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ABSTRACT

Motivation: Next-generation DNA sequencing machines are
generating an enormous amount of sequence data, placing
unprecedented demands on traditional single-processor read-
mapping algorithms. CloudBurst is a new parallel read-mapping
algorithm optimized for mapping next-generation sequence data
to the human genome and other reference genomes, for use in a
variety of biological analyses including SNP discovery, genotyping
and personal genomics. It is modeled after the short read-mapping
program RMAP, and reports either all alignments or the unambiguous
best alignment for each read with any number of mismatches
or differences. This level of sensitivity could be prohibitively
time consuming, but CloudBurst uses the open-source Hadoop
implementation of MapReduce to parallelize execution using multiple
compute nodes.

Results: CloudBurst’s running time scales linearly with the number
of reads mapped, and with near linear speedup as the number
of processors increases. In a 24-processor core configuration,
CloudBurst is up to 30 times faster than RMAP executing on a
single core, while computing an identical set of alignments. Using
a larger remote compute cloud with 96 cores, CloudBurst improved
performance by >100-fold, reducing the running time from hours to
mere minutes for typical jobs involving mapping of millions of short
reads to the human genome.

Availability: CloudBurst is available open-source as a model
for parallelizing algorithms with MapReduce at http://cloudburst-
bio.sourceforge.net/.

Contact: mschatz@umiacs.umd.edu

1 INTRODUCTION

Next-generation high-throughput DNA sequencing technologies
from 454 Life Sciences, [llumina, Applied Biosystems and others are
changing the scale and scope of genomics. These machines sequence
more DNA in a few days than a traditional Sanger sequencing
machine could in an entire year, and at a significantly lower cost
(Shaffer, 2007). James Watson’s genome was recently sequenced
(Wheeler et al., 2008) using technology from 454 Life Sciences
in just 2 months, whereas previous efforts to sequence the human
genome required several years and hundreds of machines (Venter
et al., 2001). If this trend continues, an individual will be able to
have their DNA sequenced in only a few days and perhaps for as
little as $1000.

*To whom correspondence should be addressed.

The data from the new machines consists of millions of short
sequences of DNA (25-250bp) called reads, collected randomly
from the target genome. After sequencing, researchers often map the
reads to a reference genome to find the locations where each read
occurs, allowing for a small number of differences. This information
can be used to catalog differences in one person’s genome relative
to a reference human genome, or compare the genomes of closely
related species. For example, this approach was recently used to
analyze the genomes of an African (Bentley ef al., 2008) and an
Asian (Wang et al., 2008) individual by mapping 4.0 and 3.3 billion
35bp reads, respectively, to the reference human genome. These
comparisons are used for a wide variety of biological analyses
including SNP discovery, genotyping, gene expression, comparative
genomics and personal genomics. Even a single base pair difference
can have a significant biological impact, so researchers require
highly sensitive mapping algorithms to analyze the reads. As such,
researchers are generating sequence data at an incredible rate and
need highly scalable algorithms to analyze their data.

Many of the currently used read-mapping programs, including
BLAST (Altschul er al., 1990), SOAP (Li et al., 2008b), MAQ
(Li, et al., 2008a), RMAP (Smith et al., 2008) and ZOOM (Lin
et al., 2008), use an algorithmic technique called seed-and-extend
to accelerate the mapping process. These programs first find
sub-strings called seeds that exactly match in both the reads and the
reference sequences, and then extend the shared seeds into longer,
inexact alignments using a more sensitive algorithm that allows
for mismatches or gaps. These programs use a variety of methods
for finding and extending the seeds, and have different features
and performance. However, each of these programs is designed for
execution on a single computing node, and as such requires a long
running time or limits the sensitivity of the alignments they find.

CloudBurst is a new highly sensitive parallel seed-and-
extend read-mapping algorithm optimized for mapping single-
end next generation sequence data to reference genomes. It
reports all alignments for each read with up to a user-specified
number of differences including both mismatches and indels.
CloudBurst can optionally filter the alignments to report the
single best non-ambiguous alignment for each read, and produce
output identical to RMAPM (RMAP using mismatch scores).
As such CloudBurst can replace RMAP in a data analysis
pipeline without changing the results, but provides much greater
performance by using the open-source implementation of the
distributed programming framework MapReduce called Hadoop
(http://hadoop.apache.org). The results presented below show that
CloudBurst is highly scalable: the running times scale linearly as the
number of reads increases, and with near linear speed improvements
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Fig. 1. Schematic overview of MapReduce. The input file(s) are
automatically partitioned into chunks depending on their size and the desired
number of mappers. Each mapper (shown here as m; and mj) executes a
user-defined function on a chunk of the input and emits key—value pairs. The
shuffle phase creates a list of values associated with each key (shown here as
k1, ky and k). The reducers (shown here as r| and r;) evaluate a user-defined
function for their subset of the keys and associated list of values, to create
the set of output files.

over a serial execution of RMAP for sensitive searches. Furthermore,
CloudBurst can scale to run on large remote compute clouds, and
thus map virtually any number of reads with high sensitivity in
relatively little time.

1.1 MapReduce and Hadoop

MapReduce (Dean et al., 2008) is the software framework
developed and used by Google™ to support parallel distributed
execution of their data intensive applications. Google uses
this framework internally to execute thousands of MapReduce
applications per day, processing petabytes of data, all on commodity
hardware. Unlike other parallel computing frameworks, which
require application developers explicitly manage inter-process
communication, computation in MapReduce is divided into two
major phases called map and reduce, separated by an internal
shuffle phase of the intermediate results (Fig. 1), and the framework
automatically executes those functions in parallel over any number
of processors.

The map function computes key—value pairs from the input data,
based on any relationship applicable to the problem, including
computing multiple pairs from a single input. For example, the map
function of a program that counts the number of occurrences of
all length k substrings (k-mers) in a set of DNA sequences could
emit the key—value pair (k-mer, 1) for each k-mer. If the input is
large, many instances of the map function can execute in parallel
on different portions of the input and divide the running time by the
number of processors available. Once the mappers are complete,
MapReduce shuffles the pairs so all values with the same key are
grouped together into a single list. The grouping of key—value pairs
effectively creates a large distributed hash table indexed by the key,
with a list of values for each key. In the k-mer counter example,
the framework creates a list of 1s for each k-mer in the input,
corresponding to each instance of that k-mer. The reduce function
evaluates a user-defined function on each key—value list. The reduce
function can be arbitrarily complex, but must be commutative,
since the order of elements in the key—value list is unstable. In the
k-mer counting example, the reduce function is called once for each
k-mer with its associated list of 1s, and simply adds the 1s together
to compute the total number of occurrences for that k-mer. Each

instance of the reduce function executes independently, so there can
be as many reduce functions executing in parallel as there are distinct
keys, i.e. k-mers in the input.

As an optimization, MapReduce allows reduce-like functions
called combiners to execute in-memory immediately after the map
function. Combiners are not possible in every application because
they evaluate on a subset of the values for a given key, but when
possible, reduce the amount of data processed in the shuffle and
reduce phases. In the k-mer counting example, the combiner emits
a partial sum from the subset of 1s it evaluates, and the reduce
function sums over the list of partial sums.

Computations in MapReduce are independent, so the wall clock
running time should scale linearly with the number of processor
cores available, i.e. a 10-core execution should take 1/10th the time
of a 1-core execution creating a 10x speedup with complete parallel
efficiency. In practice, perfect linear speedup is difficult to achieve
because serial overhead limits the maximum speedup possible as
described by Amdahl’s law (Krishnaprasad, 2001). For example,
if an application has just 10% non-parallelizable overhead, then the
maximum possible end-to-end speedup is only 10x regardless of the
number of cores used. High speedup also requires the computation
is evenly divided over all processors to maximize the benefit of
parallel computation. Otherwise the wall clock running time will be
limited to the time for the longest running task, and reduce overall
efficiency. MapReduce tries to balance the workload by assigning
each reducer ~1/N of the total key space, where N is the number
of cores. If certain keys require substantially more time than others,
however, it may be necessary to rebalance the workload using a
custom partition function or adjusting how keys are emitted.

MapReduce is designed for computations with extremely large
datasets, far beyond what can be stored in RAM. Instead it uses
files for storing and transferring intermediate results, including the
inter-machine communication between map and reduce functions.
This could become a severe bottleneck, so Google developed the
robust distributed Google File System (GFS) (Ghemawat et al.,
2003) to efficiently support MapReduce. GFS is designed to provide
very high-bandwidth for MapReduce by replicating and partitioning
files across many physical disks. Files in the GFS are automatically
partitioned into large chunks (64 MB by default), which are
replicated to several physical disks (three by default) attached to the
compute nodes. Therefore, aggregate 1/0 performance can greatly
exceed the performance of an individual memory storage device
(e.g. a disk drive), and chunk redundancy ensures reliability even
when used with commodity drives with relatively high-failure rates.
MapReduce is also ‘data aware’: it attempts to schedule computation
at a compute node that has the required data instead of moving the
data across the network.

Hadoop and the Hadoop Distributed File System (HDFS) are
open source versions of MapReduce and the GFS implemented
in Java and sponsored by Amazon™, Yahoo™, Google, IBM™
and other major vendors. Like Google’s proprietary MapReduce
framework, applications developers need only write custom map
and reduce functions, and the Hadoop framework automatically
executes those functions in parallel. Hadoop and HDFS are used
to manage production clusters with 10000 +nodes and petabytes
of data, including computation supporting every Yahoo search
result. A Hadoop cluster of 910 commodity machines recently set
a performance record by sorting 1 TB of data (10 billion 100 bytes
records) in 209 s (http://www.hpl.hp.com/hosted/sortbenchmark/).
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In addition to in-house Hadoop usage, Hadoop is becoming a
de facto standard for cloud computing where compute resources
are accessed generically as a service, without regard for physical
location or specific configuration. The generic nature of cloud
computing allows resources to be purchased on-demand, especially
to augment local resources for specific large or time-critical tasks.
Several organizations offer cloud compute cycles that can be
accessed via Hadoop. Amazon’s Elastic Compute Cloud (EC2)
(http://aws.amazon.com) contains tens of thousands of virtual
machines, and supports Hadoop with minimal effort. In EC2, there
are five different classes of virtual machines available providing
different levels of CPU, RAM and disk resources with price ranging
from $0.10 to $0.80 per hour per virtual machine. Amazon offers
preconfigured disk images and launches scripts for initializing a
Hadoop cluster, and once initialized, users copy data into the newly
created HDFS and execute their jobs as if the cluster was dedicated
for their use. For very large datasets, the time required for the initial
data transfer can be substantial, and will depend on the bandwidth of
the cloud provider. Once transferred into the cloud, though, the cloud
nodes generally have very high-internode bandwidth. Furthermore,
Amazon has begun mirroring portions of Ensembl and GenBank for
use within EC2 without additional storage costs, thereby minimizing
the time and cost to run a large-scale analysis of these data.

1.2 Read mapping

After sequencing DNA, researchers often map the reads to a
reference genome to find the locations where each read occurs.
The read-mapping algorithm reports one or more alignments for
each read within a scoring threshold, commonly expressed as the
minimal acceptable significance of the alignment, or the maximum
acceptable number of differences between the read and the reference
genome. The algorithms generally allow 1-10% of the read length
to differ from the reference, although higher levels may be necessary
when aligning to more distantly related genomes, or when aligning
longer reads with higher error rates. Read-mapping algorithms can
allow mismatch (mutation) errors only, or they can allow insertion
or deletion (indel) errors, for both true genetic variations and
artificial sequencing errors. The number of mismatches between
a pair of sequences can be computed with a simple scan of
the sequences, whereas computing the edit distance (allowing for
indels) requires a more sophisticated algorithm such as the Smith—
Waterman sequence alignment algorithm (Smith et al., 1981), whose
runtime is proportional to the product of the sequence lengths. In
either case, the computation for a single pair of short sequences is
fast, but becomes costly as the number or size of sequences increases.

When aligning millions of reads generated from a next-generation
sequencing machine, read-mapping algorithms often use a technique
called seed-and-extend to accelerate the search for highly similar
alignments. This technique is based on the observation that there
must be a significant exact match for an alignment to be within the
scoring threshold. For example, for a 30 bp read to map to a reference
with only one difference, there must be at least 15 consecutive
bases, called a seed, that match exactly regardless of where the
difference occurs. In general, a full-length end-to-end alignment of
an m bp read with at most k differences must contain at least one
exact alignment of m/(k+1) consecutive bases (Baeza-yates et al.,
1992). Similar arguments can be made when designing spaced seeds
of non-consecutive bases to guarantee finding all alignments with

up to a certain numbers of errors (Lin er al., 2008). Spaced seeds
have the advantage of allowing longer seeds at the same level of
sensitivity, although multiple spaced seeds may be needed to reach
full sensitivity.

In all seed-and-extend algorithms, regions that do not contain any
matching seeds are filtered without further examination, since those
regions are guaranteed to not contain any high-quality alignments.
For example, BLAST uses a hash table of all fixed length k-mers
in the reference to find seeds, and a banded version of the Smith—
Waterman algorithm to compute high-scoring gapped alignments.
RMAP uses a hash table of non-overlapping k-mers of length
m/(k+1) in the reads to find seeds, while SOAP, MAQ and ZOOM
use spaced seeds. In the extension phase, RMAP, MAQ, SOAP and
ZOOM align the reads to allow up to a fixed number of mismatches,
and SOAP can alternatively allow for one continuous gap. Other
approaches to mapping include using suffix trees (Kurtz et al., 2004;
Schatz et al., 2007) to quickly find short exact alignments to seed
longer inexact alignments, and Bowtie (Langmead et al., 2009)
uses the Burrows—Wheeler transform (BWT), to find exact matches
coupled with a backtracking algorithm to allow for mismatches.
Some BWT-based aligners are reporting extremely fast runtimes,
especially in configurations that restrict the sensitivity of the
alignments or limit the number of alignments reported per read.
For example, in their default high-speed configuration, SOAP2
(http://soap.genomics.org.cn/), BWA (http://maq.sourceforge.net)
and Bowtie allow at most two differences in the beginning of the
read, and report a single alignment per read selected randomly
from the set of acceptable alignments. In more sensitive or
verbose configurations, the programs can be considerably slower
(http://bowtie-bio.sourceforge.net/manual.shtml).

After computing end-to-end alignments, some of these programs
use the edit distance or read quality values to score the mappings.
In a systematic study allowing up to 10 mismatches, Smith et al.
(2008) determined allowing more than two mismatches is necessary
for accurately mapping longer reads, and incorporating quality
values also improves accuracy. Several of these programs, including
RMAPQ (RMAP with quality), MAQ, ZOOM and Bowtie, use
quality values in their scoring algorithm, and all are more lenient of
errors in the low-quality 3’ ends of the reads by trimming the reads
or discounting low-quality errors.

Consecutive or spaced seeds dramatically accelerate the
computation by focusing computation to regions with potential to
have a high-quality alignment. However, to increase sensitivity the
length of the seeds must decrease (consecutive seeds) or the number
of seeds used must increase (spaced seeds). In either case, increasing
sensitivity increases the number of randomly matching seeds and
increases the total execution time. Decreasing the seed length can
be especially problematic because a seed of length s is expected to
occur ~ L/4% times in a reference of length L, and each occurrence
must be evaluated using the slower inexact alignment algorithm.
Therefore, many of the new short read mappers restrict the maximum
number of differences allowed, or limit the number of alignments
reported for each read.

2 ALGORITHM

CloudBurst is a MapReduce-based read-mapping algorithm
modeled after RMAP, but runs in parallel on multiple machines
with Hadoop. It is optimized for mapping many short reads
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Fig. 2. Overview of the CloudBurst algorithm. The map phase emits k-mers
as keys for every k-mer in the reference, and for all non-overlapping k-mers
in the reads. The shuffle phase groups together the k-mers shared between the
reads and the reference. The reduce phase extends the seeds into end-to-end
alignments allowing for a fixed number of mismatches or indels. Here, two
grey reference seeds are compared with a single read creating one alignment
with two errors and one alignment with zero errors, while the black shared
seed is extended to an alignment with three errors.

from next-generation sequencing machines to a reference genome
allowing for a user specified number of mismatches or differences.
Like RMAP, it is a seed-and-extend algorithm that indexes
the non-overlapping k-mers in the reads as seeds. The seed
size s=m/(k+1) is computed from the minimum length of
the reads (m) and the maximum number of differences or
mismatches (k). Like RMAP, it attempts to extend the exact
seeds to count the number of mismatches in an end-to-end
alignment using that seed, and reports alignments with at most
k mismatches. Alternatively, like BLAST, it can extend the
exact seed matches into end-to-end gapped alignments using
a dynamic programming algorithm. For this step, CloudBurst
uses a variation of the Landau—Vishkin k-difference alignment
algorithm (Landau et al., 1986), a dynamic programming algorithm
for aligning two strings with at most k differences in O(km)
time where m is the minimum length of the two strings. See
Gusfield’s (1997) classical text on sequence alignment for more
details.

As a MapReduce algorithm, CloudBurst is split into map, shuffle
and reduce phases (Fig. 2). The map function emits k-mers of
length s as seeds from the reads and reference sequences. The shufffle
phase groups together k-mers shared between the read and reference
sequences. Finally, the reduce function extends the shared seeds into
end-to-end alignments allowing both mismatches and indels. The
input to the application is a multi-fasta file containing the reads and
a multi-fasta file containing one or more reference sequences. These
files are first converted to binary Hadoop SequenceFiles and copied
into the HDFS. The DNA sequences are stored as the key—value pairs
(id, Seqlnfo), where Seqlnfo is the tuple (sequence, start_offset) and
sequence is the sequence of bases starting at the specified offset. By
default, the reference sequences are partitioned into chunks of 65
kb overlapping by 1 kb, but the overlap can be increased to support
reads longer than 1 kb.

2.1 Map: extract K-mers

The map function scans the input sequences and emits key—value
pairs (seed, MerInfo) where seed is a sequence of length s, and
MerlInfo is the tuple (id, position, isRef, isRC, left_flank, right_flank).
If the input sequence is a reference sequence, then a pair is emitted
for every k-mer in the sequence, with isRef = 1, isRC = 0, and
position set as the offset of the k-mer in the original sequence. If
the given input sequence is a read, then isRef = 0, and a pair is
emitted for the non-overlapping k-mers with appropriate position.
Seeds are also emitted for the non-overlapping k-mers of the reverse
complement sequence with isRC = 1. The flanking sequences [up to
(m — s + k) bp) are included in the fields left_flank and right_flank.
The seeds are represented with a 2 bit/bp encoding to represent
the four DNA characters (ACGT), while the flanking sequences
are represented with a 4 bit/bp encoding, which also allows for
representing an unknown base (N), and a separator character (.).

CloudBurst parallelizes execution by seed, so each reducer
evaluates all potential alignments for approximately 1/N of the 4%
seeds, where N is the number of reducers. Overall this balances the
workload well, and each reducer is assigned approximately the same
number of alignments and runs for approximately the same duration.
However, low-complexity seeds (defined as seeds composed of a
single DNA character) occur a disproportionate number of times in
the read and reference datasets, and the reducers assigned these high-
frequency seeds require substantially more execution time than the
others. Therefore, CloudBurst can rebalance low-complexity seeds
by emitting redundant copies of each occurrence in the reference and
randomly assigning occurrences in the reads to one of the redundant
copies. For example, if the redundancy is set to 4, each instance
of the seed AAAA in the reference will be redundantly emitted as
seeds AAAA-0, AAAA-1, AAAA-2 and AAAA-3, and each instance of
AAAA from the reads will be randomly assigned to seed AAAA-R
with 0<R <3. The total number of alignments considered will be
the same as if there were no redundant copies, but different subsets
of the alignments can be evaluated in parallel in different reducers,
and thus improve the overall load balance.

2.2 Shuffle: collect shared seeds

Once all mappers have completed, Hadoop shuffles the key—value
pairs, and groups all values with the same key into a single list. Since
the key is a k-mer from either the read or reference sequences, this
has the effect of cataloging seeds that are shared between the reads
and the reference.

2.3 Reduce: extend seeds

The reduce function extends the exact alignment seeds into longer
inexact alignments. For a given seed and Merlnfo list, it first
partitions the MerInfo tuples into the set R from the reference and
set O from the reads. Then it attempts to extend each pair of tuples
from the Cartesian product R x Q using either a scan of the flanking
bases to count mismatches, or the Landau—Vishkin k-difference
algorithm for gapped alignments. The evaluation proceeds block-
wise across subsets of R and Q to maximize cache reuse, and using
the bases flanking the shared seeds stored in the Merinfo tuples. If an
end-to-end alignment with at most k mismatches or k differences is
found, it is then checked to determine if it is a duplicate alignment.
This is necessary because multiple exact seeds may be present within
the same alignment. For example, a perfectly matching end-to-end
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alignment has k+1 exact seeds, and is computed k+ 1 times. If
another exact seed with smaller offset exists in the read the alignment
is filtered as a duplicate, otherwise the alignment is recorded. The
value for k is small, so only a small number of alignments are
discarded.

The output from CloudBurst is a set of binary files containing
every alignment of every read with at most k mismatches
or differences. These files can be converted into a standard
tab-delimited text file of the alignments using the same format as
RMAP or post-processed with the bundled tools.

2.4 Alignment filtration

In some circumstances, only the unambiguous best alignment for
each read is required, rather than the full catalog of all alignments. If
so, the alignments can be filtered to report the best alignment for each
read, meaning the one with the fewest mismatches or differences. If
aread has multiple best alignments, then no alignments are reported
exactly as implemented in RMAPM. The filtering is implemented as
asecond MapReduce algorithm run immediately after the alignments
are complete. The map function reemits the end-to-end alignments as
key—value pairs with the read identifier as the key and the alignment
information as the value. During the shuffle phase, all alignments
for a given read are grouped together. The reduce function scans the
list of alignments for each read and records the best alignment if an
unambiguous best alignment exists. As an optimization, the reducers
in the main alignment algorithm report the top two best alignments
for each read. Also, the filtration algorithm uses a combiner to filter
alignments in memory and reports just the top two best alignments
from its subset of alignments for a given read. These optimizations
improve performance without changing the results.

3 RESULTS

CloudBurst was evaluated in a variety of configurations for the
task of mapping random subsets of 7.06 million publicly available
[lumina/Solexa sequencing reads from the 1000 Genomes Project
(accession SRR0O01113) to portions of the human genome (NCBI
Build 36) allowing up to four mismatches. All reads were exactly
36 bp long. The test cluster has 12 compute nodes, each with a 32
bit dual core 3.2 GHz Intel Xeon (24 cores total) and 250 GB of
local disk space. The compute nodes were running RedHat Linux
AS Release 3 Update 4, and Hadoop 0.15.3 set to execute two tasks
per node (24 simultaneous tasks total). In the results below, the time
to convert and load the data into the HDFS is excluded, since this
time was the same for all tasks, and once loaded the data was reused
for multiple analyses.

The first test explored how CloudBurst scales as the number of
reads increases and as the sensitivity of the alignment increases.
In this test, sub-sets of the reads were mapped to the full human
genome (2.87 Gbp), chromosome 1 (247.2 Mbp) or chromosome 22
(49.7 Mbp). To improve load balance across the cores, the number
of mappers was set to 240, the number of reducers was set to
48, and the redundancy for low-complexity seeds was set to 16.
The redundancy setting was used because the low-complexity seeds
required substantially more running time than the other seeds (>1h
compared with <1 min), and the redundancy allows their alignments
to be processed in parallel in different reducers. Figure 3 shows the
running time of these tasks averaged over three runs, and shows
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Fig. 3. Evaluation of CloudBurst running time while scaling the number
of reads and sensitive for mapping to the (A) full human genome; (B)
chromosomes 1; and (C) 22 on the local cluster with 24 cores. Tinted
lines indicate timings allowing O (fastest) through four (slowest) mismatches
between a read and the reference. As the number of reads increases, the
running time increases linearly. As the number of allowed mismatches
increases, the running time increases superlinearly from the exponential
increase in seed instances. The four mismatch computation against the full
human genome failed to complete due to lack of available disk space after
reporting ~25 billion end-to-end alignments.

that CloudBurst scales linearly in execution time as the number
of reads increases, as expected. Aligning all 7M reads to the full
genome with four mismatches failed to complete after reporting
~25billion mappings due to lack of available disk space. Even
allowing zero mismatches created 771M end-to-end perfect matches
from the full 7M read set, but most other tools would report
just one match per read. Allowing more mismatches increases the
runtime superlinearly, because higher sensitivity requires shorter
seeds with more chance occurrences. The expected number of
occurrences of a seed length s in a sequence of length L is
(L —s+ 1)/4%, so a random 18 bp sequence (k=1) is expected to
occur ~0.04, ~0.003 and ~0.001 times in the full genome and
chromosomes 1 and 22, respectively, while a 7 bp sequence (k =4) is
expected to occur >17 500, >15 000 and >3000 times, respectively.
Consequently, short seeds have drastically more chance occurrences
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Fig. 4. CloudBurst running time compared with RMAP for 7M reads,
showing the speedup of CloudBurst running on 24 cores compared with
RMAP running on 1 core. As the number of allowed mismatches increases,
the relative overhead decreases allowing CloudBurst to meet and exceed
24 x linear speedup.

and correspondingly more running time even though most chance
occurrences will fail to extend into end-to-end matches.

The second test compared the performance CloudBurst on 24
processor cores with a serial execution of RMAPM (version 0.41)
on 1 core with the full read set to chromosomes 1 and 22. RMAP
requires a 64 bit operating system, so it was run on 1 core of a 64 bit
dual core 2.4 GHz AMD Opteron 250 with 8 GB of RAM running
RedHat Enterprise Linux AS Release 3 Update 9. CloudBurst was
configured as before, except with the alignment filtration option
enabled so only a single alignment was reported for each read
identical to those reported by RMAPM. Figure 4 shows the results
of the test, and plots the speedup of CloudBurst over RMAP for
the different levels of sensitivity. The expected speedup is 24,
since CloudBurst runs in parallel on 24 cores, but CloudBurst’s
speedup over RMAP varies between 2x and 33x depending on
the level of sensitivity and reference sequence. At low sensitivity
(especially £ =0), the overhead of shuffling and distributing the data
over the network overwhelms the parallel computation compared
with the in-memory lookup and evaluation in RMAP. As the
sensitivity increases, the overhead becomes proportionally less until
the time spent evaluating alignments in the reduce phase dominates
the running time. The speedup beyond 24x for high-sensitivity
mapping is due to implementation differences between RMAP and
CloudBurst, and the additional compute resources available in the
parallel environment (cache, disk 10, RAM, etc.). The speedup when
mapping to the full genome did not improve as the level of sensitivity
increased because of the increased overhead from the increased data
size. This effect can be minimized by aligning more reads to the
genome in a single batch, and thus better amortize the time spent
emitting and shuffling all of the k-mers in the genome.

The next experiment compared CloudBurst with an ad hoc
parallelization scheme for RMAP, in which the reads are split into
multiple files, and then RMAP is executed on each file. In the
experiment, the full read set was split into 24 files, each containing
294k reads, and each file was separately mapped to chromosome 22.
The runtimes were just for executing RMAP, and do not consider any
overhead of partitioning the files, remotely launching the program,
or monitoring the progress, and thus the expected speedup should
be a perfect 24x. However, the runtimes of the different files
varied considerably depending on which reads were present, and

the corresponding speedup is computed based on the runtime for
the longest running file: between 18 and 41s with a 12x speedup
for zero mismatches, 2667 s with a 14 x speedup for one mismatch,
34-98s with a 16x speedup for two mismatches, 132-290s with
a 21x speedup for three mismatches and 1379-1770s with a
29x speedup for four mismatches. The superlinear speedup for four
mismatches was because the total computation time after splitting
the read set was less than the time for the full batch at once,
presumably because of better cache performance for RMAP with
fewer reads. This experiment shows the ad hoc scheme works well
with speedups similar to CloudBurst, but fails to reach perfect linear
speedup in most cases because it makes no special considerations
for load balance. In addition, an ad hoc parallelization scheme is
more fragile as it would not benefit from the inherent advantages
of Hadoop: data-aware scheduling, monitoring and restart and the
high-performance file system.

4 AMAZON CLOUD RESULTS

CloudBurst was next evaluated on the Amazon EC2. This
environment provides unique opportunities for evaluating
CloudBurst, because the performance and size of the cluster are
configurable. The first test compared two different EC2 virtual
machine classes with the local dedicated 24-core Hadoop cluster
described above. In all three cases, the number of cores available
was held constant at 24, and the task was mapping all 7M reads to
human chromosome 22 with up to four mismatches, with runtimes
averaged over three runs. The first configuration had 24 ‘Small
Instance’ slaves running Hadoop 0.17.0, priced at $0.10 per hour
per instance and provides one virtual core with approximately
the performance of a 1.0-1.2 GHz 2007 Xeon processor. The
second configuration had 12 ‘High-CPU Medium Instance’ slaves,
also running Hadoop 0.17.0 and priced at $0.20 per hour per
instance, but offers two virtual cores per machine and have been
benchmarked to have a total performance approximately five times
the small instance type. The running time for the ‘High-CPU
Medium Instance’ class was 1667 s, and was substantially better per
dollar than the ‘Small Instance’ class at 3805 s, and even exceeds
the performance of the local dedicated cluster at 1921 s.

The final experiment evaluated CloudBurst as the size of the
cluster increases for a fixed problem. In this experiment, the number
of ‘High-CPU Medium Instance’ cores varied between 24, 48, 72
and 96 virtual cores for the task of mapping all 7M reads to human
chromosome 22. Figure 5 shows the running time with these clusters
averaged over three runs. The results show CloudBurst scales very
well as the number of cores increases: the 96-core cluster was 3.5
times faster than the 24-core cluster and reduced the running time of
the serial RMAP execution from > 14 h to ~8 min (> 100 x speedup).
The main limiting factor towards reaching perfect speedups in
the large clusters was that the load imbalance caused a minority
of the reducers running longer than the others. This effect was
partially solved by reconfiguring the parallelization settings: the
number of reducers was increased to 60 and the redundancy of the
low-complexity seeds was increased to 24 for the 48-core evaluation,
144 and 72 for the 72-core evaluation and 196 and 72 for the 96-core
evaluation. With these settings, the computation had better balance
across the virtual machines and decreased the wall clock time of the
execution.
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Fig. 5. Comparison of CloudBurst running time (in seconds) while scaling
size of the cluster for mapping 7M reads to human chromosome 22 with at
most four mismatches on the EC2 Cluster. The 96-core cluster is 3.5 faster
than the 24-core cluster.

5 DISCUSSION

CloudBurst is a new parallel read-mapping algorithm optimized for
next-generation sequence data. It uses seed-and-extend alignment
techniques modeled after RMAP to efficiently map reads with
any number of mismatches or differences. It uses the Hadoop
implementation of MapReduce to efficiently execute in parallel
on multiple compute nodes, thus making it feasible to perform
highly sensitive alignments on large read sets. The results described
here show CloudBurst scales linearly as the number of reads
increases, and with near linear parallel speedup as the size of
the cluster increases. This high level of performance enables
computation of extremely large numbers of highly sensitive
alignments in dramatically reduced time, and is complementary to
new BWT-based aligners that excel at quickly reporting a small
number of alignments per read.

CloudBurst’s superior performance is made possible by the
efficiency and power of Hadoop. This framework makes it
straightforward to create highly scalable applications with many
aspects of parallel computing automatically provided. Hadoop’s
ability to deliver high performance, even in the face of extremely
large datasets, is a perfect match for many problems in computational
biology. Seed-and-extend style algorithms, in particular, are a natural
fit for MapReduce, and any of the hash-table based seed-and-
extend alignment algorithms including BLAST, SOAP, MAQ or
ZOOM could be implemented with MapReduce. Future work for
CloudBurst is to incorporate quality values in the mapping and
scoring algorithms and to enhance support for paired reads. We
are also exploring the possibility of integrating CloudBurst into
RNA-seq analysis pipeline, which can also model gene splice sites.
Algorithms that do not use a hash table, such as the BWT based
short-read aligners, can also use Hadoop to parallelize execution
and the HDFS.

Implementing algorithms to run in parallel with Hadoop has many
advantages, including scalability, redundancy, automatic monitoring
and restart and high-performance distributed file access. In addition,
no single machine needs to have the entire index in memory,
and the computation requires only a single scan of the reference
and query files. Consequently, Hadoop based implementations of
other algorithms in computational biology might offer similar
high levels of performance. These massively parallel applications,

running on large compute clouds with thousands of nodes, will
drastically change the scale and scope of computational biology,
and allow researchers to cheaply perform analyses that are otherwise
impossible.
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