution. In
addition, MAF and LD are useful for understanding
differences in population history and demography and for its
impacts for genome-wide mapping studies. LD decay per each
chromosome is reported in Supplementary Figure S3. As
expected, most tightly linked SNPs presented strong levels of
LD while it rapidly declines when the distance increases. A
within-chromosome LD average value of 0.19 ± 0.12 has been
observed. When the distance between markers is lower than
1 Mb, the LD squared correlation between pairs of loci across
autosomes (r2) (Hill and Robertson, 1968) reached an average
value of 0.17 ± 0.27, and when the distance was > 1 Mb LD
decreased to 0.04 ± 0.09 (Supplementary Figure S3). Larger
levels of LD have been observed for chromosome 6 (0.20), while
lower levels of LD were observed for chromosome 28 (0.18). An
average value of 0.29± 0.12 was observed forminor allele frequency;

TABLE 1 | Summary statistics for phenotypic data of animals with both genotypic
and phenotypic information (n � 689).

Traits Mean SD Min Max

BW_i (kg) 65.72 14.64 37 139
BW_m (kg) 183.40 30.53 83 317
BW_f (kg) 376.20 43.60 203 576
ADG_i (g/d) 939.20 167.90 138 1,388
ADG_f (g/d) 1,082 157.30 365 1756
ADG_tot (g/d) 1,024 124.20 474 1,562
CF (score) 99.05 3.80 80 111
DP (score) 54.18 0.94 50 57

BW_i, body weight at the entrance at performance test stations; BW_m, body weight at
6 months; BW_f, at the end of performance test; ADG_i, average daily gains covering the
first half of the period (since entering into the PT, station until the 6th month); ADG_f,
average daily gain covering the daily gain of the second half (since the 6th month to the
end of the period), ADG_tot average daily gain covering the entire period; DP, Dressing
Percentage; CF, Carcass Fleshiness; SD, Standard deviation; Min, minimum; Max,
maximum.
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no noticeable difference has been observed along the 29
chromosomes, with MAF values ranging from 0.28 ± 0.12
(chromosome 12) to 0.30 ± 0.12 (chromosome 19). With respect
to the other local Italian breeds (i.e., Fabbri et al., 2020), Rendena

presents a lower level of LD. This issue implicitly underlines the
reassuring demographic situation of Rendena compared with other
indigenous cattle of Italy, as it demonstrates a lower risk of
inbreeding depression.

TABLE 2 | Mean of genetic (over diagonal) and phenotypic (under diagonal) correlations, and heritability (diagonal) with the respective standard deviations in target traits in
Rendena population, estimated under ssGBLUP models. (NS) stands for non-significant correlations.

BW_i BW_m BW_f ADG_i ADG_f ADG_tot CF DP

BW_i 0.13 ± 0.08 0.99 ± 0.17 0.80 ± 0.10 0.52 ± 0.96 0.44 ± 0.85 0.50 ± 0.60NS 0.33 ± 0.71 0.53 ± 0.80
BW_m 0.41 ± 0.05 0.22 ± 0.09 0.87 ± 0.11 0.81 ± 0.41 0.68 ± 0.36 0.78 ± 0.59 0.69 ± 0.58 0.73 ± 0.44
BW_f 0.29 ± 0.07 0.79 ± 0.03 0.22 ± 0.09 0.78 ± 0.43 0.97 ± 0.17 0.97 ± 0.28 0.62 ± 0.21 0.63 ± 0.23
ADG_i 0.17 ± 0.07 0.77 ± 0.03 0.86 ± 0.02 0.16 ± 0.10 0.64 ± 0.12 0.81 ± 0.21 0.62 ± 0.43 0.67 ± 0.25
ADG_f −0.04 ± 0.08 0.09 ± 0.08 0.68 ± 0.04 0.14 ± 0.08 0.23 ± 0.08 0.97 ± 0.1 0.43 ± 0.23 0.47 ± 0.22
ADG_tot 0.11 ± 0.08 0.47 ± 0.06 0.84 ± 0.02 0.68 ± 0.04 0.80 ± 0.03 0.32 ± 0.09 0.55 ± 0.16 0.6 ± 0.15
CF 0.14 ± 0.08 0.4 ± 0.07 0.49 ± 0.09 0.3 ± 0.08 0.37 ± 0.08 0.42 ± 0.08 0.46 ± 0.09 0.98 ± 0.02
DP 0.05 ± 0.09 0.35 ± 0.08 0.51 ± 0.07 0.26 ± 0.09 0.38 ± 0.08 0.98 ± 0.02 0.73 ± 0.05 0.46 ± 0.09

BW_i, bodyweight at the entrance at performance test stations; BW_m, bodyweight at 6 months; BW_f, at the end of performance test; ADG_i, average daily gains covering the first half of
the period (since entering into the PT, station until the 6th month); ADG_f, average daily gain covering the daily gain of the second half (since the 6th month to the end of the period),
ADG_tot average daily gain covering the entire period; DP, Dressing Percentage; CF, Carcass Fleshiness.

FIGURE 1 | Scatter plot of first and second principal components of the genomic relationship matrix (the G matrix) used in the ssGBLUP. A total of 113,279 SNPs
and 1,690 cattle were used to perform the principal component analysis.
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TABLE 3 | Significant and suggestively SNPs found on the GWAS study.

Trait BTA Position of the
SNP
(bp)

Significance of the
SNP (−log
(p-value))

Nearest gene(s) Distance to nearest
gene
(kb)

Other traits
associated

Variance
explained (%)

Body weight

BW_i 9 64,611,352 3.04E-06 TBX18 0.589 0.22
BW_i 9 64,599,056 2.37E-05 TBX18 12.885
BW_i 9 64,557,321 2.81E-05 TBX18 54.620
BW_i 24 49,394,386 3.43E-05 ACAA2 48.389
BW_i 24 49,493,559 4.43E-05 MYO5B within
BW_m 7 32,306,269 8.65E-06 FTMT 321.80 BW_f; ADG_i
BW_m 1 67,212,088 3.27E-05 DIRC2 2.783 ADG_i
BW_m 21 22,956,171 5.11E-05 CPEB1 within
BW_m 24 49,735,783 5.55E-05 MYO5B within
BW_f 26 6,437,290 7.50E-06 MBL2 3.483 ADG_tot
BW_f 7 32,306,269 8.39E-06 FTMT 321.80 BW_m, ADG_i
BW_f 21 17,568,377 3.44E-05 AGBL1 within
BW_f 24 24,130,452 4.56E-05 CCDC178 within
BW_f 14 60,644,816 4.62E-05 RIMS2 within

Average Daily Gain

ADG_i 1 67,212,088 2.84E-06 DIRC2 2.783 BW_m 0.441
ADG_i 7 32,306,269 1.99E-05 FTMT 321.80 BW_m; BW_f
ADG_i 7 32,009,625 3.03E-05 FTMT 25.152
ADG_i 4 91,417,417 3.11E-05 GRM8 within
ADG_f 10 62,113,751 1.81E-07 SLC12A1 within ADG_tot 0.073
ADG_f 10 52,785,760 1.29E-06 CGNL1 within 0.203
ADG_f 10 54,787,499 1.75E-06 PRTG within 0.435
ADG_f 10 55,502,036 3.42E-06 UNC13C 135.046
ADG_f 10 55,510,249 3.56E-06 UNC13C 126.833
ADG_f 10 55,535,781 4.35E-06 UNC13C 101.301
ADG_f 10 57,348,706 6.68E-06 LOC101904374 248.031
ADG_f 26 8,564,813 5.92E-06 A1CF; ASAH2 17.739; 32.479 ADG_tot
ADG_f 10 52,777,666 9.27E-06 CGNL1 within
ADG_f 10 57,311,183 9.77E-06 LOC101904374 285.554
ADG_f 10 52,023,061 1.35E-05 AQP9 65.881
ADG_f 10 56,585,283 1.56E-05 WDR72 within
ADG_f 10 61,604,387 2.24E-05 LOC104973175;

FBN1
20.944; 51.118

ADG_f 10 58,180,258 MYO5C; GNB5 1.494; 11.943
ADG_f 10 63,669,471 3.56E-05 —

ADG_f 10 52,284,899 4.06E-05 ALDH1A2 within
ADG_f 10 57,890,651 4.13E-05 MYO5A within
ADG_f 11 78,877,665 4.48E-05 WDR35 within
ADG_f 10 55,830,543 4.90E-05 UNC13C within
ADG_f 10 57048787 4.98E-05 LOC101904374 547.950
ADG_tot 10 62,113,571 2.07E-06 SLC12A1 within ADG_f 0.501
ADG_tot 26 8,564,813 1.66E-05 A1CF; ASAH2 17.739; 32.479 ADG_f
ADG_tot 11 21,542,682 3.41E-05 CDKL4; MAP4K3 7.971; 11.618
ADG_tot 26 6,437,290 6.03E-05* MBL2 3.483 BW_f

Dressing Percentage

DP 18 62,412,976 4.51E-07 NLRP2 within CF 0.640
DP 18 55,878,286 2.40E-06 CDC155 within CF 0.731
DP 1 148,893,434 8.77E-06 SIM2 80.004
DP 18 58,645,859 1.06E-05 LOC101904435 within CF
DP 18 61,137,684 1.15E-05 LOC513941 within CF
DP 4 99,574,406 2.34E-05 LOC112446424 within
DP 18 57,735,853 3.03E-05 LOC787554 within CF
DP 18 62,427,814 4.49E-05 NLRP2 within
DP 18 63,362,491 4.97E-05 LOC107131476 560
DP 17 72055006 5.07E-05 YPEL1 23.650
DP 18 62,428,754 5.25E-05 NLRP2 within

(Continued on following page)
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3.3 GWAS and Pathway Analysis
The full results of GWAS are reported in Table 3. We found a
total of 8 SNP significantly associated with 5 of the investigated
traits, and 47 SNPs suggestively associated with all 7 investigated
traits (Figure 2). Pathway analysis revealed that out of 113,279
SNPs, 77,506 were located within a 15 kb window of annotated
genes; in the end, 14,380 annotated genes were used as a
background for each trait. On average, 628 genes near
significant SNPs (<0.01) were identified and subsequently used
for pathway analysis of each trait. All traits presented an inflation
factor close to optimum values of 1 (Figure 2) calculated based on
the median chi-squared test. In addition, analysis on localized
linkage disequilibrium (0.5 Mb form significant SNP), has been
carried out (Figures 3–7), and results indicated that all significant
candidate genes are extremely close to the significant SNPs,
except for candidate gene ZNF784, which is situated between
two significant SNP (Figure 6).

3.3.1 Body Weight
Significant SNPs contributing to the genetic effect of body weight
are listed in Table 3. Body weight measured at first stage was the
only BW trait in which significant SNPs were identified, while
body weight measured at the half of the performance test period
presented the lowest number of suggestive SNPs and biological
pathways enriched. The significant peak for BW_i was located at
64 Mb on BTA9, in the vicinity of gene TBX18 (Figure 3;
Table 3). This gene is mainly involved in controlling the first
stages of embryonic development and in the morphogeny of the
embryonic epithelium (Consortium, 2021). To our knowledge, no
previous connection with body weight had ever been found for
TBX18; however, a study found an association between this gene
and development in dual-purpose Simmental breed but not in
other specialized breeds (Doyle et al., 2020a).We hypothesize that
a possible mechanism for the connection between TBX18 and
body weight could lie in the fact that it is a strict paralogue of
TBX15, a gene linked to obesity-related traits in humans andmice

(Ejarque et al., 2019; Sun et al., 2019); it is demonstrated that
TBX15 regulates processes related to the skeletal muscles
metabolism, which is in turn linked to animals’ body size (Lee
et al., 2015). However, studies on the relationship between TBX15
and TBX18 in cattle and the impact of TBX15/18 on the
regulation of muscle metabolism are needed to validate this
hypothesis. We identified several known cattle QTLs in
QTLdb overlapping with our candidate region
(Supplementary Table S2A): the majority of these QTLs were
linked to morphology (47.5%), followed by beef
production (22.5%).

MYO5B is a candidate gene for both BW_m and BW_i
(Table 3), identified by the presence of two suggestively
associated SNPs located on chromosome 24. MYO5B is related
to the development of skeletal muscle for what concerns actin and
myosin organization and with the binding of ATP (Consortium,
2021). Interestingly, this gene was also identified in GWAS
conducted on dual-purpose Simmental breeds (Doyle et al.,
2020b).

The analysis of the enriched pathways, represented in
Figure 8, reinforced what has been mentioned for the single
genes, namely that in our study the mechanisms regulating body
weight were mainly those linked to the development of muscle
masses. Among the GO terms enriched (Figure 8;
Supplementary Figures S4A,B), there were: organization of
cytoskeleton (GO:0007010), actomyosin structure (GO:
0031032), actin filament bundle (GO:0061572), and contractile
actin filament bundle assembly (GO:0051017). The pathways
analysis revealed a further biological process related to the
metabolism of lipids on skeletal muscles (GO:0055088, GO:
0055092, GO:0042632). Regulation of the selection of
appropriate nutrients by the skeletal muscle is essential both
in terms of muscle energy metabolism and in terms of general
regulation of whole-body supply and use of fuel (Hocquette et al.,
1998): again, this enriched pathway was also found in Srivastava
et al. (2020).

TABLE 3 | (Continued) Significant and suggestively SNPs found on the GWAS study.

Trait BTA Position of the
SNP
(bp)

Significance of the
SNP (−log
(p-value))

Nearest gene(s) Distance to nearest
gene
(kb)

Other traits
associated

Variance
explained (%)

Carcass Fleshiness

CF 18 61,137,684 5.62E-08 LOC513941 within DP 0.450
CF 18 62,412,976 9.40E-07 NLRP2 within DP 0.670
CF 18 58,645,859 4.71E-06 LOC101904435 within DP
CF 18 55,878,286 7.67E-06 CCDC155 within DP
CF 18 61,920,892 9.57E-06 ZNF784 895
CF 18 57,735,853 1.05E-05 LOC787554 within DP
CF 18 57,516,245 1.66E-05 LOC618268 within
CF 14 45,804,718 2.30E-05 SAMD12 within
CF 28 14,722,675 2.48E-05 LOC101906006 within
CF 18 57,565,406 3.23E-05 SIGLEC5 within
CF 12 27,043,078 3.38E-05 —

CF 18 57,008,781 4.83E-05 KLK12 within
CF 28 14,788,560 5.31E-05 PHYHIPL within

Significant SNPs are reported in bold. Genewith * were just outside suggestive association range for one trait; it was retained in the table because significant for another trait. The threshold
of significance chosen for our analysis was p � 3.162 * 10-6, obtained through Bonferroni correction, while threshold for Bonferroni suggestive p-values was p � 5.629 * 10-5.
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Aside from the already mentioned MYOB5, two candidate
genes within suggestively associated SNPs were identified for
BW_m: CPEB1 and DIRC2, found on BTA1 and 21,
respectively (Table 3). While these genes are not directly
involved with body weight, we found them related to factors
with a potential secondary impact on growth. For example, the
CPEB1 gene is involved in the regulation of mRNA translation and

cell proliferation, with an influence on the molecular mechanisms
associated with superior resilience to heat stress in cattle (Livernois
et al., 2021). Moreover, CPEB1 was also detected by other GWAS
studies in cattle in which the target phenotype was residual feed
intake (Lapierre et al., 1995). DIRC2 has been associated with lipid
storage in geese’s (Anser anser domesticus) liver (Yang et al., 2020),
given its role as a substrate carrier.

FIGURE 2 |Manhattan and Q-Q plots of BW_i: body weight at the entrance at performance test stations; BW_m: body weight at 6 months; BW_f: body weight at
the end of performance test. Average daily gain: ADG_i, covers of the first half of the period (since entering into the PT station until the 6th month); ADG_f, covers the daily
gain of the second half (from the 6th month to the end of the period); ADG_tot is the average daily gain throughout the entire period. DP, Dressing Percentage; CF,
Carcass Fleshiness. Dotted lines represent the suggestive and the significant threshold. Red dot represented the significant SNPs and neighboring SNPs (±1 Mb)
while green dot are the SNPs and neighboring SNPs (±1 Mb). Q-Q plots are displayed as scatter plots of observed and expected –log10 (p-values) (right). Values of
inflation are reported within the QQplots.
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FIGURE 3 | (A) Localized linkage disequilibrium analysis of BW_i. Manhattan plots displaying the level of significance (y-axis) over genomic positions (x-axis) in a
window of 0.5 Mb upstream and downstream of the most significantly SNP. Vertical line represents the position of candidate gene TBX18. Different colors are used to
represent the pairwise LD with the closest significant SNPs: blue < 0.2; light blue < 0.4; green < 0.6; yellow < 0.8 and red > 0.8. (B) Represents linkage disequilibrium of
that area.
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FIGURE 4 | (A) Localized linkage disequilibrium analysis of ADG_i. Manhattan plots displaying the level of significance (y-axis) over genomic positions (x-axis) in a
window of 0.5 Mb upstream and downstream of the most significantly SNP. Vertical line represents the position of candidate gene DIRC2. Different colors are used to
represent the pairwise LD with the closest significant SNPs: blue < 0.2; light blue < 0.4; green < 0.6; yellow < 0.8 and red > 0.8. (B) Represents linkage disequilibrium of
that area.
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FIGURE 5 | (A) Localized linkage disequilibrium analysis of ADG_f. Manhattan plots displaying the level of significance (y-axis) over genomic positions (x-axis) in a
window of 0.5 Mb upstream and downstream of the most significantly SNP. Vertical line represents the position of candidate genes CGNL1, PRTG, UNC13C and
SLC12A1. Different colors are used to represent the pairwise LDwith the closest significant SNPs: blue < 0.2; light blue < 0.4; green < 0.6; yellow < 0.8 and red > 0.8. (B)
the represents Linkage disequilibrium present of that area.
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In BW_f, as in the other phenotypes, several genes identified
by suggestively associated SNPs (Table 3) had never been
associated before with body size traits. Moreover, connections
between such candidate genes and body weight were not
straightforward. One suggestively associated gene for BW_f,
CCDC178, was identified in some GWA studies on disease
resistance in local cattle (Kosińska-Selbi et al., 2020). The
MBL2 gene, a candidate gene suggestively associated to BW_f

(and almost suggestive for ADG_tot), also seems to have an
indirect connection with body weight: MBL2 plays a central role
in the activation of the mannose-binding lectin or mannose-
binding protein; this protein is involved in processes that regulate
the immune system, preventing infection from bacteria, virus,
and yeast (Consortium, 2021).

No biological process strictly related to muscle mass
development was identified (Figure 8; Supplementary Figure

FIGURE 6 | (A) Localized linkage disequilibrium analysis of DP. Manhattan plots displaying the level of significance (y-axis) over genomic positions (x-axis) in a
window of 0.5 Mb upstream and downstream of the most significantly SNP. Vertical line represents the position of candidate genes LOC513941, ZNF784 and NLRP2.
Different colors are used to represent the pairwise LD with the closest significant SNPs: blue < 0.2; light blue < 0.4; green < 0.6; yellow < 0.8 and red > 0.8. (B) the
represents Linkage disequilibrium present of that area.
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FIGURE 7 | (A) Localized linkage disequilibrium analysis of CF. Manhattan plots displaying the level of significance (y-axis) over genomic positions (x-axis) in a
window of 0.5 Mb upstream and downstream of the most significantly SNP. Vertical line represents the position of candidate genes LOC513941, NLRP2 and
LOC107131373. Different colors are used to represent the pairwise LD with the closest significant SNPs: blue < 0.2; light blue < 0.4; green < 0.6; yellow < 0.8 and red >
0.8. (B) the represents Linkage disequilibrium present of that area.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 74666514

Mancin et al. Genomic Association on Rendena Breed

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


S4C), but many processes related to other aspects of growth and
body weight have been found. Several pathways were involved in
GABA processes (Figure 8; Supplementary Figures S4A–C):
GABA is actively involved in regulating leptin, the satiety
hormone, which has an essential role in nutrient intake and
feeding motivation (Miller 2017). Some pathways also appear to
be associated with processes such as morphogenesis of the
epithelium (GO:0048791, GO:0007492, GO:0048332, GO:
0001707 GO:0035987; mesoderm morphogenesis in Figure 8),
which has a connection with body weight (increased paracellular
permeability for the absorption of nutrients leads to augmented
energy intake (Vanvanhossou et al., 2020).

Finally, many enriched terms were related to neuronal aspects
(i.e., GO:0043005 GO:0097060, GO:0099537; Figure 8;
Supplementary Figures S4A–C): this may find justification in
the many studies underlining how these pathways are linked to
the complex interaction between physio- and behavioral
components that control the intake of food and energy
expenditure (Martinez, 2000).

3.3.2 Average Daily Gain
Both GWAS and pathway analyses of Average Daily Gain showed
different results depending on the age at which the trait was
recorded, similarly to what resulted from our analysis of BW. In
particular, the only GO terms in common between ADG_i and
ADG_f were GO:0031175 (neuron projection development) and
its associated terms; all the other 105 GO, and KEGG terms were
not (Supplementary Figure S4D). The result of the GWAS also
highlighted SNPs present in wholly different BTAs (Table 3).

ADG_i had only one significant SNP (also suggestively associated
with BW_m) situated on BTA1 (Figure 4), 0.2 Mb away from
gene DIRC2 (also associated with BW_m) and 1.1 Mb away from
gene HSPBAP. Both loci can be in some ways considered
candidate genes for growth, as also HSPBAP has already been
associated with residual feed intake from birth to 12 months
(Cohen-Zinder et al., 2016). One suggestively associated SNP for
ADG_i on BTA4 (Table 3) was within candidate gene GRM8,
associated with body size in cattle (Chen et al., 2020) and eating
behavior in other mammals (Gast et al., 2013). Again, in
agreement with what was found for BW_m (the measure of
ADG_i is based on the difference between BW_m and BW_i
measurement), the results of the pathway analysis for ADG_i
were less extensive than for other ADG traits (Figure 9;
Supplementary Figures S4D–F); moreover, out of 20
pathways (Supplementary Figure S4D), those readily
associable with ADG were GO:0004629 phospholipase activity
(crucial for lipid metabolism) and GO:0043124, responsible for
negative regulation of l-kB kinase/NF-κB signaling (involved with
metabolic regulation, especially in cases of overnutrition; Kracht
et al., 2020).

The same trait recorded at a later age, ADG_f, showed a much
greater number of results, similarly to what transpired with BW_f
(Figure 9; Supplementary Figure S4E; Table 3). For trait ADG_f
the region with the greatest number of signals was on BTA10,
roughly between 50 and 60 Mb (Figure 5; Table 3). This region
contains a QTL that has already been associated to growth in
cattle (Mao et al., 2016), although not in the present study. The
three significant SNPs and 14 out of 16 suggestively associated

FIGURE 8 | Scatter plot representing the main groups of biological pathways enriched for BodyWeight traits measured at first, half and final period of performance
test (BW_i, BW_m, BW_f); the area represents the number of pathways in that group, among the total. For a detailed list of the pathways enriched by these traits see
Supplementary Figures S4A–C.
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SNPs were found in this region. Significant SNPs were situated
within SLC12A1, CGNL1 and PRTG genes (Figure 5). While the
latter two have already been associated respectively with growth
(Londoño-Gil et al., 2021) and backfat thickness in cattle (Júnior
et al., 2016), SLC12A1, to our knowledge, has never been
associated with growth or weight traits in cattle (but see
Kemter et al., 2014, for evidence in mice). However, among
the suggestively associated SNPs on BTA10 (Table 3), several
were within or close genes highly important for ADG, such as
ALDH1A2, FBN1, and AQP9 (Hirano et al., 2012; Liu et al., 2019;
Londoño-Gil et al., 2021; Zhang et al., 2021). Figure 9 shows that
enriched pathways spanned several macro-categories (Figure 9;
Supplementary Figure S4E): these results suggest that, as for
BW, during the late months of the first year, a complex interplay
of different biological processes takes place in growing bulls. For
what concerned the overlapping of our QTLs associated with
ADG_f with the animal QTLdb, we identified QTLs from several
studies: 28.77% associated with morphology, 21.92% associated
with beef production, 19.18% associated with milk, and 8.22%
associated with meat and carcass (Supplementary Table S2B).

Finally, for the total ADG, ADG_tot, the results obtained
mirrored those obtained with final ADG, both in terms of
significant and suggestive SNPs (on BTA10 and BTA26;
Table 3) and in terms of GO terms (Figure 9; Supplementary
Figure S4F) and candidate genes, such as SLC12A1. Interestingly,
one signal reported in ADG_tot was not present in ADG_f: on
BTA11, one single suggestively associated SNP was located close
to two genes well known for their effect on feed intake and weight
(CDKL4 and MAP4K3; Edea et al., 2020). Apart from this

exception, our results show conclusively that total average
daily gain mirrored the final part of the daily gain, i.e., that
the last months were decisive in shaping the total weight gain
trajectory of the bulls.

3.3.2 Carcass Traits
Themain region of interest for both CF and DP traits was situated
on a gene-rich region of BTA18, between 55 and 62 Mb, where 3
significant and 9 suggestively associated SNPs allowed to locate
several candidate genes (Figure 6; Table 3). The QTL with the
highest significance for CF (suggestively associated for DP) was
located within candidate gene LOC513941 (Figure 7), translating
into a cationic amino acid transporter 3-like. This type of
transporters regulates the metabolism of cationic amino acids,
a key factor for growth and beef characteristics in cattle (Liao
et al., 2009). Further corroboration of the importance of this
metabolic pathway for CF was the enrichment of 10 GO terms
(Figure 10; Supplementary Figure S4H), within the group of
“amino acid transport,” such as amino acid transmembrane
transporter activity (GO:0015171), and amino acid
transmembrane transport (GO:0003333).

A second SNP in the same region (significant for DP and
suggestively associated for CF; Table 3) was located within gene
CCDC155 (Coiled-coil domain containing 155). This gene
encodes for a protein involved in dynein complex binding and
actin filament organization and it has been associated with beef
conformation (Lemos et al., 2016; Hardie et al., 2017). Apart from
being the main component of the cytoskeleton, actin constitutes
together with myosin the myofilaments, which grant muscle cells

FIGURE 9 | Scatter plot representing the main groups of biological pathways enriched for average daily gain traits measured at first, half and total period of
performance test (ADG_i, ADG_f, ADG_tot); the area represents the number of pathways in that group, among the total. For a detailed list of the pathways enriched by
these traits see Supplementary Figures S4D–F.
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their mobility and thus ultimately their organization and
dynamics. The association of actin filaments and carcass traits
was again made apparent also by the number (more than 30) and
diversity of enriched GO terms related to actin (Figure 10;
Supplementary Figures S4G,H): for example, those related to
GO:0098858 (CF), actin-based cell projection; GO:0030048 (CF
and DP), actin filament-based movement; GO:0070161 (CF and
DP), anchoring junction; GO:0030833 regulation of actin
filament polymerization; GO:0005912 (CF and DP), adherens
junction (Londoño-Gil et al., 2021). Similarly, for DP 20 terms
were enriched for pathways associated with actin filament-based
GO terms (Supplementary Figure S4G).

In the same region of BTA18, our analysis found two more
candidate genes with a known association with size and growth
traits, all with one or more suggestively associated SNPs for CF.
Siglec-5 is a gene commonly found in GWAS concerning cattle
size and growth traits; its over-expression indicates a deficiency
of leptin, and thus longer gestation time and bigger fetuses
(Hardie et al., 2017). KLK12 is a kallikrein gene, a serin protease
associated with food intake and feed efficiency at the transcript
level in backfat and rumen (Kern et al., 2016). LOC101904435
and ZNF784 are zinc-finger proteins: the former is suggestively
associated with both CF and DP; the latter only with CF but is
linked to food intake in cattle (Olivieri et al., 2016).

Finally, three more SNPs (one significant both for CF and DP
and two SNPs suggestively associated for DP) were situated
within NLRP2 gene (NACHT, LRR and PYD domains-
containing protein 2), a key player in early embryogenesis,
maternal effects, immune response, and inflammasome (Peng
et al., 2012).

Taken together, these results about carcass traits have
numerous substantial implications. Firstly, we highlight how
the 57–62 Mb region on BTA18 can truly be considered a
hotspot of genetic diversity in this breed (as it is for several
others; Grigoletto et al., 2020; Purfield et al., 2020). Secondly, as
expected with strongly correlated traits, CF and DP shared part of
their genetic architecture, as significant SNPs for the two traits are
mostly in the same region. Only another region was shared, as
both traits reported two suggestively associated SNPs close to
each other on BTA28 (Table 3). The region encompasses the
PHYHIPL gene, which influences feed efficiency (Abo-Ismail
et al., 2018), whose link with carcass traits has recently been
established (Seabury et al., 2017).

CFwas associated only with twomore SNPs, one on BTA12 and
the other on BTA14 (Table 3). While the former was more than
1Mb far away from any annotated functional element, the latter
fell within SAMD12, a gene already found to have a significant
dominance signal to chuck roll and be associated with 18-months
weight in Simmental (Zhuang et al., 2020). On the other hand, DP
had an almost significant signal on BTA1: the gene closest to the
SNPwas SIM2, already known to be associated with carcass quality,
differentiation of longissimus, and semimembranosus muscle (De
Las Heras-Saldana et al., 2019; Edea et al., 2020). To conclude, the
strongest of the remaining suggestively associated signals for DP
came from BTA4, within LOC112446424, a non-coding RNA close
to candidate gene SLC13A4, a cationic canal important both for
muscle traits in sheep and growth and development in cattle
(Carvalho et al., 2020; Kaur et al., 2020).

While, as we mentioned, results from pathway analyses
(represented in Figure 10; Supplementary Figures S4G,H),

FIGURE 10 | Scatter plot representing the main groups of biological pathways enriched for carcass traits (carcass fleshiness and dressing percentage). For a
detailed list of the pathways enriched by these traits see Supplementary Figures S4G,H.
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and GWAS were often complementary, pathway analyses for
both CF and DP resulted in the enrichment of a robust number of
pathways related to neuron activity, not really pointed out by
GWAS results. Such pathways referred to the regulation of
neuroblast proliferation (GO:1902692 for CF), chemical
synaptic transmission (GO:0007268 for CF), neurogenesis
(GO:0022008 for CF and DP), neuron projection (GO:0043005
for DP), synapse (GO:0045202 for DP) and especially synaptic
transmission, glutamatergic (GO:0035249 for DP and, to a lesser
extent, CF).

Glutamatergic synapses guide the development of growth
neurons and regulate feeding motivation in the hippocampus
(Huang et al., 2017). The relation between feeding motivation
and nutrient intake is crucial to maintaining energy intake and
storage (Illius et al., 2002). Such relationship is complex, involving
leptin (see above-mentioned gene Siglec-5), and the NPY/AgRP
system, which makes food intake-stimulating peptides, which can
dramatically influence metabolism and consequently carcass traits
(Seabury et al., 2017; Ruud et al., 2020). Among the genes more
often represented in the glutamatergic synapse network enriched in
our analysis, several were linked with food intake and metabolism
(for example, GRM8), eating behavior (GRIK3), insulin secretion,
and lipolysis (ADCY1, Olivieri et al., 2016). In support of this
hypothesis, we also found out that the enriched KEGG term for DP
Glutamatergic synapse (KEGG:04724) belonged to the same group
of Circadian entrainments (KEGG:04713) and Apelin signaling
pathway (KEGG:04371), both also enriched. Circadian rhythm has
a strong connection with feeding behavior (Mrode et al., 2019), and
apelin is a peptide connectedwith food intake and lipidmetabolism
(Bertrand et al., 2015). The same was true also for CF, with KEGG
term Hippo signaling pathway (KEGG:04390) appearing multiple
times (Supplementary Figure S4H). This might reflect a greater
role of regulatory systems of feeding motivation, nutrient intake,
and storage in shaping the variability of these traits. On the other
hand, glutamatergic synapses are also involved in physiological
responses to stressors and environmental changes. QTLs from the
QTLdb associated to our candidate regions for these two traits are
reported in Supplementary Tables S2C,D.

3.4 Traits and Time Stratification
The results of our study can help frame the genetic architecture
of our between-traits correlation, including such traits that are
measures of the same trait in different time points or intervals
(the three BW and the three ADG). Within BW, we
demonstrated how also from the genomic point of view the
weight at the half of the PT was underlined by a mixture of QTLs
that were also found either at the start or at the end of the PT.
On the other hand, no common SNPs resulted significant both
for BW_i and BW_f, and the number of enriched pathways in
common was very low (Supplementary Figures S4A–C;
Table 3). For what concerns ADG, there was also a deep
difference between the signals found for ADG_i and ADG_f,
with the latter reflecting much more closely the total ADG, and
again no SNPs were shared by ADG_i and ADG_f (Table 3).
Moreover, the lowest number of significant SNPs and pathways
for BW was at BW_m, and for ADG was ADG_i, with these two
traits sharing a temporal correspondence.

Interestingly, we found many genes in common between
measures of different traits taken at the same time. For
example, both SNPs on BTA7 and BTA1 were significant both
for BW_m and ADG_i. Also, one SNP on BTA26 was
suggestively associated both for BW_f and ADG_f (Table 3).

These results have several implications: firstly, from an
economic point of view, they show that the timing of the trait
measurement is crucial. Different life stages can result in different
genetic signals; if used for a selection program, this can have an
economic and conservation impact. While this is of course
expected, given the succession of different biological processes
during development, very few studies include such a time
stratification in their analysis of productive traits. Even if such
a process is difficult to infer, our results show that
complexity—intended as the number of functional elements,
their diversity, and pathways involved—might increase with age.

4 CONCLUSION AND IMPLICATIONS FOR
LOCAL BREEDS

There are four main takeaways that could be extracted from our
study. Firstly, our analysis detected a significant signal for body
weight (recorded when bulls were 1 month old) on BTA9; a
significant signal of average daily gain (recorded at 7 months of
age) on BTA1 and three significant signals of average daily gain
(recorded at 1 year of age) on BTA10. Three significant signals for
carcass traits (one signal each for dressing percentage and carcass
fleshiness, plus one in common between the two) were all situated
on BTA18.

Secondly, the variety of GO terms and functional elements
involved in the beef-related traits under study was staggering.
We could detect in multiple traits key roles of pathways related
to actin, lipid transport, and several types of channels.
Moreover, our analysis detected—alongside many genes often
found in relation to the investigated traits—multiple pathways,
genes, and functional elements of unclear attribution, for
example with links to early development and maternal effect
(such as TBX18, NLRP2, SLCA12), or to pathogen resistance
(MBL2). This issue underlines how even research of well-
studied traits can turn out unexpected results, especially if
performed in rarely investigated breeds. In additions, the fact
that Rendena has been bred not only for the considered traits,
but also for antagonistic could have added a layer of complexity
to our results.

Thirdly, we detected for almost all traits several pathways and
genes linked with neuroblast development and synaptic
transmission, especially (but not exclusively) glutamatergic,
which added to the intricacy of the gene networks involved in
these traits. Pathways linked to both neuroblast proliferation and
synaptic communication have been tied in recent years to
selection for environmental condition (Rowan et al., 2020)
differences in behavioral temperament (Gutiérrez-Gil et al.,
2008) and adaptability (Taye et al., 2017).

Finally, as discussed above, we found that even when focusing
on widely investigated traits the influence of time stratification
was fundamental. We argue that future studies on this issue
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should include an analysis of time stratification of their trait to
fully report their complexity during development.

A greater diffusion of adaptable and diversified local breeds, with
characteristics allowing for lower environmental impact, better
survival and greater production in challenging environments
might be crucial in staving off the negative effects of intensive
beef farming. To achieve this, however, there is urgent need for
further studies of the genetic basis of productive and life-history
trait, which are still lacking. Moreover, these studies could help
uncovering several novel gene networks associations and pathways,
thanks to the less intensive selection for production occurring in
local breed. Finally, they would help to map the diversity of such
breeds, in an unvaluable help for their conservation.
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