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Abstract.
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a complex disorder with a high mortality. The patho-
physiology of COPD has not been characterized till date.
OBJECTIVE: To identify COPD-related biomarkers by a bioinformatics analysis.
METHODS: Here, we conducted the canonical correlation analysis to extract the potential COPD-related miRNAs and mR-
NAs based on the miRNA-mRNA dual expression profiling data. After identifying miRNAs and mRNAs related to COPD, we
constructed an interaction network by integrating three validated miRNA-target sources. Then we expanded the network by
adding miRNA-mRNA pairs, which were identified by Spearman rank correlation test. For miRNAs involved in the network,
we further performed the Gene Ontology (GO) functional enrichment analysis of their targets. To validate COPD-related mR-
NAs involved in the network, we performed receiver operating characteristic (ROC) curve analysis and Support Vector Machine
(SVM) classification on only those mRNAs that overlapped with COPD-related mRNAs of Online Mendelian Inheritance in
Man (OMIM) database.
RESULTS: The results indicate that some identified miRNAs and their targets in the constructed network might be potential
biomarkers of COPD.
CONCLUSIONS: Our study helps us to predict the potential risk biomarkers of COPD, and it can certainly help in further
elucidating the genetic etiology of COPD.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is caused by excessive exposure to highly polluted air
containing high concentration of metallic oxidants. It is a chronically progressive disease that causes ob-
struction of airflow in patients [1]. The pathophysiology of COPD has not been understood completely
till date; however, cigarette smoking is considered as an important risk factor. Previous studies have
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reported that oxidative stress plays a pivotal role in the pathogenesis of COPD by initiating and medi-
ating various redox-sensitive signal transduction pathways and gene expression [2]. The pathogenesis
of COPD includes multiple risk factors, including environmental [3], genetic and epigenetic compo-
nents and a combination of these components. Therefore, it is important to investigate COPD-related
biomarkers to comprehensively elucidate the pathogenesis of COPD.

MicroRNAs (miRNAs) are small (∼ 22 nucleotides) non-coding RNAs that regulate gene expression
by targeting complementary mRNA [4]. MicroRNAs can target many mRNAs, and many miRNAs can
cooperatively target a single mRNA. Recent studies have established that miRNAs are mediators of
inflammation, which is responsible for the development and progression of COPD [5]. In recent years,
several research studies have been conducted to investigate the pathogenesis of COPD. In these studies,
it has been found that miRNA-mRNA regulations play a pivotal role in the pathogenesis of COPD [6].
For example, Wang et al. observed the changes in the expression of miR-145-5p, miR-338-3p and miR-
3620-3p were consistent with the classification of new classification of COPD [7]. In a recent study, it
has been found that miR-218-5p play a protective role in suppressing the inflammation and pathogenesis
of COPD in patients who are continuously exposed to cigarette smoke [8]. Fawzy et al. found that miR-
196a2 rs11614913 polymorphism is associated with the bronchodilator response of COPD in Egyptian
population [9]. However, very few studies have described about the combinatorial analysis of miRNA-
mRNA regulations, which are based on miRNA and mRNA dual expression profiles in patients with
COPD.

To address this issue, we conducted canonical correlation analysis on miRNA-mRNA dual expres-
sion profile data in this study. The results of canonical correlation analysis were used to identify the
potential miRNAs and mRNAs associated with COPD. After identifying miRNAs and mRNAs, we con-
structed their interaction network by integrating the three validated miRNA-target sources. Then, we
expanded this network by combining miRNA-mRNA pairs based on Spearman rank correlation test. For
miRNAs involved in the network, we further performed the GO functional enrichment analysis of their
targets. In particular, we manually searched COPD-related genes from Online Mendelian Inheritance
in Man (OMIM) database. Furthermore, we extracted genes that overlapped with target genes of miR-
NAs involved in the network. On these extracted genes, we performed ROC curve analysis and SVM
classification to explore their potential association with COPD. The results indicate that some identified
miRNAs and their targets in the constructed network might be potential risk biomarkers of COPD. The
results of our study can be used to predict the potential risk biomarkers of COPD, which can then be used
to comprehensively elucidate the regulatory changes associated with the development and progression
of COPD.

2. Materials and methods

2.1. Data source

In the current study, we used miRNA-mRNA dual expression profiling data (GSE38974) to imple-
ment our analysis. MicroRNAs were profiled in subjects with 19 COPD patients and 8 normal smokers
using Exiqon miRNA microarrays (GPL7723). Microarray of mRNAs was obtained from Agilent Quick
Amp Labeling technologies (GPL4133), which includes 9 normal smokers and 23 COPD patients. The
processing of raw miRNA and mRNA microarray data was in complete agreement with the original
contribution [10]. We used SAM (Significance Analysis of Microarrays) method [11] to identify statis-
tically significant differential expression of mRNAs and miRNAs that distinguish COPD patients from
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the normal smokers. To eliminate false positive discoveries and to ensure the results agreed with other
sample sets of COPD, we selected more rigorous criteria of p < 0.01 and adjusted False Discovery Rates
(FDR) < 0.01 as the cutoff to filter differentially expressed miRNAs and mRNAs (genes) [12]. Based
on this criterion, 134 differentially expressed miRNAs and 5,067 differentially expressed mRNAs were
identified and will be used for further analysis.

2.2. Sample matching based on the propensity score

Because the sample size of miRNA and mRNA expression profile datasets was different, we could
not delete samples arbitrarily. Therefore, we first performed matching using the propensity score (PS)
method, which was performed in the ratio of 1:1 sub-samples on two datasets. Propensity score (PS)
is often defined as the conditional probability of receiving a certain treatment from the given covari-
ates [13]. In the current PS matching, the selected covariates are as follows: age, gender, height, weight
and smoking history. The logistic regression model was used for PS matching in this analysis. As a
result, four samples having lower PS score of mRNA expression profiling were discarded. Then, we
performed further analysis on the miRNA-mRNA dual expression profile of 19 COPD patients as they
had matching propensity score analysis.

2.3. Canonical correlation analysis

In general, canonical correlation analysis was performed to identify and measure the association be-
tween two sets of variables. It can find the two bases in which the correlation matrix between the vari-
ables is diagonal and the correlations on the diagonal are maximized [14]. It is important to note that
canonical correlation method loses its effect if overfull variables are included in the analysis; there-
fore, we did not select the whole differentially expressed miRNAs and mRNAs to perform canonical
correlation analysis. Alternatively, we only selected those differentially expressed miRNAs and mRNAs
involved in the miRNA-target relationships that integrate three miRNA-target sources: miRTarBase [15],
miRecords [16] and TarBase [17]. In this analysis, miRNAs were considered as the first set of variables
and mRNAs as the second set of variables. Consider the number of variables exceeded the number of
samples; we performed the regularized canonical correlation (RCC) to seek the potential associations
between miRNAs and mRNAs. Before performing RCC on two variables sets, we used the leave-one-
out criterion to determine the optimal values of two regularization parameters. The CCA package of R
software (http://www.r-project.org) was used to perform canonical correlation analysis.

2.4. Network construction

For the extracted miRNAs and mRNAs from the canonical correlation analysis, except kept those
miRNA-target relationships obtained from three miRNA-target sources, we expanded the network based
on the associations between identified miRNAs and mRNAs. We only selected those miRNA-mRNA
interactions showing significant p-values < 0.05 as per Spearman correlation coefficients. In this anal-
ysis, multiple testing was not performed for two reasons: i) this allowed us to retain those interactions
that had high-confidence for network construction; ii) this avoided loss information. The constructed
network predicts the potential miRNA-target relationships related to COPD.

2.5. GO function enrichment analysis

In the constructed network, for each miRNA, we performed the Gene Ontology (GO) function en-
richment analysis for their target genes. We used clusterProfiler package of R software (http://www.
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Table 1
The miRNAs and mRNAs identified by canonical correlation analysis

miRNA and miRNA mRNA and miRNA miRNA and mRNA mRNA and mRNA
canonical variables canonical variables canonical variables canonical variables

miRNA Correlation miRNA Correlation miRNA Correlation miRNA Correlation
coefficient coefficient coefficient coefficient

miR-378 0.7319 CDKN1A 0.6184 miR-378 0.7460 CDKN1A 0.6548
miR-151-3p 0.6677 PAX3 0.5865 miR-519d 0.6283 PAX3 0.5976
miR-519d 0.6378 HIF1A 0.5546 miR-151-3p 0.6141 PA2G4 0.5552
miR-193b 0.5306 PA2G4 0.5341 miR-423-3p 0.5741 HIF1A 0.5449
miR-208b 0.5214 CCNF 0.5167 miR-193b 0.5412 THRAP3 0.5355
miR-423-3p 0.4523 FADD 0.5019 miR-208b 0.4790 FADD 0.5225
miR-214 0.3962 FEN1 0.4808 miR-214 0.3926 RAB1B 0.4905
miR-186 0.3700 FAF1 0.4413 miR-361-5p 0.3662 FEN1 0.4833
miR-892b 0.3661 RAB1B 0.4217 miR-186 0.3488 CCNF 0.4521
miR-326 0.3428 THRAP3 0.3925 miR-422a 0.3321 VEGFA 0.4326
miR-422a 0.3392 VEGFA 0.3722 miR-892b 0.3295 FAF1 0.4125
miR-361-5p 0.3024 ACVR1B 0.3694 miR-383 0.3126 ACVR1B 0.4017

FGFR1 0.3682 miR-326 0.3045 CDK2 0.3998
GPD1 0.3513 TLR2 0.3977
PKM2 0.3423 MCL1 0.3842
CDK2 0.3370 MAPK9 0.3750
MAPK9 0.3211 GPD1 0.3655
MCL1 0.3162 FGFR1 0.3522
TLR2 0.3124 NOTCH1 0.3481
NOTCH1 0.3083 TLR4 0.3315
PTEN 0.3047 PTEN 0.3276
KRAS 0.3006 ATF6B 0.3246

KRAS 0.3162
AKT1 0.3105
P2RX7 0.3096
PKM2 0.3035

r-project.org) to implement this analysis. The multiple testing corrections based on Benjamini-Hochberg
method [18] were performed; those GO terms whose adjusted p-values were less than 0.05 were consid-
ered significant.

2.6. Validation of the potential COPD-related genes involved in the network

2.6.1. Classification performance analysis for the identified potential COPD-related genes
To find whether the genes involved in the constructed network might be potential COPD-related genes,

we manually selected genes that overlapped with COPD-related genes included in Online Mendelian
Inheritance in Man (OMIM) database [19]. The area under receiver operating characteristic (ROC) curve
of these overlapping genes was calculated to detect COPD. We used the expression of these overlapping
genes as predictor variables, and applied Support Vector Machine (SVM) [20] to distinguish COPD
patients from normal smokers. In practice, cross-validation can limit problems like overfitting and derive
a more accurate estimate of model prediction performance. Because enough data was not available to
partition it into “training set” and “test set”, significant modeling or testing capability would have got
compromised [21]. To tackle this problem, we performed 5-fold cross validation in SVM program. In
this procedure, we divided all samples into five sets. For each analysis, one set was considered as testing
data whereas the remaining sets were considered as training data.
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Fig. 1. The flowchart of our work. Firstly, we identified the differentially expressed miRNAs and mRNAs. Secondly, by inte-
grating three miRNA-target sources, we performed canonical correlation analysis to identify potential COPD-related miRNAs
and mRNAs. Thirdly, we constructed and expanded miRNA-mRNA network. Finally, for miRNAs involved in the network,
we performed GO functional enrichment analysis of their targets. We also performed the validation of potential COPD-related
genes involved in the consturction network, including ROC curve analysis, SVM classification, and cluster analysis.

2.6.2. Cluster analysis by combining miRNA with mRNA expression profiling to validate the identified
potential COPD-related genes

To validate the potential COPD-related genes involved in the network, we performed cluster analysis
by combining miRNA with mRNA expression profile of 19 patients using Similarity Network Fusion
(SNF) method [22]. SNF is a multi-omics data processing method in which the similarities between pa-
tients from different data types are integrated by a cross-network diffusion process to construct the fusion
patient similarity matrix. After clustering 19 COPD patients to three clusters (subtypes), we extracted
top 50 most significant differentially expressed genes distinguishing each of three clusters from normal
smokers respectively, and the overlapped genes of three gene sets were extracted. Figure 1 illustrates the
flowchart of our work in this analysis.

3. Results

3.1. Canonical Correlation analysis

After integrating three miRNA-target sources into differentially expressed miRNAs and mRNAs, we
used 47 differentially expressed miRNAs and 85 differentially expressed mRNAs to perform canonical
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Fig. 2. The constructed miRNA-mRNA regulation network. In this graph, blue circles indicate target genes involved in three
miRNA-target databases, and the orange circles indicate added target genes involved in significant miRNA-mRNA pairs. Black
lines indicate miRNA-mRNA relationships involved in three miRNA-target databases, and red lines indicate added miRNA-m-
RNA relationships involved in significant miRNA-mRNA pairs.

correlation analysis. Based on leave-one-out criterion, we found that the optimal values of two regular-
ization parameters were 0.25 and 0.75, respectively. After performing regularized canonical correlation,
we obtained the four matrixes: the correlation between miRNA and miRNA canonical variables; the cor-
relation between mRNA and miRNA canonical variables; the correlation between miRNA and mRNA
canonical variables and the correlation between mRNA and mRNA canonical variables. For these four
matrixes, we selected the correlation coefficients of the original variable and the first canonical variable
because the first canonical variable had the highest canonical correlation coefficient of 0.74 (see Sup-
plementary Fig. 1). We identified 13 miRNAs and 26 mRNAs with correlation coefficients > 0.3 (see
Table 1). These miRNAs and mRNAs were further used for network construction.

3.2. Network construction

After identifying 13 miRNAs and 26 mRNAs by canonical correlation analysis, we expanded the net-
work by adding miRNA-mRNA pairs identified by Spearman rank correlation test. According to the
criterion of p < 0.05, we added 30 miRNA-mRNA pairs to the network. Figure 2 illustrates the con-
structed network. As shown in Fig. 2, blue circles indicate target genes involved in three miRNA-target
databases; orange circles indicate the added target genes involved in significant miRNA-mRNA pairs.
Among these added miRNA-mRNA pairs, regulated relationships were observed in previous studies.
For example, miR-193 was found to regulate CDK2 expression because the target ING5 of miR-193 can
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Fig. 3. GO function enrichment analysis of target genes of miR-208b (A) and miR-378 (B). The significant GO terms about
BP were shown in different colors. The cooler colors indicate more significant GO terms (The p-values displayed in the graph
were not adjusted).

functionally regulate CDK2 activity [23]. To regulate the oxidation reduction mechanism, miR-378 mod-
ulates oscillation amplitudes of CDKN1A by forming partnership with different circadian transcription
factors [24]. From the constructed network, we found that some target genes of miRNAs were associ-
ated with COPD. For example, FAF1 was found to be up-regulated in phlegm of COPD patients [25].
According to a recent study, ACVR1B is enriched with mutations in lung cancer cases; these subjects
were included in the consensus network consisting of COPD case-control subjects [26]. In this network,
we found that some added target genes were associated with COPD phenotypes. In patients with se-
vere COPD, the reduced expression of HIF1A protein was in complete agreement with the concept of
lung structure maintenance programme, which is impaired on a molecular level [27]. The expression
of TLR2 was lower in sputum neutrophils, but the expression of soluble TLR2 (sTLR2) was higher in
the supernatant of COPD group. This indicates that the expression of TLR2 was down-regulated at the
transit from blood to sputum [28]. In this construction network, we observed CDKN1A was regulated
by multiple newly identified miRNAs, such as miR-151-3p, miR-186, and miR-214. Recent studies have
proved that CDKN1A, miR-151-3p, and miR-214 are COPD-related biomarkers [2,30,31]; however, the
obtained miRNA-target relationships need to be further validated by performing experiments of molec-
ular biology.

3.3. GO function enrichment analysis

For each miRNA, we performed the Gene Ontology (GO) function enrichment analysis of their target
genes involved in the network. Only target gene sets of miR-378 and miR-208b were enriched with
some significant GO terms (see Supplementary Table 1). Figure 3 illustrates significant GO terms about
biological process (BP). As shown in Fig. 3, the target genes of miR-208b were enriched on cell death
and metabolic process. In a previous study conducted on mice, we found that in pulmonary endothelial
or epithelial cells, the direct induction of cell apoptosis was accompanied with emphysematous changes.
This implies that there are defects in these clearance mechanisms, and many evidences prove that such
defects are quite common in patients with COPD [32]. Furthermore, target genes of miR-208b were
enriched on GO term “localization” (GO: 0051179), which is defined as any process in which a cell, a
substance, or a cellular entity is transported, tethered to, or otherwise maintained in a specific location. In
practice, “localization” may also be achieved via selective degradation. In a recent COPD-related study,



S128 L. Hua et al. / Prediction of microRNA and gene target from an integrated network in COPD disease

Fig. 4. The classification performance analysis for four genes that overlap with COPD-related genes recognized in OMIM
database. (A) Four overlapped genes: HIF1A, KRAS, PTEN and TLR2. (B) The ROC curve analysis for four genes. (C) The
classification accuracy rate of four genes based on SVM method. (D) The SVM classification plot for HIF1A and KRAS.

we found that interstitial PTX3 levels were not correlated with mRNA transcripts of whole tissue. These
results indicate the lack of selection of cells relevant for PTX3 production at the chosen anatomical
sites. In other words, PTX3 levels reflect selective degradation or post-transcriptional regulation [33].
Other significant functions of target genes of miR-208b and miR-378 focus on the metabolic process.
In practice, we reported that skeletal muscle proteins become mobilized during inflammation. In COPD
patients, the increased levels of acute phase proteins are correlated with an enhanced resting metabolic
rate and fat free mass (FFM) loss [34].

3.4. Classification performance analysis for potential COPD-related genes involved in the network

To determine whether the genes involved in the constructed network were potential COPD-related
genes, we manually selected genes that overlapped with COPD-related genes included in OMIM
database. We found 6 genes (HIF1A, KRAS, P2RX7, PTEN, TLR2 and VEGFA) which have been
approved to be associated with COPD (see Fig. 4A). Meanwhile, the area under ROC curve (AUC) of
four genes (HIF1A, KRAS, PTEN, and TLR2) was greater than 0.8, which can be used as an indicator to
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Fig. 5. Scatter dot plots of significant regulation (∗P < 0.05 and ∗∗P < 0.01) between miRNAs and mRNAs: (A) miR-151-3p
and HIF1A; (B) miR-423-3p and TLR2; (C) miR-208b and KRAS. The r and p values indicate the Spearman correlation
coefficients and their significance respectively.

detect COPD in patients (see Fig. 4B). By considering the expression of these four genes as prediction
variables, we classified samples by SVM method. The classification accuracy rate of HIF1A, KRAS,
PTEN, and TLR2 were 91%, 97%, 81%, and 81%, respectively (see Fig. 4C). In particular, we used
SVM classification plot to determine classification performance of two genes (HIF1A and KRAS) that
show higher classification accuracy rate than the other two genes. The two-dimensional classification
diagram showed a good classification performance in which normal smokers were distinguished well
from COPD patients (see Fig. 4D).

As shown in Fig. 5, significant regulation (P < 0.05 based on Spearman correlation coefficients) was
observed between these four genes and their regulated miRNAs. Meanwhile, some identified miRNA-
mRNA pairs can be indirectly and partially supported by some previous and recent literatures. For
example, a variant in 3’-untranslated region of KRAS compromises its interaction with let-7g, and it
contributes to the development of lung cancer in patients with COPD [35]. Interestingly, in our anal-
ysis, miR-208b is correlated with let-7g (r = −0.544, p = 0.016). Therefore, there may be potential
association between miR-208b and KRAS. Previous bioinformatics prediction analyses were based on
sequence similarity between miRNAs and mRNAs. These prediction analyses found that some miRNAs,
which were associated with COPD, contribute to the regulation of functionally relevant genes in chronic
inflammatory lung disease, such as KRAS, PTEN, and TLR2 [36]. Therefore, our findings may be used
as references in future studies to investigate the molecular biology of COPD. In our future study, the
newly identified miRNA-mRNA pairs, such as miR-208b and KRAS, must be validated by performing
an experimental study that elucidates the molecular biology of COPD.

3.5. Cluster analysis by combining miRNA with mRNA expression profiling to validate the identified
potential COPD-related genes

To validate the potential COPD-related genes involved in the network, we performed cluster analy-
sis by combining miRNA with mRNA expression profile of 19 COPD patients based on SNF method.
The results indicate that 19 COPD patients were divided into three clusters: A heatmap (Fig. 6A) and
a silhouette plot (Fig. 6B) describe these three clusters. Cluster 1, cluster 2 and cluster 3 include 4,
7 and 8 COPD patients respectively. A higher silhouette score indicates that there is greater similar-
ity between samples of the same cluster. In this analysis, silhouette score of cluster 1 was the highest



S130 L. Hua et al. / Prediction of microRNA and gene target from an integrated network in COPD disease

Fig. 6. (A) Heatmap of cluster analysis based on SNF method. (B) Silhouette plot of three clusters. Silhouette score indicates
the consistency within clusters of data. (C) The common genes: PTEN, VEGFA and KRAS, were shared by three top 50
differentially expressed genes sets.

(S1 = 0.27). However, silhouette scores of cluster 2 and cluster 3 were comparatively lower (S2 = 0.12
and S3 = 0.04). For each of the three clusters, we extracted the top 50 most significant differentially
expressed genes that distinguish between this cluster and normal smokers, respectively. We found that
PTEN, VEGFA, and KRAS were the three common genes that were shared by three top 50 differentially
expressed genes sets (Fig. 6C). Furthermore, this result indicates that the network certainly contained
genes that could be considered as potential COPD-related genes.

4. Discussions

Currently, many studies have established that genetic, epigenetic, and environmental factors are risk
factors responsible for the incidence and progression of COPD in general population. By performing
integration data analysis, the key regulators of COPD can be identified. In the past few years, many
studies have shown that miRNA-mRNA dysregulation leads to the metastasis of cancers [37]. Previous
studies have reported about the effects of smoke exposure on the expression of miRNA; however, these
studies have provided little information about the role of miRNAs in COPD ci38. Very few studies have
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reported about how miRNA-mRNA dysregulation triggers COPD in patients, because very less data
is available about miRNA-mRNA dual expression profile till date. In the present study, we conducted
canonical correlation analysis to extract the potential COPD-related genes: the miRNA-mRNA dual ex-
pression profile data was analyzed to determine miRNA-mRNA association with COPD. The identified
genes were found to be strongly associated with the susceptibility of COPD in patients, and this ob-
servation was supported by previous and recent evidences. By performing integrative data analysis of
miRNA-mRNA dual expression profile, we found that miRNA-mRNA regulation played a pivotal role
in the incidence and progression of COPD. Furthermore, the novel COPD-related key regulators and
biomarkers could be directly identified by this analysis.

Canonical correlation analysis (CCA) does have some limitations. Because CCA is based on linear
transformations, it has limited applications in biomedical sciences. Furthermore, some identified poten-
tial biomarkers may be identified as false positive predictors by CCA. Recently, non-linear canonical
correlation analysis has been developed; this technique applies non-linear functions to original variables
in order to extract correlated components from two sets of variables [39]. In future studies, we will
consider some new methods to implement this analysis. Another important limitation of this study is
as follows: we only selected the validated miRNA-target regulations in databases, and many predicted
miRNA-target regulations were not come into the analysis. Our method also does not identify regulation
by translation inhibition. In addition, one of the major limitations of our analysis is the fact that there are
very few miRNA-mRNA dual expression profiles related to COPD. As we know, unconvincing results
are obtained by analyzing small sample sizes. In this study, we used algorithms that effectively analyzed
high-dimensional data from small sample sizes, such as SAM, RCC, and SNF. Thus, we ensured that
reliable results could be obtained from this analysis. We hope that more miRNA-mRNA dual expres-
sion profiles related to COPD would be available in the near future. These COPD-related profiles can
then be used to perform similar analysis and to validate these results. In our current study, the identified
COPD-related biomarkers were not validated by biological assays. In future studies, molecular biology
experiments must be conducted to validate the findings of our study.

Another limitation of this study is that the multiple testing was not performed when filtering miRNA-
mRNA pairs based on spearman correlation test. In fact, multiple testing procedures play an important
role in detecting the presence of correlation. False Discovery Rate (FDR) is one of the multiple testing
methods. The simple FDR estimation can be computed from p-values using Benjamini-Hochberg proce-
dure. In this way, small p-values result in small FDR estimates. In our current study, the most significant
miRNA-mRNA pairs with the smallest p-values were kept in the network. However, we could not as-
certain whether those extracted miRNA-mRNA pairs that were not able to pass multiple testing were
significant, and they might be the false positive discoveries.

Moreover, some studies that were based on network analysis have reported the following results: they
found that the expressions of genes with differential methylation regions (DMRs) were highly negatively
correlated with corresponding DNA methylations levels. This indicates that DNA methylation plays an
important role in the incidence and progression of diseases [40]. Indeed, the high-throughput sequencing
data analysis and the global DNA methylation analysis of airway epithelia in COPD have found some
genes that are hyper-methylated and down-regulated in COPD, such as VEGFA, which is regulated by
miR-378, miR-361-5p and miR-383 [41]. In the current study, we did not identify methylation events be-
cause the matched COPD-related DNA methylation data are lacking. In fact, it is preferable to combine
multiple data types rather than exploiting them separately; this will be an effective strategy to identify
biomarkers related to COPD. In future studies, the underlying mechanism governing complex molecular
regulation must be investigated by integrating multiple data types, such as DNA methylation data, so-
matic mutation data, and copy number data of biological networks. These studies will help researchers to
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have a better understanding of biological factors, which can be used for further experimental validations
and discoveries of COPD biomarkers.
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Supplementary materials

Supplement Table 1
GO function enrichment analysis for miRNAs targets

miRNA Domains GO ID Description p-value Adjusted p-value
miR-378 CC GO:0044444 Cytoplasmic part 2.3E-03 0.0259

CC GO:0043234 Protein complex 4.0E-03 0.0259
CC GO:0032991 Macromolecular complex 9.5E-03 0.0413
BP GO:0051246 Regulation of protein metabolic process 1.4E-04 0.004
BP GO:0035556 Intracellular signal transduction 2.4E-04 0.004
BP GO: 0031325 Positive regulation of cellular metabolic process 3.8E-04 0.004
BP GO: 0048522 Positive regulation of cellular process 5.1E-04 0.004
BP GO: 0009893 Positive regulation of metabolic process 5.2E-04 0.004
MF GO:0005515 Protein binding 1.1E-02 0.0317

miR-208b BP GO: 0012501 Programmed cell death 2.1E-05 0.0003
BP GO:0008219 Cell death 4.3E-05 0.0003
BP GO: 0016265 Death 4.4E-05 0.0003
BP GO: 0006796 Phosphate-containing compound metabolic process 1.0E-03 0.0053
BP GO: 0006793 Phosphorus metabolic process 1.1E-03 0.0053
BP GO: 0048522 Positive regulation of cellular process 1.7E-03 0.0068
BP GO: 0048518 Positive regulation of biological process 3.2E-03 0.011
BP GO:0060255 Regulation of Macromolecule metabolic process 5.5E-03 0.016
BP GO: 0051179 Localization 6.9E-03 0.017
BP GO: 0031323 Regulation of cellular metabolic process 7.8E-03 0.017
BP GO:0080090 Regulation of primary metabolic process 8.0E-03 0.017
BP GO:0019222 Regulation of metabolic process 1.4E-02 0.029

CC: Cellular Component; BP: Biological Process; MF: Molecular Function.

Supplement Fig. 1. The canonical correlation coefficients between the original variable and the canonical variables. The highest
canonical correlation coefficient of 0.74 was seen from the original variable and the first canonical variable; therefore all of the
correlation coefficients between the original variable and the first canonical variable were selected.


