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Abstract
We introduce a class of linear compartmental models called identifiable path/cycle
models which have the property that all of the monomial functions of parameters
associated to the directed cycles and paths from input compartments to output compart-
ments are identifiable and give sufficient conditions to obtain an identifiable path/cycle
model. Removing leaks, we then show how one can obtain a locally identifiable model
from an identifiable path/cycle model. These identifiable path/cycle models yield the
only identifiable models with certain conditions on their graph structure and thus we
provide necessary and sufficient conditions for identifiable models with certain graph
properties. A sufficient condition based on the graph structure of the model is also
provided so that one can test if a model is an identifiable path/cycle model by exam-
ining the graph itself. We also provide some necessary conditions for identifiability
based on graph structure. Our proofs use algebraic and combinatorial techniques.

Keywords Structural identifiability · Linear compartmental model · Identifiable
functions of parameters · Identifiable combinations

1 Introduction

The parameter identifiability problem is the question of whether or not the unknown
parameters of a mathematical model can be determined from known data. This paper
is concerned with structural identifiability analysis, that is, whether the model param-
eters can be identified from perfect input–output data (noise-free and of any duration
required). Structural identifiability is a necessary condition for practical identifiabil-
ity which is identifiability analysis in the presence of noisy and imperfect data. Thus,
structural identifiability is an important step in the parameter estimation problem,

B Nicolette Meshkat
nmeshkat@scu.edu

1 North Carolina State University, NC, USA

2 Santa Clara University, Santa Clara, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-022-01007-5&domain=pdf
http://orcid.org/0000-0003-1271-197X


53 Page 2 of 43 C. Bortner, N. Meshkat

since failure to recover parameters in the ideal case implies failure in the imperfect
case as well. If all of the parameters of a model can be determined, we say the model
is (at least) locally identifiable, but if some subset of the parameters can take on an
infinite number of values yet yield the same input–output data, the model is said to be
unidentifiable.

In this work, we examine a special class of models called linear compartmental
models. Linear compartmental models are an important class of biological models
used in the areas of cell biology, pharmacology, toxicology, ecology, physiology, and
many other areas (DiStefano 2015). In a typical biological application, the mass or
concentration of a substance (e.g., drug concentration in an organ) is represented by a
compartment, and the transfer of material from one compartment to another is given
by a constant rate parameter, called an exchange rate. The transfer of material from a
compartment leaving the system is given by a constant rate parameter called the leak
rate, and any compartment containing such a leak is called a leak compartment. An
input represents the input of material to a particular compartment of the system (e.g.,
IV drug input) and an output represents ameasurement from a compartment (e.g., drug
concentration in an organ), where such compartments are called input compartments
and output compartments, respectively. The resulting ODE system of equations (see
Eq. (1)) is linear. This linearity feature has a nice mathematical consequence in that
the model can be represented by a directed graph. Thus, we can analyze identifiability
problems in terms of the combinatorial structure of that graph.

Recent work on identifiable reparametrizations (Meshkat and Sullivant 2014; Baai-
jens and Draisma 2016), sufficient conditions for identifiability (Meshkat et al. 2015;
Gross et al. 2019; Gerberding et al. 2020), and identifiable functions of parameters
(Meshkat and Sullivant 2014; Meshkat et al. 2018) has examined the combinatorial
structure of the graph in a linear compartmental model to answer questions about what
to do with an unidentifiable model. One approach to dealing with an unidentifiable
model is to reparametrize the model over identifiable functions of parameters in the
model. In other words, although not all the parameters are identifiable, one can attempt
to reparametrize over a set of functions of parameters that can be determined from
input–output data. In Meshkat and Sullivant (2014), necessary and sufficient condi-
tions were given to obtain an identifiable scaling reparametrization in the case of a
linear compartmental model with a single input and output in the same compartment,
leaks from every compartment, and having a strongly connected graph. In Meshkat
et al. (2015), these models were called identifiable cycle models because the mono-
mial functions associated to the directed cycles are identifiable and it was shown that
removing all but one leak from such models results in identifiability. Additionally,
it was shown that removing a subset of leaks, but adding inputs or outputs to the
remaining leak compartments, results in identifiability.

In this paper, we expand upon the results inMeshkat and Sullivant (2014); Meshkat
et al. (2015) in the followingways. First, we consider the case of inputs and outputs not
necessarily in the same compartment and define the analogous identifiable path/cycle
model (Definition 3.4), which is a model where all the monomial functions associated
to the directed cycles and paths from input to output are identifiable. Just as inMeshkat
andSullivant (2014), this occurswhen themodel has a coefficientmapwhose imagehas
maximal dimension (Theorem 3.13).We then take these identifiable path/cyclemodels
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Fig. 1 Graph for Example 2.1

and remove leaks from all compartments except input/output compartments to achieve
identifiable models (Theorem 3.19). A similar result was demonstrated in Meshkat
et al. (2015), but in that version, the intersection of input and output compartments
was nonempty, whereas in the present work the input and output compartments need
not coincide. We then show that these identifiable path/cycle models yield the only
identifiable models with certain conditions on their graph structure (Theorem 4.1). We
thus provide necessary and sufficient conditions for identifiable models with certain
graph properties (Corollary 4.3). We also give a sufficient condition for a model to be
an identifiable path/cycle model which can be tested simply by examining the graph
itself (Theorem 3.22). In addition, we weaken the conditions on the graph structure
to obtain some necessary and sufficient conditions for identifiability (Corollary 5.11).
We also give some necessary conditions for identifiability in terms of the structure
of the graph (Theorems 6.1, 6.3, 6.4). Finally, we give a construction of identifiable
models using results from Baaijens and Draisma (2016) (Algorithm 9.4).

Our results apply to a large class of linear compartmental models which arise in
many real-world applications. Path models of the form in Proposition 3.29 arise in
physiological models involvingmetabolism, biliary, or excretory pathways (DiStefano
2015) andmodels of neuronal dendritic trees (Bressloff and Taylor 1993). Path models
also arise when modeling the delayed response to input and are called time-delay
models (DiStefano 2015). One such example is Example 4.13 from DiStefano (2015)
on oral dosing losses and delays in the gastrointestinal tract. Some other path models
are considered in Sect. 7. More generally, we consider models that are strongly input–
output connected. Mammillary and catenary models (DiStefano 2015) fall into this
category, as well as a variation of mammillary and catenary models where input and
output are in distinct neighboring compartments, but the edge from output to input is
missing (see Fig. 1). More generally, our results apply to models that can be thought
of as path models combined with catenary models and are considered in Sect. 7. Such
a model could, for example, represent a time-delay model coupled with a catenary
model.

The organization of the paper is as follows. Section 2 gives the necessary back-
ground. Section 3 gives the definition of an identifiable path/cycle model and how to
obtain one. Section 4 gives a classification of all identifiable models with certain graph
properties. Section 5 examines weaker conditions on the graph structure for necessary
and sufficient conditions for identifiability. Section 6 gives necessary conditions for

123



53 Page 4 of 43 C. Bortner, N. Meshkat

Table 1 Summary of main results

Result Explanation

Corollary 4.3 Gives necessary and sufficient conditions for a strongly
input–output connected model to be an identifiable path/cycle
model

Theorem 3.22 Gives a sufficient condition to be an identifiable path/cycle
model based on graph structure

Corollary 5.11 Gives necessary and sufficient conditions for an output
connectable model to be an identifiable path/cycle model

Table 2 Summary of which new results in this paper generalize the prior results fromMeshkat and Sullivant
(2014) and Meshkat et al. (2015)

Prior result New result Explanation

Theorem 1.2 of Meshkat and
Sullivant (2014)

Theorem 3.13 Generalizes conditions for
identifiable cycle model to
identifiable path/cycle
model

Theorem 5 from Meshkat
et al. (2015)

Theorem 3.19 Generalizes removing leaks
to obtain identifiability

Theorem 5.13 from Meshkat
and Sullivant (2014)

Theorem 3.22 Generalizes inductively
strongly connected to
almost inductively strongly
connected

Proposition 5.4 from Meshkat
and Sullivant (2014)

Proposition 3.29 Generalizes identifiable cycle
to identifiable path

Proposition 5.5 from Meshkat
and Sullivant (2014)

Proposition 3.30 Generalizes adding a new
vertex

Proposition 5.3 from Meshkat
and Sullivant (2014)

Theorems 6.3 and 6.4 Generalizes necessary
condition of having an
exchange to having a path

identifiability in terms of the graph structure of the model. Section 7 demonstrates our
results on some real-world examples. Section 8 gives computations on the number of
models with maximal dimension with a certain number of inputs and outputs. Sect. 9
gives a construction of identifiable models. Section 10 gives a conclusion and a con-
jecture on identifiable scaling reparametrizations of identifiable path/cycle models.
We give a summary of our main results in Table 1 and a summary of which of our
results generalize previous results in Table 2.

2 Background

LetG be a directed graphwith vertex set V and set of directed edges E . Each vertex i ∈
V corresponds to a compartment in ourmodel, and an edge j → i denotes a direct flow
of material from compartment j to compartment i . Also introduce three subsets of the
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vertices I n, Out, Leak ⊆ V corresponding to the set of input compartments, output
compartments, and leak compartments respectively. To each edge j → i we associate
an independent parameter ai j , the rate of flow from compartment j to compartment i .
To each leak node i ∈ Leak, we associate an independent parameter a0i , the rate of
flow from compartment i leaving the system.

We associate a matrix A(G), called the compartmental matrix to the graph and the
set Leak in the following way:

A(G)i j =

⎧
⎪⎪⎨

⎪⎪⎩

−a0i − ∑
k:i→k∈E aki if i = j and i ∈ Leak

−∑
k:i→k∈E aki if i = j and i /∈ Leak

ai j if j → i is an edge of G
0 otherwise

For brevity, we will often use A to denote A(G). Also, define the vector A ∈
R

|E |+|Leak| consisting of nonzero parameters of A.
Then we construct a system of linear ODEs with inputs and outputs associated to

the quadruple (G, I n, Out, Leak) as follows:

x ′(t) = Ax(t) + u(t) yi (t) = xi (t) for i ∈ Out (1)

where ui (t) ≡ 0 for i /∈ I n. The coordinate functions xi (t) are the state variables, the
functions yi (t) are the output variables, and the nonzero functions ui (t) are the inputs.
The resulting model is called a linear compartmental model.

We will indicate output compartments by this symbol: . Input compartments are
labeled by “in,” and leaks are indicated by edges which go to no vertex.

Example 2.1 The model M = (G, {1}, {2}, V ) with G given in Figure 1 is a linear
compartmental model with equations given by:

⎛

⎜
⎜
⎝

x ′
1
x ′
2
x ′
3
x ′
4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

−a01 − a21 0 0 0
a21 −a02 − a32 a23 0
0 a32 −a03 − a23 − a43 a34
0 0 a43 −a04 − a34

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

u1
0
0
0

⎞

⎟
⎟
⎠ , (2)

with output equation y2 = x2.

For a model (G, I n, Out, Leak) where there is a leak in every compartment (i.e.,
Leak = V ), it can greatly simplify the representation to use the fact that the diag-
onal entries of A(G) are the only places where the parameters a0i appear. Since
these are algebraically independent parameters, we can introduce a new algebraically
independent parameter aii for the diagonal entries (i.e., we make the substitution
aii = −a0i − ∑

k:i→k∈E aki ) to get generic parameter values along the diagonal.
Identifiability questions in such a model are equivalent to identifiability questions in
the model with this reparametrized matrix.

We will be considering graphs that have some special connectedness properties.
We define these properties now, as well as the basic algebraic structures (monomial
paths and cycles) we will be working over.
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Definition 2.2 A directed graph G is connected if each pair of vertices in the graph is
joined by an undirected path. A directed graphG is strongly connected if there exists a
directed path from each vertex to every other vertex. A directed graph G is inductively
strongly connected with respect to vertex 1 if each of the induced subgraphsG{1,...,i} is
strongly connected for i = 1, . . . , n for some ordering of the vertices 1, . . . , i which
must start at vertex 1.

Definition 2.3 A closed path in a directed graph G is a sequence of vertices
i0, i1, i2, . . . , ik with ik = i0 and such that i j+1 → i j is an edge for all j =
0, . . . , k − 1. A cycle in G is a closed path with no repeated vertices. To a cycle
C = i0, i1, i2, . . . , ik , we associate the monomial aC = ai0i1ai1i2 · · · aik i0 , which we
refer to as a monomial cycle. If a monomial cycle aC has length k, we refer to it as a
k-cycle.

Note that we also include themonomial cycles aii which are 1-cycles, or self-cycles.

Definition 2.4 A path from vertex ik to vertex i0 in a directed graph G is a sequence
of vertices i0, i1, i2, . . . , ik such that i j+1 → i j is an edge for all j = 0, . . . , k − 1.
To a path P = i0, i1, i2, . . . , ik , we associate the monomial aP = ai0i1ai1i2 · · · aik−1ik ,
which we refer to as a monomial path. If a monomial path aP has length k, we refer
to it as a k-path.

Remark We will sometimes drop the word “monomial” from “monomial path” or
“monomial cycle” and simply refer to these as paths and cycles, as is the case in the
next definition.

We now define the path/cycle map for a linear compartmental model M =
(G, I n, Out, V ):

Definition 2.5 Let P = P(G) be the set of all directed cycles and paths from input to
output vertices in the graph G. Define the path/cycle map by:

π : R|E |+|V | → R
|P |,A �→ (aC )C∈P (3)

Example 2.6 (ContinuationofExample 2.1)Consider themodelM = (G, {1}, {2}, V )

as described in Example 2.1. The path/cycle map for this model is

π : R9 → R
7

(a11, a22, a33, a44, a21, a23, a32, a34, a43) �→ (a21, a11, a22, a33, a44, a23a32, a34a43)

Now we give some definitions from Gross et al. (2019) regarding an important
subgraph to this work:

Definition 2.7 For a linear compartmental model M = (G, I n, Out, Leak), let i ∈
Out . The output-reachable subgraph to i (or to yi ) is the induced subgraph of G
containing all vertices j for which there is a directed path in G from j to i . A linear
compartmental model is output connectable if every compartment has a directed path
leading from it to an output compartment.
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We add the following definition:

Definition 2.8 A linear compartmental model M = (G, I n, Out, Leak) is output
connectable to every output if every compartment has a directed path leading from it
to every output compartment.

We will be using the so-called differential algebra approach to structural identi-
fiability (Ljung and Glad 1994; Ollivier 1990). Other methods to test identifiability
include the Taylor Series approach (Pohjanpalo 1978), the generating series approach
(Walter and Lecourtier 1982), the similarity transformation approach (Vajda et al.
1989), and the observability-identifiability condition (Villaverde 2019). In the differ-
ential algebra approach, we view the model equations as differential polynomials in a
differential polynomial ring R(p)[u, y, x], i.e., the ring of polynomials in state vari-
able vector x , output vector y, input vector u, and their derivatives, with coefficients
in R(p) for parameter vector p. Since the unmeasured state variables xi cannot be
determined, the goal in this approach is to use differential elimination to eliminate
all unknown state variables and their derivatives. The resulting equations are only in
terms of input variables, output variables, their derivatives, and parameters, so these
equations have the following form:

∑

i

ci (p)�i (u, y) = 0 . (4)

An equation of the form (4) is called an input–output equation forM.
For nonlinear models, one standard “reduced” generating set for these input–output

equations is formed by those equations in a characteristic set (defined precisely in
Glad 1990) that do not involve the xi ’s or their derivatives. In a characteristic set,
which can be computed using the software DAISY (Bellu et al. 2007), each �i (u, y)
in each input–output equation (4) is a differential monomial, i.e., a monomial purely
in terms of input variables, output variables, and their derivatives. The terms ci (p) are
called the coefficients of the input–output equations. These coefficients can be fixed
uniquely by normalizing the input–output equations to make them monic (Bellu et al.
2007).

However, for linearmodels, it has been shown that these input–output equations can
be foundmuchmore easily using theTransfer Function approach (Bellman andÅström
1970) or even a trick with Cramer’s Rule (Meshkat and Sullivant 2014). We will be
taking the latter approach to get an explicit formula for the input–output equations.

We now state Theorem 3.8 fromGross et al. (2019) with input i and output j , which
gives the input–output equation in y j in terms of the output-reachable subgraph to y j .

Theorem 2.9 LetM = (G, I n, Out, Leak) be a linear compartmental model with at
least one input. Let j ∈ Out, and assume that there exists a directed path from some
input compartment to compartment- j . Let H denote the output-reachable subgraph
to y j , let AH denote the compartmental matrix for the restrictionMH , and let ∂ I be
the the product of the differential operator d/dt and the |VG | × |VG | identity matrix.
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Then the following is an input–output equation forM involving y j :

det(∂ I − AH )y j =
∑

i∈I n∩VH

(−1)i+ j det (∂ I − AH )i j ui , (5)

where (∂ I − AH )i j denotes the matrix obtained from (∂ I − AH ) by removing the
row corresponding to compartment-i and the column corresponding to compartment-
j . Thus, this input–output equation (5) involves only the output-reachable subgraph
to y j .

Example 2.10 (Continuation of Example 2.1) The model M = (G, {1}, {2}, V ) with
G given by the graph { 1 → 2, 2 → 3, 3 → 2, 3 → 4, 4 → 3 } has leaks from
every compartment, thus writing the diagonal elements as aii , we have the following
input–output equation:

y(4)
2 + (−a11 − a22 − a33 − a44)y

(3)
2

+ (a11a22 − a23a32 + a11a33 + a22a33 − a34a43 + a11a44 + a22a44 + a33a44)y
′′
2

+ (a11a23a32 − a11a22a33 + a11a34a43 + a22a34a43 − a11a22a44
+ a23a32a44 − a11a33a44 − a22a33a44)y

′
2

+ (−a11a22a34a43 − a11a23a32a44 + a11a22a33a44)y2
= (a21)u

′′
1

+ (−a21a33 − a21a44)u
′
1

+ (a21a33a44 − a21a34a43)u1 .

2.1 Identifiability

In the differential algebra approach to structural identifiability, one tests identifiability
by using the input–output equations determined from the characteristic set (Bellu et al.
2007). However, for the case of a linear model, we have shown that the input–output
equations can be formed using Eq. (5) and thus we would like to define identifiability
using these equations. An important question arises here: can we use the input–output
equations in Eq. (5) to test identifiability?

In the case of a single output, there is just a single input–output equation of the
form in Eq. (5). However, in the case of multiple outputs, there is an input–output
equation for each output in Out . The equations formed in Theorem 2.9 are not nec-
essarily minimal, i.e., of lowest degree, but this condition of minimality is required
in order for identifiability to be well-defined (Saccomani et al. 2003). In Theorem 3
of (Ovchinnikov et al. 2022), it is shown that the input–output equations in Eq. (5)
can be used to analyze identifiability in the case of a linear compartmental model with
at least one input and whose graph is strongly connected. Thus, in the rest of this
paper, we will be assuming G is strongly connected and the model has at least one
input when we are analyzing models with more than 1 output so that our definition of
identifiability is well-defined.
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The next step of the differential algebra approach assumes that the coefficients ci (p)
of the input–output equations can be recovered uniquely from input–output data, and
thus are presumed to be known quantities (Soderstrom and Stoica 1989). While there
are examples of linear models where this assumption can lead to incorrect conclusions
about identifiability (see Example 2.14 of Hong et al. 2020), this assumption that the
coefficients can be recovered uniquely from input–output data holds for all linear
compartmental models with corresponding graphs such that one can reach a leak or
an input from every vertex (see Theorem 2 of Ovchinnikov et al. 2022). We will only
be considering either strongly connected or strongly input–output connected models
where the output compartment contains a leak, so the coefficients of the input–output
equations can be uniquely recovered.

We give some definitions of identifiability from Meshkat et al. (2015).

Definition 2.11 Let (G, I n, Out, Leak) be a linear compartment model and let c
denote the vector of all nonzero and nonmonic coefficient functions of all the linear
input–output equations derived in Theorem 2.9 for each i ∈ Out . The function c
defines a map c : R|E |+|Leak| → R

k , where k is the total number of coefficients which
we call the coefficient map. The linear compartment model (G, I n, Out, Leak) is:

• globally identifiable if c is a one-to-one function, and is generically globally iden-
tifiable if global identifiability holds everywhere in R

|E |+|Leak|, except possibly
on a set of measure zero.

• locally identifiable if around any neighborhood of a point in R
|E |+|Leak|, c is a

one-to-one function, and is generically locally identifiable if local identifiability
holds everywhere in R|E |+|Leak|, except possibly on a set of measure zero.

• unidentifiable if c is infinite-to-one.

Remark Throughout the rest of this paper, we will be concerned with generic local
identifiability. Thus, we will drop the word “generic” and just state a model is locally
identifiable. Additionally, if a model is “identifiable,” this means it is (at least) locally
identifiable.

Example 2.12 (Continuation of Example 2.1) Consider the model M = (G, {1},
{2}, V ) as described in Example 2.1. The coefficient map for this model is

c : R9 → R
7

(a11, a22, a33, a44, a21, a23, a32, a34, a43) �→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−a11 − a22 − a33 − a44
a11a22 − a23a32 + a11a33 + a22a33 − a34a43 + a11a44 + a22a44 + a33a44

a11a23a32 − a11a22a33 + a11a34a43 + a22a34a43 − a11a22a44 + a23a32a44 − a11a33a44 − a22a33a44
−a11a22a34a43 − a11a23a32a44 + a11a22a33a44

a21
−a21a33 − a21a44

a21a33a44 − a21a34a43

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ᵀ

Since we will be concerned with generic local identifiability in this work, we will
be using the following proposition from Meshkat et al. (2015) which follows from
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the fact that the rank of the Jacobian of c evaluated at a generic point is equal to the
dimension of the image of c (Harris (1992)[Prop. 14.4]).

Proposition 2.13 (Proposition 2 from Meshkat et al. 2015) The model (G, I n, Out,
Leak) is generically locally identifiable if and only if the rank of the Jacobian of c is
equal to |E | + |Leak| when evaluated at a random point.

If a model is unidentifiable, then this means that not all of the parameters can
be determined (uniquely or finitely). However, we may still be interested in finding
identifiable functions of parameters or identifiable combinations, and in using these
functions to attempt to reparametrize the model.

Definition 2.14 Let c be a function c : R
|E |+|Leak| → R

k . A function f :
R

|E |+|Leak| → R is globally identifiable from c if there exists a function � : Rk → R

such that � ◦ c = f . The function f is locally identifiable if there is a finitely multi-
valued function � : Rk → R such that � ◦ c = f .

2.2 Strongly Input–Output Connected

In order to consider identifiable path/cycle models, we will be considering graphs G
that have the special property of being connected and every edge is contained in a
cycle or path from input to output. We call this strongly input–output connected:

Definition 2.15 We say a graphG is strongly input–output connected if it is connected
and every edge is contained in a cycle or path from input to output.

We first show that, in the case of a single output, being strongly input–output
connected implies being output connectable, so if we assume the former we get output
connectable and can use Theorem 2.9 with the whole matrix A. Likewise, for the
case of multiple outputs, we show that being strongly connected implies being output
connectable to every output.

Proposition 2.16 (1) Consider a model M = (G, I n, { j}, Leak). Assume G is
strongly input–output connected. Then G is output connectable. (2) Now consider
a model M = (G, I n, Out, Leak). Assume G is strongly connected. Then G is
output connectable to every output.

Proof Let M = (G, I n, { j}, Leak). Assume G is strongly input–output connected,
i.e., it is connected and every edge is contained in a cycle or path from input to output.
Since every edge contained in a path from input to output is connected to the output,
we need only consider the edges in cycles. If a vertex in a cycle coincides with a vertex
on a path from input to output, then we are done. Thus, assume that there exists a cycle
whose vertices do not intersect with the vertices on paths from input to output. Since
the graph is connected, the cycle must be attached via a directed edge from either the
cycle to a path from input to output or vice versa. But the attaching edge must also
be on a path from input to output. Thus for any edge from the path to the cycle, there
must be a corresponding edge from the cycle to the path. Thus the graph is output
connectable.
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IfM = (G, I n, Out, Leak) andG is strongly connected, then since there is a path
from each vertex to every other vertex, then G is output connectable to every output.


�
Remark Note that in Proposition 2.16, G must be strongly connected as opposed to
strongly input–output connected when M = (G, {i}, Out, Leak), or else not every
vertex may connect to every output.

Remark Amodel that is strongly input–output connected in the case of a single output
or strongly connected in the case of multiple outputs is always structurally observable
(Godfrey andChapman1990), as it is output connectable to everyoutput byProposition
2.16.

We now show that the property of being strongly input–output connected is
almost strongly connected, in the sense that the graph becomes strongly connected
once an edge is added (if not already there) from the output to every input if
M = (G, I n, { j}, Leak) or an edge is added from every output to the input if
M = (G, {i}, Out, Leak).

Proposition 2.17 (1) Consider a model M = (G, I n, { j}, Leak). The model M
is strongly connected if an edge is added from output j to every input if and
only if it is strongly input–output connected. (2) Now consider a model M =
(G, {i}, Out, Leak). The model M is strongly connected if an edge is added from
every output to input i if and only if it is strongly input–output connected. Strongly
connected implies strongly input–output connected.

Proof AmodelM = (G, I n, { j}, Leak) is strongly connected if and only if it is con-
nected and every edge is contained in a cycle. Thus a modelM = (G, I n, { j}, Leak)
is strongly connected if a path from output j to every input is added if and only if
it is connected and every edge is contained in a cycle or path from input to output,
i.e., strongly input–output connected. Likewise, a model M = (G, {i}, Out, Leak)
is strongly connected if a path from every output to input i is added if and only if it
is connected and every edge is contained in a cycle or path from input to output, i.e.,
strongly input–output connected. Additionally, if a model is strongly connected, then
it is strongly input–output connected, as every edge is contained in a cycle. 
�

We can also examine the minimum number of edges in order to be either strongly
connected or strongly input–output connected:

Proposition 2.18 If G is strongly connected, the minimum number of edges is |V |. If
G is strongly input–output connected for input i and output j , the minimum number
of edges is |V | − 1.

Proof ForG to be strongly connected, each vertexmust have at least one incoming and
one outgoing edge. Thus the minimum number of edges is |V |. If a graph is strongly
input–output connected for input i and output j , then this means it becomes strongly
connected if an edge is added from output j to input i (if not already there). This
means the minimum number of edges is |V | − 1. 
�
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2.3 Expected Number of Coefficients

We first give a result from Meshkat et al. (2015), which we have reworded to agree
with the new terminology in this work and have split into two parts: Proposition 2.19
shows that the coefficient map factors through, i.e., can be written purely in terms of,
cycles, self-cycles and paths, and Lemma 2.23 gives the degree of the highest–order
term on the right-hand side of the input–output equation.

Proposition 2.19 (Proposition 5 from Meshkat et al. 2015) LetM = (G, I n, { j}, V )

represent a linear compartmental model that is output connectable. The coefficient
map c factors through cycles, self-cycles, and paths from input to output.

Proof Let C(G) be the set of all cycles in G, corresponding to a matrix A. Recall that
the coefficients of the characteristic polynomial of A can be written as

ci = (−1)i
∑

C1,...,Ck∈C(G)

k∏

j=1

sign(C j )a
C j ,

where the sum is over all collections of vertex disjoint cycles involving exactly i edges
of G, and sign(C) = 1 if C is odd length and sign(C) = −1 if C is even length. This
means for every i , all cycles of length i appear as monomial terms in ci , and for j > i ,
these cycles of length i appear as monomial products with other cycles in c j .

By Theorem 2.9 and the fact that G is output connectable, meaning that the output-
reachable subgraph of G is all of G, the input–output equation for y j is given by:

det(∂ I − A)y j =
∑

i∈I n
(−1)i+ j det(∂ I − A)i j ui . (6)

This means the coefficients on the left-hand side factor through the cycles in G.
Let us now examine these coefficients of the ui terms in Eq. (6). For i = j , the term

det(∂ I − A)i i gives the coefficients of the characteristic polynomial for the matrix Aii

with row i and column i removed, thus these coefficients factor through cycles of the
induced subgraph removing vertex i .

Now assume i �= j . The characteristic polynomial of A can be determined by
expanding det(∂ I − A) along the i th row. Let Ã be the matrix A with the entry ai j
nonzero. Then for i �= j , taking the partial derivative of the characteristic polynomial
of Ã with respect to ai j precisely gives the polynomial det(∂ I − A)i j , up to a minus
sign. Since the coefficients of the characteristic polynomial of Ã factor through the
cycles, then taking the derivative of these coefficients with respect to ai j has the
effect of removing all monomial terms not involving ai j and setting ai j to one in the
monomial terms that do involve ai j . This effectively transforms all cycles involving
ai j to paths from the i th vertex to the j th vertex. Thus, each of the monomial terms
are products of paths from the i th vertex to the j th vertex, cycles, and self-cycles. In
other words, coefficients are of the form:
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cm = (−1)m
∑

P1,...,Pn∈P(G)

n∏

l=1

sign(Pl)a
Pl ,

where the sum is over all collections of vertex disjoint cycles and paths from i to j
involving exactlym edges ofG, and sign(P) = 1 if P is odd length and sign(P) = −1
if P is even length.

Thus the coefficients can be factored over cycles, self-cycles, and paths from input
to output. In other words, there is a polynomial map

ψ : R|P | → R
k

which we will refer to as the path/cycle to coefficient map where k is the number of
coefficients, such that c = ψ ◦ π where π is the path/cycle map from Eq. 3. 
�
Definition 2.20 Let the polynomial mapψ from the path/cycle spaceR|P | of an output
connectable model M to its corresponding input–output equation coefficient space
R
k be defined as the path/cycle to coefficient map.

Example 2.21 (Continuation of Example 2.1) Consider the model M = (G, {1}, {2},
V ) as described in Example 2.1. The path/cycle to coefficient map for this model is

ψ : R7 → R
7

(p1, p2, p3, p4, p5, p6, p7)

�→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−p2 − p3 − p4 − p5
p2 p3 − p6 + p2 p4 + p3 p4 − p7 + p2 p5 + p3 p5 + p4 p5

p2 p6 − p2 p3 p4+ p2 p7+ p3 p7 − p2 p3 p5 + p5 p6 − p2 p4 p5 − p3 p4 p5
−p2 p3 p7 − p2 p5 p6 + p2 p3 p4 p5

p1
−p1 p4 − p1 p5
p1 p4 p5 − p1 p7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ᵀ

Note that the composition of the path/cyclemapπ in Example 2.6 and the path/cycle to
coefficient mapψ in Example 2.21 yields the coefficients of the input–output equation
forM as shown in Example 2.10.

We will be writing the number of coefficients in terms of the minimal distance
between an input and output compartment. We define this now:

Definition 2.22 Let i be an input compartment and let j be an output compartment,
i �= j . Let P(i, j) be the set of all paths from vertex i to vertex j . Let l(P) denote
the length of a path P ∈ P . Then we can define the minimum length of all paths from
vertex i to vertex j as dist(i, j) = minP∈P(i, j) l(P).

Lemma 2.23 (Proposition 5 from Meshkat et al. 2015) Let M = (G, I n, { j}, V )

represent a linear compartmental model with M output connectable. The highest-
order term in ui where i ∈ I n on the right-hand side of the input–output equation,
Eq. (6), is of degree |V | − 1 − dist(i, j).
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Proof Let Ã be the matrix A with the entry ai j nonzero. Let C(G̃) be the set of all
cycles in G̃, corresponding to a matrix Ã. To determine the coefficient of the highest-
order term in ui , recall that the coefficients of the characteristic polynomial of Ã can
be written as

cm = (−1)m
∑

C1,...,Ck∈C(G̃)

k∏

l=1

sign(Cl)a
Cl ,

where the sum is over all collections of vertex disjoint cycles involving exactly i edges
of G̃, and sign(C) = 1 if C is odd length and sign(C) = −1 if C is even length. This
means for every m, all cycles of length m appear as monomial terms in cm , and for
l > m, these cycles of length m appear as monomial products with other cycles in cl .

We now determine the highest-order term in ui . Since det(∂ I − A)i j is just the
partial derivative of the characteristic polynomial of Ã with respect to ai j , up to a
minus sign, then the right-hand side of the input–output equation for output y j is of
the form, where n = |V |:

∑

i∈I n
(−1)i+ j

(
∂c1
∂ai j

u(n−1)
i + ∂c2

∂ai j
u(n−2)
i + ∂c3

∂ai j
u(n−3)
i + · · · + ∂cn

∂ai j
ui

)

We note that not all of these coefficients ∂ck
∂ai j

for k = 1, . . . , n are nonzero and thus
we must determine the first nonzero coefficient.

Recall Definition 2.22 for the minimal distance between i and j . Let the length of
the shortest cycle involving ai j be of length dist(i, j) + 1, so that the length of the
shortest path from i to j is of length dist(i, j). Then the coefficient of the highest-
order term in ui is ∂cdist(i, j)+1/∂ai j , which is a sum of the shortest paths (of length
dist(i, j)) from i to j . Thus it is of the form

∑
P∈P(i, j):l(P)=dist(i, j) a

P . This means
the highest-order term in ui is of degree |V | − (dist(i, j) + 1) = |V | − 1− dist(i, j).


�
We now give a formula for the number of coefficients of the input–output equation

in the case of either single input or single output.

Theorem 2.24 (Number of nonzero coefficients) LetM = (G, {i1, i2, . . . , i|I n|}, { j},
L) represent a linear compartmental model with G output connectable with at least
|I n∪Out | leakswith In∪Out ⊆ L. There are |V |+n|V |−∑

k dist(ik, j)+m(|V |−1)
nonzero coefficients where n = |I n − Out | and m = |I n ∩ Out |. Now let M =
(G, {i}, { j1, j2, . . . , j|Out |}, L) represent a linear compartmentalmodel with G output
connectable to every outputwith at least |I n∪Out | leakswith In∪Out ⊆ L. There are
|V |+n|V |−∑

k dist(i, jk))+m(|V |−1) nonzero coefficients where n = |Out− I n|
and m = |I n ∩ Out |.
Proof Assume M = (G, {i1, i2, . . . , i|I n|}, { j}, L) is a linear compartmental model
with G output connectable with at least |I n ∪ Out | leaks with I n ∪ Out ⊆ L .
By Eq. (6), the highest degree term is |V | on the left-hand side. For the right-hand
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side, |I n ∩ Out | is either 1 or 0. If |I n ∩ Out | = 1, then the highest-order term
in u j is of degree |V | − 1 on the right-hand side. The highest-order term in u j is
monic, so there are |V | − 1 coefficients of terms in u j . For each i ∈ I n − Out ,
the highest degree term in ui is of order |V | − 1 − dist(i, j) on the right-hand side
by Lemma 2.23. In this case, the highest-order term in ui is not monic, so there are
|V | − 1 − dist(i, j) + 1 = |V | − dist(i, j) coefficients of terms in ui when i �= j .
Altogether, there are |V | + n|V | − ∑

k dist(ik, j)) +m(|V | − 1) nonzero coefficients
where n = |I n − Out | and m = |I n ∩ Out |.

For the case with multiple outputs, let M = (G, {i}, { j1, j2, . . . , j|Out |}, L) rep-
resent a linear compartmental model with G output connectable to every output with
at least |I n ∪ Out | leaks with I n ∪ Out ⊆ L . By applying the formula for the
case of single output above for each input–output equation, we obtain that there are
|V |+n|V |−∑

k dist(i, jk))+m(|V |−1) nonzero coefficients where n = |Out− I n|
and m = |I n ∩ Out |.

We need only show that the coefficients are nonzero (for a generic choice of param-
eters).

If there are leaks from every compartment, Proposition 2.19 shows that the coeffi-
cients factor through cycles, self-cycles, and paths from input to output.

Now consider the case of removing leaks.Wewill be substituting aii as the negative
sum of all outgoing edges when i /∈ L , but if i ∈ L then aii stays the same. Since
I n ∪ Out ⊆ L , we have that every compartment has an outgoing edge or leak, as
every vertex has an outgoing edge except for possibly the output vertex by the output
connectable assumption. This means the substitution aii as the negative sum of all
outgoing edges and leaks retains the (i, i) entry of A to be nonzero.

Recall by Proposition 2.19, these coefficients can be factored over cycles, self-
cycles, andpathswhen L = V . Each coefficient, except for the highest order coefficient
in uik when ik �= j (which is a sum of paths from ik to j), must have a term involving a
self-cycle. If the self-cycles in every coefficient are only from leak compartments, we
are done. Otherwise, consider a coefficient that has terms involving self-cycles from
non-leak compartments which we must substitute into for the case L ⊂ V . We want
to show that the substitution of the non-leak diagonal terms as the negative sum of all
outgoing edges does not cancel every term in that coefficient, so that the coefficients
remain nonzero after substitution. We claim that the substitution of akk as the negative
sumof all outgoing edges for k /∈ L cannot create only terms that are products of cycles
and paths from input to output. Since the graph must be output connectable, any cycle
formed from the non-leak vertices must connect to the output. In other words, for a
chain of vertices in a cycle k1, k2, . . . , kl , one of these vertices must connect to the
output via a path from that vertex to the output. Without loss of generality, assume
it is vertex k1. Thus the substitution of the non-leaks ak1k1 , ak2k2 , . . . , aklkl cannot
create a single monomial term of the form ±ak1k2ak2k3 · · · aklk1 , but must also create
a monomial ±ak1k2ak2k3 · · · ark1 where we have substituted ak1k1 as −aklk1 − ark1 for
some vertex r that connects via a path to the output.

This monomial ak1k2ak2k3 · · · ark1 cannot itself be a path from input to output, as
the input and output vertices have leaks and thus the corresponding diagonal terms do
not get substituted. Thus, it is not a path from input to output, and thus cannot cancel
with any other terms in that coefficient. 
�
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Remark We note that the assumption of at least |I n ∪ Out | leaks with I n ∪ Out ⊆ L
and G to be output connectable is to prevent the situation where there are no outgoing
edges or leaks from a non-leak vertex and thus upon substitution of the diagonal
element aii as the negative sum of all outgoing edges and leaks, it becomes zero.

Definition 2.25 (Expected number of coefficients) We say a model M =
(G, {i1, i2, . . . , i|I n|}, { j}, L) with I n ∪ Out ⊆ L has the expected number of coeffi-
cients if there are |V |+n|V |−∑

k dist(ik, j)+m(|V |−1) nonzero coefficients in the
input–output equations (5)where n = |I n−Out | andm = |I n∩Out |.We say amodel
M = (G, {i}, { j1, j2, . . . , j|Out |}, L)with I n∪Out ⊆ L has the expected number of
coefficients if there are |V |+n|V |−∑

k dist(i, jk)+m(|V |−1) nonzero coefficients
in the input–output equations (5) where n = |Out − I n| and m = |I n ∩ Out |.

3 Identifiable Path/Cycle Models

Definition 3.1 We say a model M = (G, I n, Out, V ) has a coefficient map with
expected dimension if the dimension of the image of the coefficient map is maximal.

We will be examining a special class of models we call identifiable path/cycle
models. This class of models is a generalization of identifiable cycle models as defined
in Meshkat et al. (2015):

Definition 3.2 (Identifiable cycle models) We say a modelM = (G, {i}, {i}, V ) with
G strongly connected is an identifiable cycle model if all of the independent monomial
cycles in the model are locally identifiable.

Example 3.3 Themodels (G, {1}, {1}, V ) and (H , {1}, {1}, V )whereG corresponds to
a chain of exchanges 1 ↔ 2, 2 ↔ 3, etc, and H corresponds to a central compartment
given by compartment 1 and exchanges 1 ↔ 2, 1 ↔ 3, etc, are identifiable cycle
models due to Theorem 5.13 of Meshkat and Sullivant (2014). The first model is
commonly called a catenary model and the second model is called a mammillary
model (DiStefano 2015).

It was shown in Meshkat and Sullivant (2014) that a sufficient condition for a
model to be an identifiable cycle model is that the dimension of the image of the
coefficient map is |E | + 1. We now define the main object of interest in this paper,
identifiable path/cycle models and spend the rest of this section forming analogous
sufficient conditions on the dimension of the image of the coefficient map.

Definition 3.4 (Identifiable path/cyclemodels)We say amodelM = (G, I n, Out, V )

is an identifiable path/cyclemodel if all of the independentmonomial cycles andmono-
mial paths from input to output in themodel are locally identifiable and each parameter
is contained in such a cycle or path.

Remark As identifiable path/cycle models require all of the cycles and paths from
input to output in the model to be identifiable, it only makes sense to consider models
that are connected and every edge is contained in a cycle or path from input to output,
i.e. strongly input–output connected. Otherwise, an edge that is not contained in a
cycle or path from input to output will not appear in the coefficient map.
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Example 3.5 (Continuation of Example 2.1) The model M = (G, {1}, {2}, V )

with G given by the graph { 1 → 2, 2 → 3, 3 → 2, 3 → 4, 4 → 3 }
is an identifiable path/cycle model, with identifiable paths and cycles given by
a11, a22, a33, a44, a21, a23a32, a34a43. This can be demonstrated by writing each path
and cycle as a function of the coefficients ci , e.g., using Groebner Bases. Further
justification will come from Theorem 3.13.

For models with leaks from every compartment, the dimension of the image of the
coefficient map is bounded above by the number of independent paths and cycles in the
graph fromProposition 2.19.We nowdeterminewhat this number is.Wefirst show that
when G is output connectable for the case of single output, there are |E |+ |I n∪Out |
independent directed paths and undirected cycles. We then examine the case where G
is strongly input–output connected so that the indicator vectors for the independent
directed paths and directed cycles in the graph correspond to 0/1 vectors. We show
that this number of independent paths and cycles is equal to |E | + |I n ∪ Out |.

We define the |V | by |E | incidence matrix E(G) as:

E(G)i,( j,k) =
⎧
⎨

⎩

1 if i = j
−1 if i = k
0 otherwise.

(7)

In other words, E(G) has column vectors corresponding to the edges j → k ∈ E with
a 1 in the j th row, −1 in the kth row, and 0 otherwise. We define the indicator vector
of a directed cycle C as the vector (xs)s∈E such that xs = 1 if s ∈ EC and xs = 0 if
s /∈ EC , where EC is the set of edges associated to the directed cycle C .

We can also define the indicator vector of an undirected cycle C ′ with associated
directed cycle C (reversing arrows to all point in the same direction) as the vector
(xs)s∈E such that xs = 1 if s ∈ EC , xs = −1 if −s ∈ EC , and xs = 0 if s /∈ EC ,
where EC is the set of edges associated to the directed cycle C and −s corresponds to
an edge s going in the opposite direction. In other words, if s corresponds to i → j ,
then −s corresponds to j → i .

The rank of the directed incidence matrix is well known:

Proposition 3.6 (Proposition 4.3 of Biggs 1993) Let G be a graph with |V | vertices,
|E | edges, and l connected components. Then the rank of E(G) is |V | − l. Thus, the
dimension of the kernel of E(G) is |E | − |V | + l.

We state one final result fromMeshkat and Sullivant (2014); Meshkat et al. (2015),
which shows that the kernel of E(G) can be written in terms of |E |− |V |+1 directed
cycles when G is strongly connected, thus the indicator vectors are 0/1 vectors:

Proposition 3.7 (Proposition 4 of Meshkat et al. 2015) Let G be a strongly connected
graph. Then a set of |E | − |V | + 1 linearly independent indicator vectors of directed
cycles form a basis for the kernel of E(G).

In other words, this proposition shows that the space of all undirected cycles can
be generated by the space of all directed cycles when G is strongly connected. We
now prove a similar result in terms of cycles and paths from input to output when G
is strongly input–output connected.
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Proposition 3.8 Let M = (G, I n, Out, V ) represent a linear compartmental model
with G strongly input–output connected. Then the space of all directed paths and
undirected cycles can be generated by the space of all directed paths and directed
cycles and vice versa.

Proof Let B have as its columns the indicator vectors of all directed paths and undi-
rected cycles. We show that, for every undirected cycle, we can add a positive integer
multiple of a directed path vector or directed cycle vector to obtain either a directed
cycle or directed path from input to output. Since G is strongly input–output con-
nected, every edge is in either a cycle or path from input to output. For every edge
with a negative entry in the indicator vector of an undirected cycle, that edge either
belongs to a cycle or path from input to output. If it belongs to a path from input to
output, one can add a positive multiple of the path to the undirected cycle to achieve
only non-negative entries corresponding to a closed path or path from input to output.
If it does not belong to a path from input to output, then it belongs to a directed cycle.
Thus one can add a positive multiple of the directed cycle to the undirected cycle to
achieve only non-negative entries corresponding to a closed path or path from input
to output. In either case, this corresponds to a multigraph with the property that the
indegree of each vertex equals the outdegree of each vertex except possibly at input
and output vertices. Cycles can be removed so that the result is a cycle or a path from
input to output. 
�
Lemma 3.9 LetM = (G, I n, Out, V ) represent a linear compartmental model with
G output connectable if |Out | = 1 or G strongly input–output connected otherwise.
Then the number of independent undirected cycles and directed paths from input to
output is |E | + |I n ∪ Out |.
Proof Let the matrix B have as columns the indicator vectors of the undirected cycles
and directed paths from input to output vertices. Since G is either output connectable
in the single output case or strongly input–output connected, then G is certainly con-
nected, and thus there are |E | − |V | + 1 undirected cycles that form a basis for the
kernel of E(G) and there must be at least one path from input to output, so B is cer-
tainly not the zero matrix. Form the product E(G)B. If column k of B corresponds to
a cycle, then column k of E(G)B will be zero, and if column k of B corresponds to a
path from input in i and output in j , then column k of E(G)B will have a 1 in row i
and a −1 in row j .

Remove the zero columns and duplicate columns (which occur when there is more
than one path from an input to an output) and zero rows from this matrix E(G)B and
call the resulting matrix M . We claim M is the incidence matrix of the graph where
there are |I n ∪ Out | vertices corresponding to each input/output compartment and
there is a directed edge from an input compartment to an output compartment if and
only if there is a path from the corresponding input to the corresponding output in
the graph G. Call this graph GM . Note that there are only |I n ∪ Out | vertices in GM

because we deleted zero rows from the matrix E(G)B to obtain the matrix M , thus
deleting vertices that do not correspond to inputs or outputs. This graph GM must be
connected because we assumed G is output connectable in the single output case and
strongly input–output connected otherwise. Since the rank of the incidence matrix for
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a connected graph is the number of vertices minus one, this means the rank of E(G)B
is |I n ∪ Out | − 1.

Since the rank of E(G)B is equal to the rank of B minus the dimension of the
column space of B intersected with the kernel of E(G), which is exactly |E |−|V |+1
because B is generated by paths and undirected cycles and a basis for the kernel
of E(G) is given by undirected cycles, then this means the rank of B is exactly
|E |− |V |+1+|I n∪Out |−1 = |E |− |V |+ |I n∪Out |. Adding the |V | self-cycles,
we obtain that the dimension of the path/cycle map is |V |+ |E |− |V |+ |I n∪Out | =
|E | + |I n ∪ Out |. 
�
Corollary 3.10 Let M = (G, I n, Out, V ) represent a linear compartmental model
with G strongly input–output connected. Then the number of independent directed
cycles and directed paths from input to output is |E | + |I n ∪ Out |.
Proof If |Out | = 1, strongly input–output connected implies output connectable and
if |Out | > 1, we have strongly input–output connected. The statement follows from
Lemma 3.9 and Proposition 3.8 to achieve a set of |E | + |I n ∪ Out | independent
directed cycles and directed paths from input to output. 
�

We now show that the dimension of the image of the coefficient map is bounded
above by the number of independent paths and cycles. We will add the important
assumption of either |I n| = 1 or |Out | = 1 so that the number of distinct input–
output pairs equals |I n ∪ Out | − 1, described in the Remark below. For |Out | = 1
we can assume G is strongly input–output connected as stated in Corollary 3.10, but
for the case of |I n| = 1 we will assume G is strongly connected in order to ensure the
input–output equations are irreducible as shown in Sect. 2. For the special case where
|I n| = |Out | = 1 and I n = Out , we note that strongly input–output connected
reduces to strongly connected. For the special case where |I n| = |Out | = 1 and
I n �= Out , then strongly input–output connected is sufficient in what follows, i.e.,
we can take the weaker of the two conditions strongly input–output connected and
strongly connected.

Lemma 3.11 Let M = (G, I n, Out, V ) represent a linear compartmental model.
Assume that either G is strongly input–output connected and |Out | = 1 or G is
strongly connected and |I n| = 1. The dimension of the image of the coefficient map
is bounded above by |E | + |I n ∪ Out |.
Proof The coefficient map factors through the cycles, self-cycles, and paths from input
to output from Proposition 2.19. By Corollary 3.10, the number of independent paths
and cycles is |E | + |I n ∪ Out |. Thus the dimension of the image of the coefficient
map is bounded above by |E | + |I n ∪ Out |. 
�
Remark Werequire |I n| = 1 or |Out | = 1 so that there are either |Out |−|I n∩Out | or
|I n|−|I n∩Out | distinct input–output pairs, respectively, which equals |I n∪Out |−1,
the rank of E(G)B in the proof of Lemma 3.9. Example 3.12 demonstrates this.

Example 3.12 ThemodelM = (G, {1, 2}, {3, 4}, V ) shown in Fig. 2whereG is given
by { 1 → 2, 2 → 1, 2 → 3, 3 → 2, 2 → 4, 4 → 2 } has |E | + |I n ∪ Out | = 10
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Fig. 2 The models M andM′ from Example 3.12

independent paths and cycles but the coefficient map factors over 11 paths and cycles
given bya12a21,a23a32,a24a42,a32,a42,a21a32,a21a42,a11,a22,a33,a44. The problem
here is that there are only 10 parameters, but we are attempting to factor over 11 paths
and cycles. This is why we require |I n| = 1 or |Out | = 1. However, this is a sufficient
condition but not a necessary condition, as themodelM′ = (G ′, {1, 2}, {3, 4}, V ) also
shown in Fig. 2 where G ′ is given by { 1 → 3, 3 → 1, 1 → 4, 4 → 1, 2 → 3, 3 →
2, 2 → 4, 4 → 2 } has |E |+ |I n∪ Out | = 12 independent paths and cycles given by
a31, a41, a32, a42, a13a31, a14a41, a23a32, a24a42, a11, a22, a33, a44 and the coefficient
map factors over these as well.

Remark Notice that in Lemma 3.11, we assume that G is either strongly input–output
connected or strongly connected. We have just shown that the expected dimension in
this case is |E | + |I n ∪ Out |. But a natural question that arises is, what if we do not
assume this connectedness condition on G? Clearly, we still have that the coefficient
map factors through cycles and paths. In this case therewill be at most |E |+|I n∪Out |
independent cycles and paths that appear in the coefficient map, i.e., the coefficient
map may factor over fewer than |E | + |I n ∪ Out | independent paths and cycles. See
Sect. 5.

This gives us the following theorem:

Theorem 3.13 Let M = (G, I n, Out, V ) represent a linear compartmental model
with either G strongly input–output connected and |Out | = 1 or G strongly connected
and |I n| = 1. If the image of the coefficient map has dimension |E | + |I n ∪ Out |,
then the model is an identifiable path/cycle model.

Proof By Lemma 3.11, the dimension of the image of the coefficient map is bounded
above by |E |+ |I n∪Out |, which is also the number of independent paths and cycles.
Recall a function f is locally identifiable if there is a finitely multivalued function
φ : R

|E |+|I n∪Out | → R such that φ ◦ c = f . Let π : R
|E |+|V | → R

|E |+|I n∪Out |
be the path/cycle map from Eq. 3. Since c : R|E |+|V | → R

|E |+|I n∪Out | factors over
paths and cycles, then there exists a function ψ : R|E |+|I n∪Out | → R

|E |+|I n∪Out | as
defined in Definition 2.20 such that c = ψ ◦ π . If the dimension of the image of the
coefficient map is precisely |E |+ |I n∪Out |, then this functionψ is locally invertible
with ψ−1 = φ and thus π = φ ◦ c. Thus the paths and cycles are identifiable. 
�
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Example 3.14 (Continuation of Example 2.1) The model M = (G, {1}, {2}, V ) from
Example 2.1 can be shown to have dimension of the image of the coefficient map
equal to |E | + |I n ∪ Out | = 5+ 2 = 7. Thus there are 7 identifiable paths and cycles
given by the monomials a11, a22, a33, a44, a21, a23a32, a34a43.

3.1 Necessary Condition for Number of Edges and the Edge Inequality

Proposition 3.15 LetM = (G, I n, Out, V ) represent a linear compartmental model
with either G strongly input–output connected and |Out | = 1 or G strongly connected
and |I n| = 1. If M = (G, I n, Out, V ) is an identifiable path/cycle model, then
|E | + |I n ∪ Out | ≤ the expected number of coefficients.

Proof Wehave that the dimension of the image of the coefficientmap is bounded above
by the expected number of coefficients, as it cannot exceed the number of coefficients.
Thus |E | + |I n ∪ Out | ≤ the expected number of coefficients. 
�
Definition 3.16 (Edge inequality) We say that a model has a number of edges given
by the edge inequality if the number of edges |E | satisfies |E | + |I n ∪ Out | ≤ the
expected number of coefficients.

We can also show that the property of being strongly input–output connected is a
necessary condition for having expected dimension in the case of maximal number of
edges.

Proposition 3.17 LetM = (G, I n, Out, V ) with G output connectable and |Out | =
1 represent a linear compartmental model for which the edge inequality is an equality
with expected dimension |E | + |I n ∪ Out |. Then the graph must be strongly input–
output connected.

Proof Assume the coefficient map has expected dimension |E | + |I n ∪ Out | with
the maximal number of edges. This means the expected dimension is the number of
coefficients. If the graph is not connected with every edge in a cycle or path from input
to output, then there are parameters that do not appear in the coefficient map, and thus
the coefficient map factors over fewer than |E | + |I n ∪ Out | independent paths and
cycles. But this contradicts having expected dimension |E | + |I n ∪ Out |. 
�
Remark If there are fewer edges, we can still achieve expected dimension without this
condition of strongly input–output connected. In other words, being strongly input–
output connected is a sufficient but not necessary condition to achieve |E |+|I n∪Out |
independent cycles and paths in the coefficient map. See Sect. 5.

3.2 Obtaining Identifiability by Removing Leaks

In this section, we show that removing all leaks except leaks from input/output com-
partments results in identifiability, much like the results in Meshkat et al. (2015). We
will follow the same proof. Recall that for an identifiable path/cycle model, we have
the coefficient map c : R|V |+|E | → R

k . Let π : R|V |+|E | → R
|E |+|I n∪Out | be the
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path/cycle map from Eq. 3, that is π(A(G)) = (aP : P is a cycle or path from input
to output of G). Then Proposition 2.19 tells us that c factors through π without loss of
dimension. Thus c = ψ ◦π whereψ is defined as in Definition 2.20 and the dimension
of the image of c equals the dimension of the image of π .

Passing from a model (G, I n, Out, V ) to a model (G, I n, Out, Leak) such that
|Leak| = |I n ∪ Out | amounts to restricting the parameter space R|V |+|E | to a linear
subspace � ⊆ R

|V |+|E | of dimension |E |+ |Leak| and we would like the image of �

under the coefficient map c to have dimension |E | + |Leak|. Since c factors through
the path/cycle map π it suffices to prove that the image of � under π has dimension
|E | + |Leak|.
Lemma 3.18 Let G = (V , E) be a directed graph with corresponding identifiable
path/cycle model (G, I n, Out, V ). Assume that either G is strongly input–output
connected and |Out | = 1 or G is strongly connected and |I n| = 1. Consider a model
(G, I n, Out, L) where In ∪ Out ⊆ L. Let π : R|V |+|E | → R

|E |+|I n∪Out | denote the
path/cycle map. Let � ⊆ R

|V |+|E | be the linear space satisfying

� = {A ∈ R
|V |+|E | : aii = −

∑

j, j �=i

a ji for all i /∈ L}.

Then the dimension of the image of � under the map π is |E | + |I n ∪ Out |.
Proof Since � is a linear space, we just consider the natural map from R

|E |+|L| →
R

|E |+|I n∪Out | which maps to the path/cycle space. To show that the dimension of the
image of this map is correct, we consider the Jacobian of this map and show that it
has full rank.

Note that the rows corresponding to the |L| self-cycles are linearly independent so
we focus on the |E | + |I n ∪ Out | − |L| by |E | submatrix ignoring those rows and
columns,whichwewill call J . Arrange thematrix so that the first |E |−|V |+|I n∪Out |
rows correspond to the paths and cycles of G and the last |V | − |L| rows correspond
to the non-leak diagonal elements. Let the first |E | − |V | + |I n ∪ Out | rows be
called A and the last |V | − |L| rows be called B. Clearly the rows of A are linearly
independent by Lemma 3.11. The rows of B are linearly independent since they are
in triangular form since each involves distinct parameters. To show that the full set of
|E | + |I n ∪ Out | − |L| rows are linearly independent, we need only show that the
row space of A and the row space of B intersect only in the origin.

To prove that J generically has maximal possible rank, it is enough to show that
there is some point where the evaluation of J at said point yields the maximal rank.
We choose the point where we set all the edge parameters ai j = 1 for all j → i ∈ E .
This specialization yields that the row space of A is exactly the path/cycle space of
the graph G, i.e., all of the weightings on the edges of the graph where the indegree
equals the outdegree of every vertex in a cycle and every vertex except the first and last
in a path from input to output. Also, we have that the matrix B which has dimension
(|V | − |L|) × (|E |), which consists of the rows corresponding to the vertices in V \L ,
and the (negated) row corresponding to vertex i has a one for an edge i ′ → j ′ if and
only if i = i ′, with all other entries zero.
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Fig. 3 Graph for model corresponding to M̃ in Example 3.20

Since A spans the path/cycle space of G, each element in the row space of A
corresponds to a weighting on the edges of G where the total weight of all incoming
edges at a vertex i equals the total weight of all outgoing edges at vertex i except at
input or output vertices I n ∪ Out . On the other hand, we claim that the only vector in
the row span of B with the same property is the zero vector. To show this, let bi be the
row vector associated to some vertex i . Note that a vector in the row span of B will
have zero weight on any of the outgoing edges of vertices in I n ∪ Out .

In order for the indegree to equal the outdegree, we would need to include a b j with
an edge pointing toward vertex i . Continuing in this way, we can only stop when we
have included an input or output vertex since the indegree need not equal the outdegree
for those vertices. However, this contradicts the fact that a vector in the row span of
B will have zero weight on any of the outgoing edges of vertices in I n ∪ Out . 
�
Theorem 3.19 (Removing leaks) Let M = (G, I n, Out, V ) represent a linear com-
partmental model. Assume that either G is strongly input–output connected and
|Out | = 1 or G is strongly connected and |I n| = 1. Assume it is an identifi-
able path/cycle model. Then, the corresponding model M̃ = (G, I n, Out, L) where
In∪Out ⊆ L for any such L has expected dimension. In particular, if L = I n∪Out,
then M̃ is locally identifiable.

Proof By Lemma 3.18 and the comments preceding it we know that the image of the
restricted parameter space under the path/cyclemapπ has dimension |E |+|I n∪Out |,
which is equal to the dimension of the image of the full parameter space under the
path/cyclemap. Since, for an identifiable path/cyclemodel, the dimension of the image
of the coefficient map c is |E | + |I n ∪ Out |, this must be the same for the restricted
model. In particular, if |L| = |I n ∪ Out |, then the model has |E | + |I n ∪ Out |
parameters, hence it is locally identifiable. 
�
Example 3.20 (Continuation of Example 2.1) The model M̃ = (G, {1}, {2}, {1, 2})
obtained from the model in Example 2.1 by removing two leaks and leaving the leaks
in the input and output compartments is locally identifiable (see Fig. 3).

Remark We note that, while L = I n∪Out is sufficient in Theorem 3.19, it is certainly
not necessary, as there are other possible configurations of |L| = |I n ∪ Out | leaks
that also result in identifiability. The next example demonstrates this.
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Fig. 4 On the left is the graph corresponding to M with leak set L = {2, 4}, and on the right is the graph
corresponding to M′ with leak set L = {3, 4} from Example 3.21

Example 3.21 Consider the modelM = (G, {1}, {2}, L) shown in Fig. 4 where |L| =
|I n ∪ Out | = 2 and G is given by the edges { 1 → 2, 1 → 3, 3 → 1, 1 → 4, 4 →
1 }. The identifiable models are the ones where L = {2, 4}, {2, 3}, {1, 2} and the
unidentifiable models have L = {3, 4}, {1, 4}, {1, 3}.

We note that while 2 ∈ L appears to be sufficient for identifiability in this
model, we can consider another model given by M′ = (G ′, {1}, {2}, L) also
shown in Fig. 4 where |L| = |I n ∪ Out | = 2 and G ′ is given by the edges {
1 → 2, 3 → 1, 4 → 1, 1 → 3, 2 → 4 }. The identifiable models are the ones where
L = {3, 4}, {2, 3}, {1, 4}, {1, 2} and the unidentifiable models have L = {2, 4}, {1, 3}.
This shows the pattern of identifiability depends on the graph structure itself and not
just the placement of inputs and outputs.

3.3 Sufficient Condition for Identifiable Path/Cycle Model

We now give a sufficient condition for a model to be an identifiable path/cycle model
with 1 input and 1 output. This sufficient condition is analogous to the sufficient
condition from Meshkat and Sullivant (2014) of inductively strongly connected for
models with input and output in the same compartment. In fact, Theorem 3.22 reduces
to Theorem 5.13 ofMeshkat and Sullivant (2014) if the input and output compartments
are the same.

Theorem 3.22 Let M = (G, {i}, { j}, V ) represent a linear compartmental model
with G strongly input–output connected and |E | = 2|V | − (dist(i, j) + 2). If
M = (G, {i}, { j}, V ) has no path from compartment j to compartment i but becomes
inductively strongly connected if an edge from compartment j to compartment i is
added, then M is an identifiable path/cycle model.

Before we prove Theorem 3.22, we define a graph structure which will be useful
in the proof.

Definition 3.23 (Definition 5.6 from Meshkat and Sullivant 2014) A chain of cycles
is a graph H which consists of a sequence of directed cycles that are attached to each
other in a chain by joining at the vertices.
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Theorem 3.24 Suppose M′ = (G ′, {i}, { j}, V ) represents a linear compartmental
model with G ′ strongly input–output connected and |E | = 2|V | − (dist(i, j) + 2).
Suppose too thatM′ has expected dimension and also thatM′ has no path from j to
i and becomes inductively strongly connected if the edge from j to i is added. Then,
if G is a new graph obtained from G ′ by adding a vertex n and two edges k → n and
n → l such that G has a chain of cycles containing either i and n or j and n, then the
model M = (G, {i}, { j}, V ∪ {n}) has expected dimension.

Recall that we can induce a weight order on a polynomial ring K[x1, . . . , xn] for
some weight vectorω ∈ Q

n where the weight of a monomial xα1
1 · · · xαn

n isω ·α where
α = (α1, . . . , αn). We can then define the initial forms of a polynomial f as inω( f )
to be the sum of all terms of f whose monomial has the highest weight with respect
to said ω.

Now, if we define the coefficient map associated to the graphG as φG : R|V |+|E | →
R
k , then we can also consider the pull-back of said map defined as φ∗

G : K[c, d] →
K[a] where c, d correspond to the coefficients of the left and right-hand side of the
input–output equation respectively, and a corresponds to the parameters found in
compartmental matrix A. Now define φG,ω to be the initial parameterization defined
as the parameterization with pullback φ∗

G,ω where φ∗
G,ω( f ) = inω( f ) for a given

weight ω.

Lemma 3.25 (Corollary 5.9, Meshkat and Sullivant 2014) Let φ∗ : K[x] → K[y] be
a K-algebra homomorphism and ω ∈ Q

m a weight vector, then

dim(imφω) ≤ dim(imφ).

We will use Lemma 3.25 in the following way. We want to compute the dimension
of the image of a polynomial parametrization φ. We know for other reasons an upper
bound d on this dimension. We have a weight vector ω where we can compute the
dimension of the image of the polynomial parametrization φω, and we show it is equal
to d. Then, by Lemma 3.25, we know that the dimension of the image of φ must be d.

Proof of Theorem 3.24 Suppose M′ = (G ′, {i}, { j}, V ) is a linear compartmental
model with expected dimension such that G ′ is strongly input–output connected,
|E | = 2|V | − (dist(i, j) + 2). Also suppose that if we add the edge from j to i ,
the new graph becomes inductively strongly connected. Note that by Theorem 2.24,
the input–output equation of the modelM′ has 2|V | − dist(i, j) nonzero, non-monic
coefficients. Let |V | = n − 1 and m = |E |.

Define φG : R|V |+|E | → R
2|V |−dist(i, j), to be the coefficient map associated to a

graph G as above with corresponding pull-back φ∗
G . Choose weight ω as follows:

ωuv =

⎧
⎪⎨

⎪⎩

0 if (u, v) = (n, n)
1
2 if (u, v) = (n, k) or (l, n)

1 otherwise.

Recall that for each coefficient, the corresponding polynomial function is homoge-
neous in terms of the parameters. Also, recall that the left-hand side coefficients are
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generated by cycles of the corresponding graph, while the right-hand side coefficients
are generated by products of cycles of the corresponding graph along with paths from
the input to output.

Applying this weight to the polynomial coefficients has the effect of removing any
monomial containing a cycle which is incident to compartment n, in all coefficients
except for the lowest order terms in both c and d. Note that in the case of cn and dn−1,
each of the monomials in the sum will have a cycle incident to n, meaning that each
of them has the same weight.

More explicitly, in terms of the pull-back maps we have in all cases that

φ∗
G,ω(ci ) = φ∗

G ′(ci ) i = 1, . . . , n − 1

φ∗
G,ω(di ) = φ∗

G ′(di ) i = dist(i, j), . . . , n − 2

φ∗
G,ω(cn) = φ∗

G(cn)

φ∗
G,ω(dn−1) = φ∗

G(dn−1).

Thus, φG,ω agrees with φG ′ everywhere except for the highest order coefficients on
either side of the input–output equation, in which case φG,ω matches φG . This implies
that the Jacobian matrix corresponding to φG,ω defined as J (φG,ω) (whose generic
rank yields the dimension of the image of the map), has the form

J (φG,ω) =
(
J (φG ′) 0

∗ C

)

where J (φG ′) is the (2n − (dist(i, j) + 2)) × (n +m − 3) Jacobian matrix of φG ′ and
C is the 2 × 3 matrix

C =
(

∂cn
∂ann

∂cn
∂aln

∂cn
∂ank

∂dn−1
∂ann

∂dn−1
∂aln

∂dn−1
∂ank

)

where l and k are the nodes to which the added node n has an edge to and from
respectively.

Note that we assume that the model corresponding to G ′ has expected dimension,
hence J (φG ′) has rank 2(n − 1) − dist(i, j). Since J (φG) is lower block triangular,
to show that it has rank 2n − dist(i, j), we need only show that C has generic rank 2.

Let H be a chain of cycles in G defined as s2, . . . , st in order such that s2 is a cycle
containing either the input or the output and st is the cycle containing the node n. Also,
define s1 to be one of the shortest paths from i to j .

Now we will choose entries for the matrix A such that the matrix C has rank 2.
First, let all diagonal elements of A be 1, i.e., akk = 1 for all k = 1, . . . , n. Also,
let auv = 0 for all edges v → u /∈ H . For all edges in H , for each cycle si , choose
the edge weights so that the product of edges’ weights is equal to (−1)�(si )−1, that
is so that the product of the edges in the cycle is equivalent to the sign of the cycle.
For s1, choose edge weights so that the product of the edges’ weights is also equal to
(−1)�(si )−1.
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First, consider the entry ∂cn
∂ann

. The only nonzero monomials appearing here will
arise from taking products of the cycles s2, . . . , st−1, since the cycle st cannot be
involved, as we only consider the elements of the sum of cn with ann as a factor. Also,
s1 is not a cycle, hence cannot be part of any of the ci . Since each cycle touches its
two neighboring cycles, and no other cycles, and in the expansion we expand over
all products of nontouching cycles that cover all n vertices, we get that the number
of monomials will equal the number of subsets of {2, . . . , t − 1} with no adjacent
elements. By Lemma 3.26, this is exactly Ft .

Now consider the entry ∂dn−1
∂ann

, which will arise from taking products of s1, s3, . . . ,
st−1, since wemust have s1, hence cannot have s2, and by similar reasoning above can-
not have st . Thus, we get that the number of monomials are the number of nonadjacent
subsets of {s3, . . . , st−1}, hence we get the Fibonacci number Ft−1.

In the case of the entry ∂cn
∂aln

or equivalently ∂cn
∂ank

, wemust use the cycle st prohibiting
us fromusing st−1, and againmust not use s1. This yields that the number ofmonomials
is the number of nonadjacent subsets of s2, . . . , st−2, i.e., the Fibonacci number Ft−1.

Finally, when considering entry ∂dn−1
∂aln

or equivalently ∂dn−1
∂ank

, we must use s1 and
cycles st , hence cannot use cycles s2 or st−1. This means that the number ofmonomials
will be the number of nonadjacent subsets of s3, . . . , st−2, i.e., the Fibonacci number
Ft−2.

Thus, the submatrix C will have the form

C =
(

Ft Ft−1 Ft−1
Ft−1 Ft−2 Ft−2

)

.

The classical identity of Fibonacci number Ft Ft−2 − F2
t−1 = (−1)t−1 yields that

this matrix has full rank. hence, the Jacobian of φ∗
G,ω has full rank.

Note that the upper bound for the number of coefficients of the input–output equa-
tion, i.e., the upper bound on the dimension of the image of the coefficient map is
2n − dist(i, j) via Theorem 2.24. Thus, because dim(im(φ∗

G,ω)) ≤ dim(im(φ∗
G)) by

Lemma 3.25, and dim(im(φ∗
G)) is bounded above by 2n − dist(i, j), we have that

dim(im(φ∗
G)) = 2n − dist(i, j) as desired. 
�

Lemma 3.26 The number of subsets S of {1, 2, . . . , n} such that S contains no pair
of adjacent numbers is the n + 2-nd Fibonacci number, Fn+2 which satisfies the
recurrence F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1.

We can now prove Theorem 3.22.

Proof of Theorem 3.22 By Theorem 3.24 and the inductive nature of inductively
strongly connected graphs, it suffices to show that every inductively strongly con-
nected graph beginning with a cycle between i and j has a chain of cycles containing
the vertices i and n (or, analogously, a chain of cycles containing the vertices j and
n).

We prove this by induction on n. Since G is inductively strongly connected if the
edge from j to i is added, there is a nontrivial cycle c that passes through the vertex
n. If c contains i , we are done. Otherwise, let q be the smallest vertex appearing in c,
and let G ′ be the induced subgraph on {i, j, . . . , q}. By induction, G ′ has a chain of
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Fig. 5 (Color Figure Online)
The model M corresponds to
the above graph with all four
leaks, while the graph M′ has
the same graph with only the
black leaks, that is leaks in
compartments 1 and 2, all from
Example 3.28

cycles containing i and q. Attaching c to H gives a chain of cycles in G containing i
and n. A similar argument can be applied to give a chain of cycles in G containing j
and n. 
�

Theorem 3.22 is not only useful as a sufficient condition for an identifiable
path/cycle model, but it is also useful as a means to start with an identifiable path/cycle
model and then remove leaks to obtain identifiability:

Corollary 3.27 Let M = (G, {i}, { j}, V ) represent a linear compartmental model
with G strongly input–output connected and |E | = 2|V | − (dist(i, j) + 2). If
M = (G, {i}, { j}, V ) has no path from compartment j to compartment i but becomes
inductively strongly connected if the edge from compartment j to compartment i is
added, then M′ =
(G, {i}, { j}, {i, j}) is locally identifiable, i.e. removing all but two leaks in the
input/output compartments.

Proof This follows from Theorem 3.22 and Theorem 3.19. 
�
Example 3.28 The model M = (G, {1}, {2}, V ) shown in Fig. 5 with G given by the
edges {1 → 2, 2 → 3, 3 → 4, 4 → 2, 3 → 2} is an identifiable path/cycle model by
Theorem 3.22. Thus, the model M′ = (G, {1}, {2}, {1, 2}) where we remove all but
two leaks from the input/output compartments is locally identifiable.

We also note that, as cycles with input/output in the same compartment were shown
to have expected dimension in Meshkat and Sullivant (2014) (see Proposition 5.4),
paths from input to output can be shown to have expected dimension as well.

Proposition 3.29 LetM = (G, {1}, {|V |}, V ) be a linear compartmental model with
G given by a path from input 1 to output |V | with |V | − 1 edges. Then M is an
identifiable path/cycle model and the model M̃ = (G, {1}, {|V |}, {1, |V |}) is locally
identifiable.

Proof Let n = |V |. Assume M = (G, {1}, {n}, V ) is a linear compartmental model
withG given by a path from input 1 to output n with n−1 edges. Recall the coefficients
on the left hand side of the input–output equation are given by the characteristic
polynomial of A, which is:

(λ − a11)(λ − a22) · · · (λ − ann)
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Since the roots of a polynomial can be determined from its coefficients, then all of
a11, a22, . . . , ann are locally identifiable. Since the degree of the highest-order term on
the right-hand side of the input–output equation is n − 1− dist(1, n) by Lemma 2.23,
this reduces to zero so the right-hand side is an,n−1 · · · a32a21un . Thus the monomial
path an,n−1 · · · a32a21 is identifiable. This means the dimension of the image of the
coefficient map is |E |+ |I n∪Out | = n−1+2 = n+1 which is the number of paths
and cycles, thus the model is an identifiable path/cycle model. By Theorem 3.19, the
model M̃ = (G, {1}, {n}, {1, n}) is locally identifiable. 
�

In Meshkat and Sullivant (2014), it was shown in Proposition 5.5 that if a
model M = (G, {1}, {1}, V ) has expected dimension, then the model M =
(G ′, {1′}, {1′}, V ) also has expected dimension, where G ′ is the new graph obtained
from G by adding a new vertex 1′ and an exchange 1 → 1′, 1′ → 1 and making 1′
the new input–output node. We show an analogous result now:

Proposition 3.30 Let M = (G, {1}, { j}, V ) be a linear compartmental model that
has expected dimension where |V | = n and j �= 1. Let G ′ be a new graph obtained
from G by adding a set of new vertices n + 1, n + 2, . . . , n + k and a set of edges
n + 1 → 1, n + 2 → n + 1, . . . , n + k → n + (k − 1) and making n + k the new
input node. Then the model M̃ = (G ′, {n + k}, { j}, V ∪ {n + 1, n + 2, . . . , n + k})
also has expected dimension.

Proof Let A be the full matrix associated to the graph G ′ where the first k rows and
k columns correspond to the added path from compartment n + k to compartment
1, Ak be the matrix where the first k rows and first k columns have been deleted
(and, hence associated to the graph G), and let EG be the edges of the graph G.
We assume that the dimension of the image of the map c associated to the model
M = (G, {1}, { j}, V ) is |EG | + |I n ∪ Out | = |EG | + 2, and we want to show
that for the model M̃ = (G ′, {n + k}, { j}, V ∪ {n + 1, n + 2, . . . , n + k}) we get
|EG ′ | + 2 = |EG | + k + 2, as we are adding k new edges.

The input–output equation for the model M̃ = (G ′, {n + k}, { j}, V ∪ {n + 1, n +
2, . . . , n + k}) is:

det(∂ I − A)y j = det(∂ I − A)1, j+kun+k

where det(∂ I − A) = (∂ − an+1,n+1) · · · (∂ − an+k,n+k) det(∂ I − Ak) and det(∂ I −
A)1, j+k = a1,n+1an+2,n+1 · · · an+k,n+k−1 det(∂ I − Ak)1 j . The input–output equation
for the model M = (G, {1}, { j}, V ) is:

det(∂ I − Ak)y j = det(∂ I − Ak)1 j u1

For notational ease, write ∂ as λ, |V | = n, p = (an+1,n+1, . . . , an+k,n+k), and
q = a1,n+1an+2,n+1 · · · an+k,n+k−1. Note that p is the vector of new self-cycles and q
can be interpreted as the addedmonomial path fromcompartment n+k to compartment
1. We can write det(λI − Ak) as:

λn + c1λ
n−1 + · · · + cn−1λ + cn
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and we can write det(λI − Ak)1 j as

d1λ
n−1 + d2λ

n−2 + · · · + dn−1λ + dn .

Thus det(λI − A) = (λ − an+1,n+1) · · · (λ − an+k,n+k) det(λI − Ak) can be written
as (up to a minus sign):

λn+k +(c1 − S1(p))λ
n+k−1 + (c2 − c1S1(p) + S2(p))λ

n+k−2

+(c3 − c2S1(p) + c1S2(p) − S3(p))λ
n+k−3

+ · · · + (ck − ck−1S1(p) + ck−2S2(p) − · · · − Sk(p))λ
n

+ · · · + (cn − cn−1S1(p) + cn−2S2(p) − · · · − cn−k Sk(p))λ
k

+(−cnS1(p) + · · · + cn−k+2Sk−1(p) − cn−k+1Sk(p))λ
k−1

+ · · · + (−cnSk−2(p) + cn−1Sk−1(p) − cn−2Sk(p))λ
2

+(cnSk−1(p) − cn−1Sk(p))λ − cnSk(p) (8)

where S1(p), . . . , Sk(p) are the k elementary symmetric polynomials in the parameter
vector p. Here we assumed n > k, but an analogous formula follows for the case of
n ≤ k.

Wewill refer to the non-constant coefficients of det(λI − A) asC1, . . . ,Cn+k . Note
that these are by assumption identifiable. Likewise,

det(λI − A)1, j+k = qd1λ
n−1 + qd2λ

n−2 + · · · + qdn−1λ + qdn . (9)

We will refer to the coefficients of det(λI − A)1, j+k as D1, . . . , Dn . Note that
these are by assumption identifiable. We must now show that if the mapping
given by (c1, . . . , cn, d1, . . . , dn) has expected dimension, then the new mapping
(C1, . . . ,Cn+k, D1, . . . , Dn) also has expected dimension. Since the parameters in
p are roots of the polynomial det(λI − A), then this means these parameters can be
written in terms of the coefficients (C1, . . . ,Cn+k), which are identifiable, and thus
the parameters in p are identifiable. This means each of the elementary symmetric
polynomials S1(p), . . . , Sk(p) are identifiable. Since C1 and S1(p) are identifiable
from Eq. 8, then c1 can be recovered from the first coefficient from Eq. 8. Likewise,
since C2, c1, S1(p), and S2(p) are identifiable, then c2 can be recovered from the
second coefficient of Eq. 8. Continuing in this fashion, we can recover c1, . . . , cn , i.e.
c1, . . . , cn are identifiable. This means the dimension of the image of (C1, . . . ,Cn+k)

is k more than the dimension of the image of (c1, . . . , cn). Since the coefficients
of Eq. 9 are just the coefficients d1, . . . , dn scaled by q, which contains disjoint
parameters from the parameters in the coefficients c1, . . . , cn, d1, . . . , dn , then the
dimension of the image of (D1, . . . , Dn) is the same as the dimension of the image
of (d1, . . . , dn). The parameters in p do not appear in (D1, . . . , Dn), thus combining
the maps (C1, . . . ,Cn+k) and (D1, . . . , Dn) we have that the dimension of the image
of the new map (C1, . . . ,Cn+k, D1, . . . , Dn) must be k more than the dimension of
the image of (c1, . . . , cn, d1, . . . , dn) due to the identifiability of the parameters in p.
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Thus the model M̃ = (G ′, {n + k}, { j}, V ∪ {n + 1, n + 2, . . . , n + k}) has dimen-
sion of the image of the coefficient map equal to |EG | + k + 2, i.e., k more than
M = (G, {1}, { j}, V ). 
�

4 Classification of All Identifiable Models that are Strongly Input–
Output Connected with 1 Output or Strongly Connected with 1
Input and Leaks in Input/Output Compartments

Theorem 4.1 gives necessary conditions for strongly input–output connected models
with 1 output or strongly connected models with 1 input with leaks in input/output
compartments to be identifiable, namely that they must be identifiable path/cycle
models when all the leaks are added to the model.

4.1 Necessary Conditions for Identifiability

Theorem 4.1 (Adding leaks) Let M = (G, I n, Out, L) represent a linear com-
partmental model with |L| = |I n ∪ Out | and either G strongly input–output
connected and |Out | = 1 or G strongly connected and |I n| = 1 which we
assume has expected dimension, i.e., has dimension of the image of the coefficient
map equal to |E | + |I n ∪ Out |. Then, the corresponding model with an additional
leak M̃ = (G, I n, Out, L ∪ {k}) also has expected dimension. Thus the model
M̃ = (G, I n, Out, Leak) where L ⊆ Leak and |Leak| ≤ |V | also has expected
dimension.

Proof SupposeM = (G, I n, Out, L) is a linear compartmental model with either G
strongly input–output connected and |Out | = 1 orG strongly connected and |I n| = 1
and |L| = |I n ∪ Out | which we assume has expected dimension, i.e., has dimension
of the image of the coefficient map equal to |E | + |I n ∪ Out |.

Note that because we assume that M has expected dimension and |L| leaks, this
implies that the Jacobian of the coefficientmap has the expected number of coefficients
as the number of rows and (|E |+|I n∪Out |) columns with full rank |E |+|I n∪Out |.
Note too that the addition of the |V | − |L| parameters from the leaks being added to
the modelMwill not increase the number of coefficients in the resulting input–output
equation, as the number of coefficients is the maximal amount by Theorem 2.24.

Therefore, the Jacobian of the coefficient map of the model M̃ = (G, I n, Out, V )

generated by forcing every compartment in M to have a leak, has the same number
of rows but now (|E | + |V |) columns. The dimension of the image of the coefficient
map is bounded above by the number of cycles and paths when there are |V | leaks,
which is |E | + |I n ∪ Out |. Thus adding |V | − |L| leaks to a |L|-leak model cannot
increase the dimension of the image of the coefficient map above |E | + |I n ∪ Out | if
it has already achieved that dimension with |L| leaks.

Note then that if we consider the specialization generated by substituting zero for
every added leak, and consider the submatrix of said Jacobian with expected number
of coefficients as the number of rows and (|E |+|I n∪Out |) columns generated by the
(|E |+|I n∪Out |) columns corresponding to the edges and leaks in L , we have exactly
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the Jacobian of the coefficient map ofM, which we know is full rank. Therefore, we
have that the Jacobian of the coefficient map of M̃ is also full rank, implying that the
model has expected dimension.

The same argument applies for adding any number of leaks up to |V | total leaks. 
�
Remark We note that while Theorems 3.19 and 4.1 assume opposite operations of
adding or subtracting leaks, we have the condition in Theorem 3.19 that I n ∪ Out ⊆
Leak, while in Theorem 4.1 only |Leak| = |I n ∪ Out | is assumed, i.e., only the
number and not the placement of leaks matters.

4.2 Necessary and Sufficient Conditions for Identifiability

Combining Theorem 4.1 with Theorem 3.19, we now come to the main result of this
section and obtain the following necessary and sufficient conditions for identifiable
models:

Corollary 4.2 LetM = (G, {i}, {i}, {k}) represent a linear compartmental model with
G strongly connected and let M̃ = (G, {i}, {i}, V ) be the corresponding model with a
leak in every compartment.M is locally identifiable if and only if M̃ is an identifiable
cycle model.

Proof This follows from combining Theorems 4.1 and 1 ofMeshkat et al. (2015) (also
written as Theorem 9.3). 
�
Corollary 4.3 LetM = (G, I n, Out, L) represent a linear compartmentalmodelwith
and L = I n ∪ Out and assume that either G is strongly input–output connected and
|Out | = 1 or G is strongly connected and |I n| = 1. Let M̃ = (G, I n, Out, V ) be
the corresponding model with a leak in every compartment.M is locally identifiable
if and only if M̃ is an identifiable path/cycle model.

Proof This follows from combining Theorems 4.1 and 3.19. 
�
Remark Corollary 4.3 gives us a complete classification of all identifiable models that
are strongly input–output connected with 1 output or strongly connected with 1 input
and leaks in input/output compartments. We note that this class of models has the very
special property of being dimension-preserving when leaks are added or subtracted
from non-input/output compartments, up to a point. To demonstrate that this special
dimension-preserving property when removing leaks is not always the case, we revisit
Example 3.21.

Example 4.4 Recall Example 3.21 where we had the model M = (G, {1}, {2}, L)

where |L| = |I n∪Out | = 2 andG is given by the edges {1 → 2, 1 → 3, 3 → 1, 1 →
4, 4 → 1}. The identifiablemodels are the oneswhere L = {2, 4}, {2, 3}, {1, 2} and the
unidentifiable models have L = {3, 4}, {1, 4}, {1, 3}, so removing leaks from output
compartments is not dimension-preserving for this example.

In the next section, we give a conjecture about removing leaks from non-
input/output compartments in the general output connectable case for models with
one output.
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Fig. 6 The graph corresponding
to modelM from Example 5.3

5 Other Expected Dimension Results

We first show that there are at most |E | + |I n ∪ Out | independent paths and cycles
appearing in the coefficient map c if we relax the condition of strongly input–output
connected to output connectable instead:

Proposition 5.1 Let M = (G, I n, Out, V ) represent a linear compartmental model
with G output connectable. Assume that |Out | = 1. Then there are at most |E | +
|I n ∪ Out | independent paths and cycles in the coefficient map c.

Proof If G is strongly input–output connected (or strongly connected) then we have
already shown in Lemma 3.11 that the coefficientmap factors through |E |+|I n∪Out |
independent paths and cycles. IfG is output connectable but not strongly input–output
connected, then there may be fewer than |E |+ |I n∪ Out | independent directed paths
and directed cycles because there are |E | − |V | + |I n ∪ Out | independent directed
paths and undirected cycles by Lemma 3.9. Since the coefficient map factors over the
directed paths and directed cycles, then there are at most |E |+|I n∪Out | independent
paths and cycles in the coefficient map c. 
�

This means the expected dimension is now the number of independent directed
paths and directed cycles, which may be less than |E | + |I n ∪ Out |.

We can relax the connectedness conditions in Theorem 4.1 to output connectable
instead and still obtain statements about expected dimension, although now themodels
with a full set of leaks are not identifiable path/cycle models.

Theorem 5.2 LetM = (G, I n, Out, L) represent a linear compartmentalmodel with
G output connectable and |L| = |I n ∪ Out | and |Out | = 1 which we assume has
dimension of the image of the coefficient map equal to |E | + |I n ∪ Out |. Then, the
corresponding model with a leak in every compartment M̃ = (G, I n, Out, V ) also
has dimension of the image of the coefficient map equal to |E | + |I n ∪ Out |.
Proof The proofs mirrors the one in Theorem 4.1. 
�
Example 5.3 The model M = (G, {1}, {2}, {1, 2}) shown in Fig. 6 where G is the
graph given by {1 → 2, 3 → 2} is output connectable and has dimension of the image
of the coefficient map equal to |E |+2 = 4, thus it is locally identifiable. By Theorem
5.2, themodelM̃ = (G, {1}, {2}, V ) also has dimension of the image of the coefficient
map equal to |E | + 2 = 4. Thus the identifiable functions are a11, a22, a33, a21. Note
that it is not an identifiable path/cyclemodel because the parameter a23 does not appear
in the coefficient map (as it is not strongly input–output connected).

This result shows that if a model has its dimension of the image of the coefficient
map is equal to |E |+|I n∪Out |, then adding leaks alonemaintains the dimension of the
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Fig. 7 The graph corresponding
to modelM from Example 5.5

image of the coefficient map. This result is perhaps more useful for its contrapositive,
i.e., if amodel with leaks from every compartment does not have dimension |E |+|I n∪
Out | for c, then no amount of removing leaks up to a certain point (|L| = |I n∪Out |)
can attain identifiability.

Corollary 5.4 Let M̃ = (G, I n, Out, V ) represent a linear compartmental model
with G output connectable and |Out | = 1 which does not have the dimension of the
image of the coefficient map equal to |E |+|I n∪Out |. Then, the corresponding model
M = (G, I n, Out, L) with |L| = |I n ∪ Out | is not locally identifiable.
Example 5.5 The model M = (G, {1}, {2}, V ) shown in Fig. 7 where G is the graph
given by {1 → 2, 3 → 2, 3 → 1} is output connectable and has dimension of the
image of the coefficient map not equal to |E | + 2 = 5, but equal to 4 instead. By
Corollary 5.4, the model M̃ = (G, {1}, {2}, L) where |L| = 2 is thus not locally
identifiable.

These results also give us insight into models that have dimension of the image
of the coefficient map equal to |E | + |I n ∪ Out | but are not strongly input–output
connected. We can show that the self-cycles are always identifiable:

Theorem 5.6 Let M = (G, I n, Out, V ) represent a linear compartmental model
with G output connectable and |Out | = 1. If M has dimension of the image of the
coefficient map equal to |E |+|I n∪Out |, then the self-cycles a11, . . . , ann are locally
identifiable.

Proof Since the coefficient map always factors over a11, . . . , ann , this means the self-
cycles are locally identifiable. 
�

Finally, we give a conjecture on removing leaks from non-input/output compart-
ments for output connectable models and prove this conjecture in a special case:

Conjecture 5.7 Let M = (G, I n, Out, V ) represent a linear compartmental model.
Assume that G is output connectable and |Out | = 1. Assume the dimension
of the image of the coefficient map is k. Then, the corresponding model M̃ =
(G, I n, Out, L)where In∪Out ⊆ L also has dimension of the image of its coefficient
map as k.
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In other words, we conjecture that this property of being dimension-preserving
applies to all output connectable models. However, if the dimension to begin with is
not maximal, the dimension-preserving property will not lead to identifiability. We
give a proof of this conjecture in the special case where the dimension of the image
of the coefficient map is |E | + |I n ∪ Out |:
Theorem 5.8 Let M = (G, I n, Out, V ) represent a linear compartmental model
with G output connectable and |Out | = 1. If M has dimension of the image of
the coefficient map equal to |E | + |I n ∪ Out |, then the the corresponding model
M̃ = (G, I n, Out, L) where In ∪ Out ⊆ L also has dimension of the image of its
coefficient map as |E |+ |I n∪Out |. In particular, if L = I n∪Out, then M̃ is locally
identifiable.

To prove Theorem 5.8, we give a variation of Lemma 3.18 and then a variation of
the proof of Theorem 3.19.

Lemma 5.9 Let G = (V , E) be a directed graph with corresponding model
(G, I n, Out, V ). Assume that G is output connectable and |Out | = 1. Consider
a model (G, I n, Out, L) where In ∪ Out ⊆ L. Let π : R|V |+|E | → R

|E |+|I n∪Out |
denote the path/cycle map. Let � ⊆ R

|V |+|E | be the linear space satisfying

� = {A ∈ R
|V |+|E | : aii = −

∑

j, j �=i

a ji for all i /∈ L}.

If the dimension of the image of π is |E |+|I n∪Out |, then the dimension of the image
of � under the map π is |E | + |I n ∪ Out |.
Proof Removing the assumption of strongly input–output connected from Lemma
3.18 means that we cannot guarantee there are |E |+ |I n∪ Out | independent directed
paths and directed cycles. However, if we assume the dimension of the image of π is
|E | + |I n ∪ Out |, then the rest of the proof follows that of Lemma 3.18. 
�
Proof of Theorem 5.8 By Lemma 5.9 we know that the image of the restricted parame-
ter space under the path/cycle map π has dimension |E | + |I n ∪ Out |, which is equal
to the dimension of the image of the full parameter space under the path/cycle map.
Since the dimension of the image of the coefficient map c is |E | + |I n ∪ Out |, this
must be the same for the restricted model. In particular, if |L| = |I n ∪ Out |, then the
model has |E | + |I n ∪ Out | parameters, hence it is locally identifiable. 
�
Example 5.10 (Example 5.3 revisited) The model M̃ = (G, {1}, {2}, V ) where G is
the graph given by {1 → 2, 3 → 2} is output connectable and has dimension of
the image of the coefficient map equal to |E | + 2 = 4, thus the model given by
M = (G, {1}, {2}, {1, 2}) is locally identifiable.

Combining Theorems 5.2 and 5.8, we get the following necessary and sufficient
conditions:

Corollary 5.11 Let M = (G, I n, Out, L) represent a linear compartmental model
with and L = I n ∪ Out and assume that G is output connectable and |Out | = 1. Let
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M̃ = (G, I n, Out, V ) be the corresponding model with a leak in every compartment.
M is locally identifiable if and only if M̃ has dimension of the image of the coeffiicent
map as |E | + |I n ∪ Out |.
Remark Corollary 5.11 shows that this dimension-preserving property when adding
or removing leaks from non-input/output compartments also holds in the out-
put connectable case when the dimension of the image of the coefficient map is
|E | + |I n ∪ Out |.

6 Necessary Conditions for Identifiable Models Based onModel
Structure

Outside of checking the conditions in Theorem 3.22, i.e., if a model is an inductively
strongly connected model if edges from output to input are added, checking if a model
is an identifiable path/cycle model amounts to checking the dimension of the image
of the coefficient map, and thus cannot be ascertained by simply examining the graph
of the model. However, it is possible to provide necessary conditions for identifiable
models and identifiable path/cycle models based on the graph itself, and thus can be
used to rule out identifiability.

Theorem 6.1 LetM = (G, I n, Out, L) represent a linear compartmentalmodel with
either G strongly input–output connected and |Out | = 1 or G strongly connected and
|I n| = 1. If |L| > |I n ∪ Out |, then M is unidentifiable.

Proof If the number of parameters |E |+|L| > |E |+|I n∪Out |, where |E |+|I n∪Out |
is the maximal dimension by Lemma 3.11, then the model is unidentifiable. This
reduces to |L| > |I n ∪ Out |. 
�

We can now make some statements about necessary conditions in the case of the
maximal amount of edges.

Theorem 6.2 LetM = (G, {i}, {i}, {k}) represent a linear compartmental model with
G strongly connected and 2|V |−2 edges. IfM is locally identifiable (or equivalently,
M̃ = (G, {i}, {i}, V ) is an identifiable cycle model), it must have an exchange.

Proof From Proposition 5.3 of Meshkat and Sullivant (2014), we know that G must
have an exchange in order for M̃ = (G, {i}, {i}, V ) to be an identifiable cycle model.
Thus, if G does not have an exchange, M̃ is not an identifiable cycle model and thus
M = (G, {i}, {i}, {k}) is not an identifiable model. 
�
Theorem 6.3 Let M = (G, {i}, { j}, L) represent a linear compartmental model
with G strongly input–output connected, dist(i, j) = 1, and 2|V | − (dist(i, j) + 2)
edges and |L| = |I n ∪ Out |. If M is locally identifiable (or equivalently, M̃ =
(G, {i}, { j}, V ) is an identifiable path/cycle model), it must have an edge from i to j
(i.e., a path of length dist(i, j)).

Proof If there is no path from i to j , then the coefficient of the highest-order term on
the right-hand side of the input–output equation is zero and there would be fewer than
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2|V | − dist(i, j) coefficients. But there are 2|V | − (dist(i, j) + 2) edges, so if M is
locally identifiable, then it has expected dimension |E |+2 = 2|V |−dist(i, j), which
is impossible if there are fewer than 2|V | − dist(i, j) coefficients. 
�

We can also have an analogous necessary condition in the case of fewer than 2|V |−
(dist(i, j) + 2) edges.

Theorem 6.4 Let M = (G, {i}, { j}, L) with i �= j represent a linear compart-
mental model with G strongly input–output connected and 2|V | − (k + 2) edges
where k ≥ 1 and |L| = |I n ∪ Out |. If M is locally identifiable (or equivalently,
M̃ = (G, {i}, { j}, V ) is an identifiable path/cycle model), it must have a path from i
to j of length at most k.

Proof The coefficient of the highest-order term on the right-hand side of the input–
output equation is a sum of shortest paths from input to output of length dist(i, j)
and this must be nonzero for M to have expected dimension. Since there are 2|V | −
dist(i, j) nonzero coefficients and expected dimension is |E | + 2, this means k is at
least dist(i, j). So there must be a path from i to j of length at most k. 
�

7 Examples

We now provide some real-world examples that fall into the categories of models
considered in this paper. In particular, we obtain identifiability or unidentifiability
results in Examples 7.1 and 7.2 without any symbolic computation, i.e., purely based
on the graph structure alone.

Example 7.1 Consider Example 13.6 from DiStefano (2015) on HIV vaccine develop-
ment (Part 1). Three models are considered that fall into the category of path models
with leaks from every compartment as in Proposition 3.29, shown in Fig. 8. The top
model corresponds to Experiment 1, the middle model corresponds to Experiment 2,
and the bottom model corresponds to Experiment 3. It is clear that the Experiment 1
model is identifiable. Using Proposition 3.29, we can easily obtain that the Experiment
2 model is identifiable. By Proposition 3.29, the Experiment 3 model has expected
dimension and is thus unidentifiable with identifiable functions given by the paths
and cycles (where the “self-cycles” have been expanded out): k23k′

12, −k03 − k23,
−k′

02 − k′
12, −k′′

01.

Example 7.2 Consider Example 13.16 from DiStefano (2015) on HIV vaccine devel-
opment (Part 3). The models from Example 7.1 are amended by adding on exchanges
to the output compartments, shown in Fig. 9, and the numbering scheme has changed
to agree with DiStefano (2015). The Experiment 1 model is identifiable by Theorem
3.19 as it is an identifiable cycle model (it is inductively strongly connected) with
a single leak in the input/output compartment. The Experiment 2 model is almost
inductively strongly connected and thus is identifiable by Corollary 3.27. A variation
on the Experiment 3 model with leaks from all compartments can be shown to be
an identifiable path/cycle model by a direct calculation, thus removing the leak from
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Fig. 8 The three models
considered in Example 7.1

Fig. 9 The three models considered in Example 7.2

compartment 9 retains the dimension by Theorem 3.19, which means the model in
Experiment 3 is unidentifiable. Alternatively, one can apply Proposition 3.30 to a vari-
ation on the model in Experiment 2 with leaks from every compartment (which has
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expected dimension) and thus obtain that the variation on the model in Experiment 3
with leaks from every compartment also has expected dimension. Now removing the
leak from compartment 9 retains the dimension by Theorem 3.19, and thus the model
in Experiment 3 is unidentifiable. The identifiable functions are given by the paths and
cycles (where the “self-cycles” have been expanded out): k53k65, k69k96, −k03 − k53,
−k05 − k65, −k06 − k96, −k69.

8 Computations

In the table below we outline the number of graphs with n vertices and m edges that
have the expected dimension with input in i and output in j , assuming leaks from
every compartment:

The number of strongly connected graphs and the number of strongly input–output
connected graphs with different input/output configurations is noted.

We then computed the number of models with expected dimension for 4 notable
cases: the case of identical single input and single output with a strongly connected
graph G (as in Meshkat and Sullivant 2014), the case of single input but multiple
outputs with a strongly connected graph G, the case of distinct single input and single
output with a strongly input–output connected graph G, and the case of single output
butmultiple inputswith a strongly input–output connected graphG. Due to restrictions
on the number of edges, not all cases are possible, and those are labeled “NA.”

9 Construction of Identifiable Models

In this section, we consider the special case of single input and single output in the
same compartment with G strongly connected and Leak = V , as in Meshkat and
Sullivant (2014), i.e. M = (G, {i}, {i}, V ) with G strongly connected. Since Leak
is assumed to be V and input/output are assumed to be the same vertex, we can just
discuss the graph G in what follows.

In Meshkat and Sullivant (2014), Theorem 5.7 gives a way of constructing a new
model with expected dimension from a smaller model with expected dimension by
adding an incoming and outgoing edge to a chain of cycles (See Definition 3.23):

Theorem 9.1 (Theorem 5.7 of Meshkat and Sullivant 2014) Let G ′ be a graph that
has the expected dimension with n − 1 vertices. Let G be a new graph obtained from
G ′ by adding a new vertex and two edges k → n and n → l and such that G has a
chain of cycles containing both 1 and n. Then G has the expected dimension.

In Baaijens and Draisma (2016), the authors strengthened this result to allow for
adding loops of any length, not just length two:

Proposition 9.2 (Proposition 4.14 of Baaijens and Draisma 2016) Let G = (V , E)

on n − 1 vertices be a graph with the expected dimension. Construct G ′ from G
by adding new vertices n1, . . . , ns and edges k → n1, ns → l, and ni → ni+1 for
i = 1, . . . , s−1where k, l ∈ V are vertices of G. Then G ′ has the expected dimension.
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We will use Proposition 4.14 from Baaijens and Draisma (2016) combined with
Theorem 1 of Meshkat et al. (2015) to form identifiable models. In other words, we
will use Proposition 4.14 to construct identifiable cycle models and then use Theorem
1 to eliminate all but one leak to form an identifiable model. We state Theorem 1 here:

Theorem 9.3 (Theorem 1 from Meshkat et al. 2015) Let M be an identifiable cycle
model. If the model is changed to have exactly one leak, then the resulting model is
locally identifiable.

Algorithm 9.4 (Construction of identifiable models with In = Out = {1} and one
leak |L| = 1)

(1) Begin with (G, {1}, {1}, {1}) where V = {1} and E = ∅.
(2) Construct G ′ from G by adding new vertices n1, . . . , ns and edges 1 → n1,

ns → 1, and ni → ni+1 for i = 1, . . . , s − 1 where k, l ∈ V are vertices of G
and adding leaks from every new vertex.

(3) Repeat Step 2 by starting a some vertex ni and ending at some vertex n j for
ni , n j ∈ {1, n1, . . . , ns} and adding leaks from every new vertex.

(4) Continue adding edges, vertices, and leaks as described in Steps 2 and 3.
(5) Remove all leaks except one leak.

Theorem 9.5 LetM = (G, {1}, {1}, {k}) be a model constructed from Algorithm 9.4.
The model M is identifiable.

Proof By Proposition 9.2 the modelM is an identifiable cycle model and by Theorem
9.3 the model with only one leak is identifiable. 
�
Example 9.6 The model M = (G, {1}, {1}, V ) shown in Fig. 10 where G is given
by the edges {1 → 2, 2 → 3, 3 → 1, 2 → 4, 4 → 5, 5 → 3} is an identifiable
cycle model by Proposition 9.2. Thus we can remove all leaks except one, e.g., M̃ =
(G, {1}, {1}, {5}) and the resulting model is identifiable. We note that this model is not
inductively strongly connected, thus Proposition 9.2 does expand upon the results in
Meshkat et al. (2015) to construct identifiable models.

Note that the authors in Baaijens and Draisma (2016) only considered identifiable
cycle models. We suspect there may be a similar result to Proposition 9.2 for the case
of identifiable path/cycle models.

10 Conclusion and Future work

In this work, we have defined identifiable path/cycle models and found sufficient con-
ditions for obtaining them.Wehave also formed necessary and sufficient conditions for
identifiable models with certain graph properties. Most importantly, we have demon-
strated this notion of maximal dimension of the image of the coefficient map in terms
of the number of edges and the number of inputs and outputs and have shown that the
only identifiable models with certain graph properties are models where the dimen-
sion of the image of the coefficient map is preserved to be maximal while adding or
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Fig. 10 The graph
corresponding to M from
Example 9.6

subtracting leaks up to a point. This shows that identifiable models of this form have a
special dimension-preserving property even when they are no longer identifiable from
added leaks. We hope that this motivates the investigation of other classes of models
that have this same dimension-preserving property.

As mentioned in the introduction, one of the main uses of identifiable functions of
parameters is to find identifiable reparametrizations over those functions of param-
eters. In Meshkat and Sullivant (2014), necessary and sufficient conditions for an
identifiable scaling reparametrization were found and an algorithm to find such a scal-
ing reparametrization was discussed for the special case of single input/single output
in the same compartment, G strongly connected, and leaks from every compartment.
We end this work with the following conjecture to generalize these necessary and
sufficient conditions for the case of multiple inputs or multiple outputs:

Conjecture 10.1 LetM = (G, I n, Out, V ) represent a linear compartmental model
with G strongly input–output connected and |Out | = 1 or G strongly connected
and |I n| = 1. An identifiable scaling reparametrization exists if and only if M =
(G, I n, Out, V ) is an identifiable path/cycle model.

While the models described in Corollary 5.11 also have the dimension of the image
of the coefficient map as |E | + |I n ∪ Out |, we note that these models will not have
an identifiable scaling reparametrization since these models do not necessarily have
every parameter appearing in a cycle or path from input to output. However, it may be
possible to reparametrize thosemodels another way, e.g., scaling and adding.We leave
these problems of identifiable reparametrizations of models with maximal dimension
of the image of their coefficient map for future work.
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