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Abstract

plasticity.

Background: RNA sequencing (RNA-seq) has revolutionized the detection of transcriptomic signatures due to its
high-throughput sequencing ability. Therefore, genomic annotations on different animal species have been rapidly
updated using information from tissue-enriched novel transcripts and novel exons.

Results: 34 putative novel transcripts and 236 putative tissue-enriched exons were identified using RNA-Seq
datasets representing six tissues available in mouse databases. RT-PCR results indicated that expression of 21 and 2
novel transcripts were enriched in testes and liver, respectively, while 31 of the 39 selected novel exons were
detected in the testes or heart. The novel isoforms containing the identified novel exons exhibited more dominant
expression than the known isoforms in heart and testes. We also identified an example of pathology-associated
exclusion of heart-enriched novel exons such as Sorbs1 and Cluh during pressure-overload cardiac hypertrophy.

Conclusion: The present study depicted tissue-enriched novel transcripts, a tissue-specific isoform switch, and
pathology-associated alternative splicing in a mouse model, suggesting tissue-specific genomic diversity and
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Background

Information on the spatial and temporal signatures of
transcriptomes is essential for diagnosis and treatment
of severe diseases such as cardiomyopathies and malignant
cancers. For the past several decades, high-throughput
(HTP) data generated using the microarray method have
contributed significantly to the discovery of quantitative
signatures of various diseases. However, the microarray
method has critical limitations, such as spatial bias,
uneven probe problems, low sensitivity, and dependency
on the probes spotted. Therefore, large-scale transcrip-
tomic analyses using the microarray method have been
superseded by the RNA-Seq generated through applica-
tion of the recently developed next-generation sequencing
(NGS) method.

RNA-Seq is a revolutionary method useful for tran-
scriptomic signatures, since it can elucidate both quanti-
tative and qualitative signatures (e.g., alternative splicing,
AS) by de novo analysis, and it has therefore made
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possible the large-scale discovery of novel transcripts,
such as noncoding RNAs. AS is an important event for
proteome complexity and proteome diversity. However,
current approaches using microarray or serial analysis of
gene expression (SAGE) tags have faced limitations,
such as probe dependency and low coverage. The
robust sequencing capacity of RNA-Seq has dramati-
cally increased our knowledge of dynamic alternation
via AS. For instance, RNA-seq has revealed the
subtype-specific novel isoforms for the most common
breast cancers (e.g. triple negative breast cancer
(TNBC), non-TNBC, and human epidermal growth
factor receptor 2 (HER2)-positive breast cancer [1]).
Information related to novel exons, recognized in the
intronic regions, has rapidly increased owing to RNA-
Seq [2-4]. De novo analyses of RNA-Seq datasets have
rapidly updated the genome annotations of different
species through examination of novel transcripts [5-7].
Furthermore, the detection of novel non-coding RNAs by
RNA-Seq has identified them as important functional
molecules regulating various biological processes [8-10].
The present study employed RNA-seq data to identify
novel exons and novel transcripts enriched in different
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tissues in mice (here “novel” means “new” exons or “new”
transcripts not identified in mice so far), leading to the
discovery of novel transcripts expressed in testes or liver,
and recognition that the novel isoforms containing the
novel exons were dominantly expressed in testes or heart.
These results should contribute to a more sophisticated
annotation of the mouse genome, as well as improved
understanding of tissue-specific gene regulation.

Results and Discussion

In silico analysis of tissue-enriched novel transcripts and
exons

In order to identify tissue-enriched novel transcripts and
exons in mice, the RNA-seq datasets for six tissues (i.e.,
GSE30352 for brain, cerebrum, heart, kidney, liver and
testes) [11] were analyzed using the pipeline ‘Tophat-
Cufflinks-Cuffcompare’ [12,13]. As a result, 76,250 and
77,784 transcribed loci were constructed using UCSC
and ENSEMBL, respectively. Among the transcribed loci,
184 transcripts located in the intergenic region were
collected as putative novel transcripts (Additional file 1:
Table S1). From this list of putative novel transcripts,
we further examined the tissue-enriched transcripts
using DESeq [14]. Novel transcripts exhibiting signifi-
cant enrichment (P<0.05) in the specific tissue were
eventually defined as tissue-enriched novel transcripts.
As a result, 32 and 2 novel transcripts were found to be
significantly enriched in testes and liver, respectively
(Table 1).

In addition to the novel transcripts, we examined
the tissue-enriched novel exons for known genes and
the novel junctions for the obtained de novo tran-
scripts. In total, 5,582 novel exons were identified
from 6 tissues (Additional file 2: Table S2). To exam-
ine tissue-enrichment of the novel exons, the read
numbers for the novel exons were counted and com-
pared across the 6 tissues in a pairwise manner using
DESeq. Of the 236 novel exons evaluated, 197 were
expressed in testes (Additional file 2: Table S2), which
was consistent with a study by Howald et al repor-
ting that these novel transcripts are mainly identified
in the testes of humans [15].

Experimental confirmation of testes- and liver-enriched
novel transcripts

Enrichment of the putative novel transcripts in testes
and liver was further examined experimentally using
mouse heart, testes, liver, kidney, brain and lung tissues
by qRT-PCR and RT-PCR, to determine the expression
levels and patterns. Among the 32 testes- and 2 liver-
enriched novel transcripts (32 tNT and 2 INT), enrichment
of 21 tNTs and 2 INTs were experimentally confirmed
(Figure 1). We were unable to detect 11 tNTs, including
tNT-5, -31, and -32, by RT-PCR. Although highly specific
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expression of tNT-13 was found in testes using qRT-PCR,
we could not detect the expression using RT-PCR, which
may have been due to low expression levels.

Expression levels of tNTs and INTs were generally
enriched in testes and liver (e.g. 8.3—1,328-fold higher
than in the brain). However, the most specific expression
in testes was observed in tNT-2 (1,328-3,502 fold higher
than other tissues), a homolog to Slc9c2, which is a
human Na'/H" exchanger. tNT-7 was the most abun-
dantly expressed of the tNTs (Figure 1B). No expressed
sequence tag (EST) for tNT-7 has been reported to date,
however, it is predicted to be homologous to cysteine-
rich secretory protein (CRISP) involved in sperm-egg
fusion [16]. Most of the tNTs encoding proteins with
MW values ranging from 6—389 kDa exhibited a broad
range of similarity (19-100%) between the species
(Table 1). Despite the absence of a matched mouse gene
or EST, tNT-1 was identical to the predicted protein
model, XP_001475034.3, and shared high sequence iden-
tity with rat Slco6d1 (~80%), suggesting that it may func-
tion as an ion transporter in testes. tNT-18 seems to
encode a protein identical to NP001028651.1 encoded
by Gm1516 in chromosome 3. tNT-18 is located 3Mbps
away from Gmli516 in chromosome 3, indicating that
Gm1516 and tNT-18 are paralogs encoding the same
protein sequence.

Many of these novel transcripts are predicted to
encode functional domains or highly homologous
proteins in other species, as well (Table 1). Con-
versely, two testes-enriched novel transcripts (tNT-10
and -22) likely represented noncoding transcripts. Non-
coding transcripts are also important regulatory molecules
involved in diverse processes such as gene-specific
transcription [17], regulation of basal transcriptional
machinery [18], splicing [19], and translation [20]. The
in-depth functional characterization of the confirmed
testes- and liver-enriched novel transcripts is expected
to lead to important information regarding tissue-
specific gene regulation.

Experimental confirmation of testes-enriched novel exons
Among 197 testis-enriched novel exons, 26 novel exons
were selected for experimental validation, on the basis of
their read number (expression level), easiness of primer
design, and straightforward exon structures. Among the
26 testes-enriched novel exons (hereafter, tNE), the strong
enrichment of 24 tNEs in testes was confirmed by qRT-
PCR and RT-PCR (Figure 2A and B). tNE-17 of Ms4a5
was the most abundantly and specifically expressed in
testes, whereas tNE-6 was barely expressed in testis.
tNE-1, -13, -15 and -22 were strongly expressed in
testes, whereas little or no expression was observed in
other tissues. Multiple novel exons were identified for
Eya4 (tNE-2, -12 and -26), Fam71d (tNE-4, -5 and -7)
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Table 1 Summary of novel exons
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ID Position (mm?9) # of exons Tissue p-value min' p-value max?> Homologous protein Non-mouse gene EST
tNT-1 chr1:99242925-99375659 + 13 Testis  2.82E-10 2.38E-06 XP_001475034.3 Slc06d1 -
tNT-2  chr1:163105753-163167403  + 18 Testis 217807 0.000138 XP_3441664 Slc9c2 -
tNT-3 chr1:121786157-121796422 - 5 Testis  0.000605 0.0083 NP_001102853 - -
tNT-4  chr10:86118523-86133752 + 9 Testis  6.79E-07 6.28E-05 XP_487135.3 - -
tNT-5  chr10:85157135-85173678 - 10 Testis  4.18E-05 0.002125 XP_896558.3 - -
tNT-6  chr10:85989049-86004244 -9 Testis  2.73E-07 9.99E-06 XP_896769.1 - -
tNT-7  chr10:111578812-111597369 - 6 Testis  1.13E-06 0.000297 XP_001480681.1 - -
tNT-8  chr13:56527964-56535585 + Testis  1.49E-08 1.44E-05 XP_001475551 RGD1562024 O
tNT-9  chr13:97569388-97679749 + 17 Testis ~ 3.30E-08 2.86E-06 XP_005065555 Ankrd31 o)
tNT-10  chr15:25984096-25992242 -5 Testis ~ 0.000857 0.014133 - - O
tNT-11  chr15:76363652-76365439 - 5 Testis  1.13E-08 545E-05 XP_988010.2 Tmem?249 0
tNT-12 chr18:13666918-13682257 + 5 Testis  0.000183 0.005416 YP_480919 - -
tNT-13  chr18:32317886-32322406 -5 Testis  444E-07 0.000236 WP_005016571 - o)
tNT-14  chr18:32617748-32622397 - 8 Testis ~ 0.000202 0.014407 ELW62217 - O
tNT-15  chr19:40823242-40903550 + 22 Testis  4.82E-08 0.001078 XP_004749675 - o)
tNT-16  chr2:170290671-170296220 - 5 Testis  4.46E-08 0.000182 XP_004246409 - O
tNT-17  chr2:173112853-173116672 - 5 Testis  1.93E-06 0.00039 YP_003981506 - O
tNT-18  chr3:31543868-31589424 - 14 Testis  1.07E-07 6.66E-05 NP_001028651.1 - -
tNT-19  chr5:28278582-28303869 + 6 Testis  641E-11 1.92E-06 XP_003085546 - -
tNT-20  chr5:129869449-129872910 + 5 Testis  9.84E-09 2.13E-05 YP_001641156 - O
tNT-21  chr5:117435484-117468048 - 5 Testis ~ 0.000816 0.017383 XP_001524870.1 - o)
tNT-22  chr6:16406558-16419928 - 6 Testis  7.12E-05 0.00307 - - O
tNT-23  chr6:44030493-44033356 -5 Testis  0.001282 0.018015 - - O
tNT-24  chr7:120126477-120132935  + 5 Testis  0.004419 0.041732 EGV91268 - @)
tNT-25 chr7:127696533-127711472  + 5 Testis ~ 7.17E-05 0.002835 EDL17209.1 - O
tNT-26  chr7:36029889-36060558 - 10 Testis  1.14E-08 4.01E-06 XP_001480194 WDR88 -
tNT-27  chr8:74348600-74377254 - n Testis  9.06E-06 0.001105 EDL28738 - o)
tNT-28  chrx:98891146-98901100 + 5 Testis ~ 0.00037 0.034496 XP_005095122 -

tNT-29  chrX:43597928-43606686 -5 Testis  1.97E-10 1.94E-06 - - -
tNT-30  chr12:44067864-44135252 - 5 Testis  0.002254 0.017821 EDL38698.1 -

tNT-31  chr17:14128560-14192168 - 6 Testis  6.01E-11 4.13E-06 EDL20486.1 - -
tNT-32  chr17:21191727-21199635 - 6 Testis  7.30E-11 3.14E-06 EDL20488.1 - O
INT-1 chr10:111026064-111048582 + 5 Liver 1.19E-05 0.021035 EDL21734.1 - 0]
INT-2  chr12:73709901-73729881 - 6 Liver 4.69E-06 0.009759 XP_003512062.1 Dhrc7 O

?Indicate the minimum and maximum p-values, respectively, when the expression of novel transcripts in testis compared to other tissues in a pairwise manner.

and Pkm?2 (tNE-10 and -21). We further examined the
expression of the genes containing tNEs to determine
whether the expression was due to testes-specific genes.
Results indicated that most of the genes containing tNEs
were ubiquitously expressed in different tissues (Figure 2C
and D). However, the expressions of genes such as Skp2,
Eya4, Scamp2, and Zfp385a were significantly lower in
testes than in the brain (Figure 2D), despite strong expres-
sion of the tNEs (ie., tNE-2, -3, -9, =12, —18 and -26) in
testes, while the strong expressions of tNEs of Fam?71d,

Ms4a5 and 1700025F22Rik were assumed to be due to the
testis-specific expression of the genes.

We hypothesized that the insertion of novel exons
could produce new UTRs or protein variants, as listed in
Table 2. More than half of the testes-enriched novel
exons (n =112, 56.8%) were identified as alternative 5'-
UTRs that would likely result in the differential regula-
tion of transcription or translation in testes. Several
studies have demonstrated that testes-specific 5'-UTRs
include regulatory elements, such as the upstream open
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Figure 1 Testes- and liver-enriched expression of the novel transcripts. The expressions of testes- and liver-enriched novel transcripts were
experimentally confirmed by (A) RT-PCR and (B) gRT-PCR for 6 tissues (H: Heart, T: Testes, Lv: Liver, K: Kidney, B: Brain, Lu: Lung). tINT and INT
indicate testes- and liver-enriched novel transcripts, respectively. tNTs and INTs with blue and orange circles, respectively, were experimentally
confirmed by both RT-PCR and gRT-PCR experiments. Values on the X axis indicate the relative expression of tNTs and INTs in testes and liver,
respectively, compared to the expressions in brain (log10(2-244Ct)). The values on the Y axis indicate the relative expression of the novel
transcripts when compared to the expressions of 18S in testes (log10(2-2Ct)).
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reading frames (uORFs), for translational regulation
[21-23]. We also found that testes-enriched novel 5'-
UTRs have abundant uORFs (n =56, 50%) with some of
197 novel exons in the testes, suggesting a testes-specific
regulatory role in translation. For example, more than 5
uORFs were found to be the testis-enriched 5'-UTRs of
Nt5¢2, Lrre8b, Mlitll, Mphosph9, KdmS5b, Procal, and
5730559C18Rik in 197 testis-enriched novel exons. Ad-
ditionally, the inclusion of tNE-2, 3, 20 and 21 of Eya4,
Skp2, Higdla and Pkm2 could contribute to the 5'UTRs
forming G-quadruplex, which is involved in translational
control [24].

Insertions of tNEs may lead to dramatic changes in pro-
tein expression. (Example 1) The C-terminal truncation
(~50%) of MS4A5 is related to the insertion of tNE-17.
MS4A5 is known to have four membrane-spanning
domains [25], but insertion of tNE-17 results in the loss of
two domains. (Example 2) Prediction by ¢cNLS mapper
[26] suggests that the novel isoform of EFR3A lacks the
C-terminal 131 residue sequence containing one of the
nuclear localization signals (NLSs). It is also possible
that tNE-13 plays an important role in the regulation
of EFR3A localization in testes [27]. (Example 3) For

tNE-11 belonging to Vapa, two variants showing a 9-bp
difference were identified by Cufflinks (Additional file 3:
Figure S1A) and were predicted to encode 38-41 ad-
ditional amino acids, GKTPPGIASTVASLSSVSSAVATP
ASYHLKNDPRELKE (VKQ). Interestingly, it is likely that
this sequence contributes to the membrane-spanning re-
gion in a testes-specific manner by the prediction using
TopPred [27] (Additional file 3: Figure S1B). The function
of VAPA in neurons is known to be associated with ER
and microtubules [28], and tNE-11 might confer testes-
specific functions via the membrane-spanning region.
Collectively, these data suggest that the testes-enriched novel
exons could be involved in dramatic structural changes.

Experimental confirmation of the heart-specific

novel exons

Among 26 heart-enriched novel exons, 13 novel exons
(hereafter, hNE) were selected for experimental validation,
on the basis of their read number (expression level), easi-
ness of primer design, and straightforward exon structures
and the enrichment of 10 hNEs in heart was experi-
mentally confirmed by qRT-PCR and RT-PCR (Figure 3C
and D). Most hNEs were strongly expressed in the
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Figure 2 Testes-enriched novel exons. The expressions of testes-enriched novel exons (tNEs) were experimentally confirmed by (A) RT-PCR
and (B) gRT-PCR. Blue circles indicate the tNEs confirmed by RT-PCR. The expression levels of the genes containing tNEs were measured by
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heart, except for hNE-1 and -9. Multiple novel exons (i.e.,
hNE-2, -5 and -6) were identified in Mylk4 and predicted
to produce a different 5'UTR with slightly different N-
terminal regions. Similar to the tNEs, the alternative 5'-
UTRs containing 1-2 uORFs were observed in the hNEs
for Cluh, Mylk4, Schipl, Larp5, and Nexn, suggesting
heart-specific post-transcriptional regulation.

Among the variants identified, hNE-8 of Trdn is likely
to result in truncation of the C-terminal region. A total

of six isoforms were identified for Trdn, and their esti-
mated sizes were approximately 1.3, 4.3, and 5 kb in the
heart, and 5, 5.5, and 7 kb in skeletal muscle [29]. In
addition, hNE-8 was specifically expressed in the heart
and inserted in the transcripts expressed in skeletal
muscle, which could result in the C-terminus-truncated
TRDN. Based on analysis of data using Cufflinks, the
relative expression of the isoform containing hNE-8 was
predicted to be considerably lower than the known
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Table 2 Summary of testis or heart-enriched novel exons
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ID Gene Position (mm?9) Length Protein Prediction’

hNE-1 Cluh chr11:74467029-74467303 275 + Q55W19 38 AA shorter

hNE-2 Mylk4 chr13:32820204-32820624 421 - Q5S5UV5

hNE-3 Clasp1 chr1:120451862-120451963 102 +

hNE-4 Schip1 chr3:68388089-68388346 258 + Q3T153 27 AA different

hNE-5 Mylk4 chr13:32868030-32868501 472 + Q5SUV5 85 AA different

hNE-6 Mylk4 chr13:32818712-32819001 290 + Q5SUV5

hNE-7 Clasp1 chr1:120378050-120378669 620 +

hNE-8 Trdn chr10:33086092-33087214 1123 + Same as 51 kDa skeletal Trdn
hNE-9 Sorbs1 chr19:40452144-40452869 726 - Q62417 241 AA longer
hNE-10 Csdel chr3:102840498-102840644 147 + Q91W50 46 AA longer

hNE-11 Larp5 chr13:9127241-9130370 3130 Q8ouQ3 105 AA longer
hNE-12 Nedd5| chr18:65243095-65244448 1354 +

hNE-13 Nexn chr3:151927873-151928180 308 - Q7TPW1

tNE-1 Lrrc8b chr5:105881814-105883128 1315 + Q5DU41 Different 5'UTR

tNE-2 Eya4 chr10:22905057-22905389 333 - Q97191 Different 5'UTR

tNE-3 Skp2 chr15:9082539-9082780 242 - Q97073 Different 5'UTR

INE-4 Fam71d chr12:79824797-79824939 143 + D3YV92 26 shorter AA, different C term
tNE-5 Fam71d chr12:79796826-79797030 205 + D3YV92 Different 5'UTR

tNE-6 Rfx1 chr8:86608465-86608794 330 +

tNE-7 Fam71d chr12:79823117-79823280 164 + D3YV92

tNE-8 Pfkm chr15:97925522-97925641 120 + QiLzLy 70 AA longer

tNE-9 Scamp2 chr9:57426081-57426209 129 + Q9ERNO 44 AA longer

tNE-10 Pkm?2 chr9:59510847-59510963 117 + P52480 Different 5'UTR
tNE-11 Vapa chr17:65936384-65936506 123 - Q9WV55 41 AA longer

tNE-12 Eya4 chr10:22903219-22903421 203 - Q97191 Different 5'UTR
tNE-13 Efr3a chr15:65696232-65696453 222 + Q8BG67 131 AA shorter (C-term)
tNE-14 1700001CO2Rik chr5:30779031-30779154 124 + Q9DAS2 N-term 15 AA

tNE-15 Mtmré chr14:60909543-60909656 114 + Q8VEN 38 AA longer

tNE-16 Mbtd1 chr11:93800835-93801026 192 +

tNE-17 Ms4a5 chr19:11352451-11352587 137 - Q810P8 C-term 97 AA shorter
tNE-18 /fp385a chr15:103151501-103151619 119 - Q8VD12 N-term 50 AA shorter
tNE-19 1700025F22Rik chr19:11233536-11233685 150 - Q6P8I0 56 AA longer

tNE-20 Higd1a chr9:121765839-121765990 152 - Q9JLR9 Different 5'UTR
tNE-21 Pkm?2 chr9:59506806-59506960 155 + P52480 Different 5'UTR
tNE-22 Dnahc2 chr11:69331069-69331230 162 - QoP225 54 AA longer

tNE-23 1700006A11Rik chr3:124105142-124105398 257 - BOEHI3 71 AA longer (C-term)
tNE-24 Zfand6 chr7:91790796-91790947 152 - QIDCH6 Different 5'UTR
tNE-25 Pcbp2 chr15:102303428-102303532 105 + Q61990 Different 5'UTR
tNE-26 Eya4 chr10:22902544-22902630 87 - Q97191 31 AA shorter

'Changes of amino acid sequences and UTRs due to insertions of novel exons were predicted using the free software ‘Translate’ provided by ExPASy [39].

cardiac-specific isoforms (Additional file 4), suggesting a

restricted role for hNE-8 of Trdn in the heart.

Several dramatic changes were predicted in the case
of Sorbsl variants containing hNE-9. This predicted

additional exon was highly enriched in proline resi-
dues such as PPPAPPPDPP, PPCLPFP, PKPYIPPSTP, and
PSLPTPTSVP. Proline-rich residues was known to be im-
portant for binding the SH3 domains in signaling cascades
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[30,31], therefore it suggested the insertion of hNE-9
might be involved in the regulation of signaling cascade in
a heart-specific manner. At present, seven known isoforms
of Sorbs1 have been identified [32-34] and hNE-9 is novel
and appears highly enriched in the heart. Additionally,
data suggested that hNE-10 from Csdel likely encoded a
serine-rich region consisting of 46 additional residues
(MENMLTVSSDPQPTPAAPPSLSLPLSSSSTSSWTKKQK
RTPTYQRS). Interestingly, Ser-32 and Thr-34 of hNE-10
were predicted to be phosphorylated by PKC according to
NetPhosK [35], suggesting heart-specific signal regulation.

Alternative splicing patterns of the novel isoforms
containing the novel exons

We then compared the expression levels of the novel
isoforms containing the novel exons to those of the
known isoforms. As seen in Figure 4, at least 10 novel
isoforms exhibited dominant expression when compared
with the previously known isoforms in the heart or
testes. More than 90% of the expressions of Scamp?2,
Vapa, Zfp385a, 1700001CO02Rik, Fam71d, 1700025F22Rik,
and Mtmr6 were identified in the novel isoforms in
testes, suggesting testes-specific roles of the isoforms.
For Mtmr6, a recent study reported that the testes-
specific MTMR6 protein had a slightly higher molecular

weight than the known protein, but the similar portions of
the novel and known isoforms were observed at a protein
level [36].

Conversely, the novel isoforms for Pkm2, Ms4a5, Pfkm,
and Skp2 were expressed at relatively low levels in
the testes. Unexpected isoforms were observed in Zfp385a,
1700001CO02Rik, Fam71d, Mtmr6, and Zfand6, implying
incomplete coverage in spite of the high-resolution of
NGS. However, the rapidly accumulating datasets will help
complete a mouse gene annotation.

Expressional changes of heart-specific novel exons during
cardiac hypertrophy

For the identified hNEs, we investigated the alternative
splicing patterns occurring during cardiac hypertrophy
induced by transverse aortic constriction (TAC). The num-
ber of reads mapped to all exons, including hNEs, were
calculated using our RNA-Seq dataset (E-MTAB-727) on
cardiac hypertrophy [37], and the differential expression
levels of hNEs were identified using DEXSeq [38]. Two
differentially expressed hNEs (hNE-1 and -9 for Cluh and
Sorbsl, respectively) were obtained (p <0.05) (Additional
file 5: Table S3) from the analysis. As seen in Figure 5A,
the expression of Cluh was significantly decreased
by ~36% (p=0.015), while the expression of hNE-1
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decreased by ~65% during cardiac hypertrophy (p =
0.007), indicating that hNE-1 in Cluh was alternatively
spliced during cardiac hypertrophy (gene vs. hNE-1 in
TAC, p=0.046). Cufflinks analysis (Additional file 6:
Figure S3) indicated that the portion of the novel iso-
form containing hNE-1 represented approximately 33% of
the expression of Cluh in the heart, and that the predicted
protein derived from the isoform was 38 residues shorter
than the known isoform. The expression of the heart-
specific minor isoform containing hNE-1 was thought to
be down-regulated during cardiac hypertrophy.

The expression of hNE-9 in SorbsI was also signifi-
cantly decreased during cardiac hypertrophy. While the
expression of Sorbsl gene was not changed (p =0.34),
the expression of hNE-9 was significantly decreased
by ~36% (p = 0.037) (Figure 5B). Thus, hNE-9 was thought
to be excluded during cardiac hypertrophy suggesting a
disease-related function associated with hNE-9 in the
heart. Therefore, we examined the relationship between
cardiac hypertrophy and hNEs, and further experimen-
tally validated the significant exclusion of hNE-1 and -9
of Cluh and Sorbsl during TAC-induced cardiac hy-
pertrophy. As no changes were indicated in exercise-

induced cardiac hypertrophy (Table S3), we concluded
that the exclusion of these exons could be related to
pathology of the heart.

Conclusions

The results of this study will contribute to updating
mouse gene annotation through the identification of
specific tissue-enriched novel transcripts and novel
exons. Tissue-specific isoform switches mediated by
novel exons could provide important insights into the
tissue-specific roles of the novel exons. The exclusion of
the hNEs during cardiac hypertrophy also suggested
sensitivity of the novel exons to pathological status. Our
findings emphasize the necessity of this approach to
identify tissue-specific novel transcripts and exons.

Methods

Ethics Statement

All animal experiments and animal ethics were approved
by the GIST Institutional Animal Care and Use Commit-
tee (IACUC) (Permit number: GIST-2013-22).
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Identification of novel transcripts and exons

‘Tophat-Cufflinks-Cuffompare’ pipeline was used to
identify novel transcripts and exons. Fastq files for six
mouse tissues (brain, cerebrum, kidney, heart, liver and
testis) in GSE30352 were downloaded and the reads
were further aligned to mouse genome (UCSC mm9 ver-
sion) using ‘Tophat’. Using resultant Bam files, de novo
assembly was performed to construct the transcripts
using ‘Cufflinks’. All transcripts were then compared to
the predefined gene annotations such as UCSC and
ENSEMBL using ‘Cuffcompare’. To identify the novel
transcripts, we collected the transcripts located in inter-
genic region and classified as “unknown” in both UCSC
and ENSEMBL as putative novel transcripts. In case of
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novel exons, we searched the consecutive novel junc-
tions in-between the known neighbouring exons, thereby
deduced the novel exons spanning the novel junctions.

Tissue-specificity of novel transcripts and exons

Numbers of the reads for the novel transcripts and exons
were counted for heart, testis, liver, kidney, cerebrum and
brain using HTSeq [39]. Multiple tests for the novel tran-
scripts and exons were performed for a specific tissue vs.
remaining tissues using DESeq and DEXSeq [14,38],
respectively, in a pairwise manner. The novel transcripts
and exons significantly enriched in a specific tissue
compared to all other tissues (p < 0.05) were collected.

Alternative splicing of heart-enriched novel exons during
cardiac hypertrophy

Differential expression of the heart-enriched novel exons
during cardiac hypertrophy were analysed using “Tophat-
HTSeq-DEXSeq’ pipeline. Fastq files of previously re-
ported RNA-Seq datasets on TAC-induced cardiac
hypertrophy were aligned to mouse genome (UCSC mm9
version) using Tophat [12]. Number of the reads mapped
onto the genes containing the heart-enriched novel exons
were counted using HTSeq. Then, the differential expres-
sion of the heart-enriched exons during cardiac hyper-
trophy were analysed using DEXSeq (p < 0.05).

Transverse aortic constriction operation

Cardiac hypertrophy was induced by TAC operation
under anesthesia with intraperitoneal injection of aver-
tin, 2-2-2 tribromoethanol (Sigma, St. Louis, MO)
dissolved in tert-amyl alcohol (Sigma, St. Louis, MO).
The procedure of operation was followed as previously
described [37]. As a control group, sham operation
(same procedure except for tying) was done. 1 week after
operation, mice were sacrificed, and hearts were
removed, and then stored in deep freezer at -80°C before
RNA extraction.

Tissue preparation and RNA isolation

Adult (8 weeks old) C57BL6 mouse heart, testes, liver,
kidney, brain and lung were snap frozen in liquid nitro-
gen, stores at -80°C, and homogenized in liquid nitrogen
using a mortar and pestle. Approximately 450-700 mg
of grinded whole mouse heart was used for extraction
of total RNA with 1 ml Trizol Reagent® (Invitrogen,
Carlsbad, CA) following the manufacturer’s instructions.

RT-PCR and qRT-PCR

First-strand ¢cDNA was synthesized from 2 pg of total
RNA with Random hexamer using Omniscript® reverse
transcription (Qiagen, Valencia, CA) according to the
manufacturer’s instruction. Briefly, qRT-PCR assays were
performed using TOPreal™ qPCR premix (Enzynomics,
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Korea) under the following two-step conditions: dena-
turation at 95°C for 15 seconds followed by annealing
and extension at 60°C for 40 seconds, for a total of 40 -
cycles. The 18S transcript was used as an endogenous
reference to assess the relative level of mRNA transcript.
RT-PCR assays were performed on a ABI thermal cycler
TP600 (TaKaRa, Japan) using nTag-HOT DNA polyme-
rase (Enzynomics, Daejeon, South Korea) under the
following 3 step conditions: denaturation at 94°C for
30s, annealing at 55-60°C for 30s and extension at 72°C
for 40s with total 35-37 cycles. All primer pairs are
listed in Additional file 7: Table S4.

Availability

GSE30352 and E-MTAB-727 are publicly available in
the Gene Expression Omnibus (GEO) and European
Nucleotide Archive (ENA) databases, respectively.

Additional files

Additional file 1: Table S1. Tissue-specific novel transcripts. Detailed
information on 184 novel transcripts are listed. The novel transcripts
were identified by the pipeline of Tophat-Cufflinks-Cuffcompare’.
Multiple isoforms transcribed from the same transcribed loci are in
the list.

Additional file 2: Table S2. List for the number of novel exons for the
6 tissues.

Additional file 3: Figure S1. Structure of Vapa (A) Structures of Vapa
and magnified image for the isoforms were illustrated using UCSC
Genome browser (B) Predicted hydrophobicity of the novel exon of Vapa
suggest the membrane spanning ability. TopPred was applied to predict
hydrophobicity.

Additional file 4: Figure S2. Expression level of hNE-9 estimated by
Cufflinks.

Additional file 5: Table S3. Expression levels of heart-specific novel
exons (hNEs) during cardiac hypertrophy. Alternative splicing of hNEs
during either transverse aortic constriction (TAC) or exercise-induced
cardiac hypertrophy was determined using DEXSeq.

Additional file 6: Figure S3. Relative expression levels of the isoforms
for Cluh and Sorbs1 in heart. Relative expression levels of the isoforms
were measured by FPKM of Cufflinks. Green bars indicate the expression
levels of the isoforms containing novel exons.

Additional file 7: Table S4. Primers used.
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