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Inflammasomes are protein complexes in the innate immune system that regulate the pro-
duction of pro-inflammatory cytokines and inflammatory cell death. Inflammasome activa-
tion and subsequent cell death often occur within minutes to an hour, so the pathway
must be dynamically controlled to prevent excessive inflammation and the development
of inflammatory diseases. Phosphorylation is a fundamental post-translational modifica-
tion that allows rapid control over protein function and the phosphorylation of inflamma-
some proteins has emerged as a key regulatory step in inflammasome activation.
Phosphorylation of inflammasome sensor and adapter proteins regulates their inter- and
intra-molecular interactions, subcellular localisation, and function. The control of inflam-
masome phosphorylation may thus provide a new strategy for the development of anti-
inflammatory therapeutics. Herein we describe the current knowledge of how phosphoryl-
ation operates as a critical switch for inflammasome signalling.

Introduction
Over the past two decades, cytosolic protein complexes called inflammasomes have emerged as central
mediators of inflammation [1,2]. Inflammasomes are formed by sensor proteins, notably including
members of the Nod-like receptor family (NLRs), the adapter Apoptosis-associated speck-like protein
containing a CARD (ASC) and an inflammatory caspase, caspase-1. The formation of the inflamma-
some complex provides a platform for the activation of caspase-1 that in turn cleaves the
pro-inflammatory cytokines pro-interleukin (IL)-1β and pro-IL-18 into their active forms [1,2].
Caspase-1 also cleaves Gasdermin D (GSDMD), generating an N-terminal fragment which forms
pores in the plasma membrane that cause lytic cell death known as pyroptosis [3]. This highly inflam-
matory signalling process requires multiple levels of regulation to prevent damaging inflammation and
the development of inflammatory diseases [1,4]. Inflammasome proteins are regulated transcription-
ally (e.g. pro-IL-1β expression induced by Toll-like receptor and cytokine signalling), post-
transcriptionally (e.g. microRNA-223 regulates NLRP3), and post-translationally [5,6].
Post-translational modifications (PTMs) including ubiquitination, acetylation, nitrosylation, alkylation,
and sumoylation allow fast control of inflammasome function and act as a critical licencing step in
inflammasome activation [7,8]. However, phosphorylation is the predominant PTM that has been
studied in inflammasome signalling [9]. The reversible transfer of the γ-phosphate of adenosine
50-triphosphate (ATP) by kinase enzymes to Serine (Ser), Threonine (Thr), or Tyrosine (Tyr) amino
acid residues can profoundly affect protein function by regulating protein activity, subcellular localisa-
tion, and protein–protein interactions. Phosphorylation is controlled by ∼518 kinases (1.7% of all
human genes) and 140 phosphatases that function across many subcellular compartments in human
cells [10–13].
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Regulation of inflammasome sensors
Inflammasome sensors are activated either directly by pathogen-associated molecular patterns (PAMPs),
danger associated molecular patterns (DAMPs) or indirectly by homeostasis-altering molecular patterns
(HAMPs) [14]. Phosphorylation can regulate inflammasome sensors by affecting their inter- and intra-
molecular interactions, and their subcellular location. Below we discuss how phosphorylation impacts the most
well-studied inflammasome sensors namely, NLRP3, Pyrin, NLRC4, AIM2 and NLRP1.

NLRP3
NLRP3 is the most versatile inflammasome sensor in the diversity of stimuli it recognises. It does not directly
recognise ligands but detects changes in cellular homeostasis induced by the activity of numerous molecules [15].
This indirect mode of activation may require the high level of phospho-regulation observed in the NLRP3
pathway. We describe NLRP3 phosphorylation with reference to specific residues and their functional effects
(Figure 1).

Serine 5 (mouse Ser3)
Stutz et al. [16] identified phosphorylation of Ser5 as an inhibitory modification that limits NLRP3 activation.
Ser5 is in helix 1 of the pyrin (PYD) domain which forms an interaction interface between the PYDs of
NLRP3 and ASC. The negative charge introduced by phosphorylation at Ser5 results in electrostatic repulsion
between PYDs, preventing PYD–PYD interactions and thus inhibiting NLRP3 inflammasome formation [16–18].

Figure 1. Phosphorylation of NLRP3. NLRP3 inflammasome activation is regulated by phosphorylation, which can be activating (left) or

inhibitory (right).

The kinases and phosphatases responsible are included where known and the mechanisms of activation/inhibition of some of these modifications

are highlighted.
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Recently, AKT (protein kinase B) was identified as a kinase that can mediate phosphorylation of Ser5, while
dephosphorylation of Ser5 by protein phosphatase 2 A (PP2A) is essential for NLRP3 activation [16,17].
Intriguingly, phosphorylation of Ser5 plays an additional, contrasting role in NLRP3 regulation by stabilising
NLRP3 expression. Phosphorylation of Ser5 prevents TRIM31-mediated ubiquitination of NLRP3, consequently
inhibiting proteasome-mediated NLRP3 degradation [17,19]. Thus, Ser5 phosphorylation stabilises NLRP3
expression in response to LPS priming but acts as a brake to limit NLRP3 activation. Ser5 phosphorylation is
additionally regulated by the activity of Bruton’s tyrosine kinase (BTK) [20]. In LPS-primed macrophages and
dendritic cells, NLRP3 is bound to BTK which phosphorylates and inactivates PP2A, preventing Ser5 depho-
sphorylation. Upon stimulation with an NLRP3 activation signal BTK dissociates from NLRP3 allowing
PP2A-mediated dephosphorylation of Ser5 and oligomerisation of NLRP3 [20].

Serine 163
Phosphorylation of Ser163 was identified in mass spectrometry data from two separate studies [21,22].
Interestingly, Ser163 is not conserved in mouse or rat NLRP3 but is conserved in primates. However,
Ser163Ala mutation does not appear to have a functional effect, as IL-1β processing and interaction with NEK7
were similar to wild-type NLRP3 in reconstitution experiments in HEK293T cells [21,22]. Whether Ser163
could be redundant with other phosphorylation sites, or if a phosphomimetic mutant may affect NLRP3 func-
tion remains to be examined.

Serine 198 (mouse Ser194)
Ser198 is located between the PYD and NACHT domains of NLRP3. Phosphorylation of Ser198 by c-Jun
N-terminal kinase 1 ( JNK1) is detected within 15 min of LPS stimulation, demonstrating the rapid nature of
transcription independent NLRP3 priming. Signalling from multiple TLRs can induce Ser198 phosphorylation,
including TLR1/2, TLR3, TLR5, TLR7, and TLR9. The mutation of Ser198 to a non-phosphorylatable amino
acid or the use of JNK inhibitors disrupts homotypic NLRP3 interactions. Ser198 phosphorylation thus regu-
lates NLRP3 oligomerisation and inflammasome assembly [21]. In addition, phosphorylation of Ser198 pro-
motes the deubiquitination of NLRP3 by BRCC3 which is also required for NLRP3 inflammasome formation,
highlighting the potential interplay between phosphorylation and other PTMs [21,23]. A recent study using
Ser198Ala NLRP3 in a HEK293T reconstitution system did not observe any functional changes in NLRP3 activa-
tion [22]. While Ser198Ala has been extensively characterised in macrophages and in vivo, these contrasting data
highlight the importance of validating observations using phosphorylation mutants in multiple systems [21,22].

Serine 295 (mouse Ser291)
Ser295 is in the central NACHT domain and is phosphorylated by protein kinase A (PKA) and PKD [24–26].
PKA is activated by increasing levels of cyclic AMP that can be induced by multiple pathways including signal-
ling induced by bile acids and prostaglandin E2 [24,25]. Mortimer et al. [25] demonstrated that Ser295 phos-
phorylation inhibits the ATPase activity of NLRP3, which is essential for conformational changes necessary for
inflammasome formation. Guo et al. observed that phosphorylation of Ser295 induced ubiquitination of
NLRP3. This ubiquitination inhibited NLRP3 via a mechanism that was independent from proteasome or
autophagy-mediated degradation but is yet to be fully elucidated [24]. Of potential clinical significance,
Cryopyrin Associated Periodic Syndrome (CAPS)-associated mutations in NLRP3 adjacent to Ser295 were
observed to have less PKA-mediated phosphorylation and ubiquitination [24,25]. The hyperactive
NLRP3-driven inflammation in some CAPS patients may thus be due to a reduced ability of PKA to suppress
NLRP3 [24,25]. In a contrasting study, Zhang et al. [26] found that Ser295 phosphorylation by PKD was an
activating modification. In response to NLRP3 stimuli, mitochondria-associated ER membranes (MAMs) and
NLRP3 are recruited to the Golgi. Enhanced diacylglycerol levels at the Golgi activate local PKD which phos-
phorylates Ser295 and releases NLRP3 from MAMs allowing ASC recruitment and inflammasome assembly in
the cytosol [26]. These results emphasise the importance of NLRP3 localisation to and subsequent dissociation
from the Golgi, which is known to be an important event in NLRP3 inflammasome activation [27]. A recent
pre-print study by Heiser et al. [28] demonstrated that the PKD inhibitor CRT0066101 could attenuate NLRP3
responses, confirming a requirement for PKD in NLRP3 activation. Further studies are needed to explain the
opposing effects of Ser295 phosphorylation by PKA and PKD, but these findings highlight the dynamic spatial
and temporal nature of NLRP3 regulation by phosphorylation.
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Serine 894/898 (mouse Ser891/895)
Ser891 and Ser895 are in the C-terminal leucine-rich repeat (LRR) domain. Wang et al. [29] identified that the
phosphorylation of these two serine residues in mouse macrophages allows binding of the E3 ubiquitin ligase
TrCP1, which in turn ubiquitinates NLRP3 at Lysine 380 thereby promoting its proteasomal degradation. The
binding of TrCP1 can be blocked by the Hippo pathway protein YAP which therefore stabilises NLRP3 [29]. It
remains to be elucidated which kinase and phosphatase regulate the phosphorylation status of Ser891 and
Ser895, whether they act redundantly, and if this mechanism is conserved in humans.

Threonine 659 (mouse Thr657)
A recent study by Dufies et al. [22] observed that Thr659 is a critical site for NLRP3–NEK7 interaction that is
regulated by phosphorylation during Escherichia coli infection. The binding of NLRP3 and NEK7 is triggered
by NLRP3 stimuli and facilitates the formation of bipartite interactions between NLRP3 monomers [30,31].
The E.coli virulence factor CNF-1 targets the Rho GTPase Rac2 which triggers p21-activated kinase 1
(Pak1)-mediated phosphorylation of Thr659 thereby inducing NLRP3–NEK7 interactions and inflammasome
formation [22]. Whether other stimuli trigger Thr659 phosphorylation is currently unknown.

Tyrosine 32 (mouse Tyr30)
Huang et al. [32] identified the lipid and protein phosphatase PTEN as a regulator of NLRP3 inflammasome
assembly. They observed that PTEN directly interacts with NLRP3 and dephosphorylates Tyr32 within the
PYD domain, facilitating NLRP3–ASC interactions [32]. PTEN is an important tumour suppressor while
NLRP3 also contributes to the response of cancer cells to some chemotherapeutic agents [33,34]. Mice with
PTEN-deficient myeloid cells exhibit decreased chemotherapy-induced NLRP3 activity in the tumour micro-
environment and resistance to Mitoxantrone, suggesting that PTEN-induced NLRP3 activity promotes anti-
tumour immunity and tumour suppression [32]. The kinase responsible for Tyr32 phosphorylation is currently
unknown.

Tyrosine 136 (mouse Tyr132)
NLRP3 contributes to host defence against viruses and a recent study on Reovirus, a double-stranded RNA
virus which infects the respiratory tract, identified NLRP3 activation in airway epithelial cells (AECs) [35].
Reovirus infection triggered phosphorylation of NLRP3 Tyr132 mediated by the transmembrane tyrosine
kinase receptor EphA2. Tyr132 lies between the PYD and NACHT domains and its phosphorylation appears to
limit NLRP3 inflammasome assembly [35]. This negative regulation may prevent excessive inflammasome acti-
vation in response to RNA virus infection. However, the phosphorylation of Tyr132 by EphA2 may be specific
to AECs as EphA2 is barely detectable in immune cells [35].

Tyrosine 136, 140, 143, 168 (mouse Tyr132, 136, 164)
Ito et al. [36] first identified a positive role for BTK in regulating NLRP3. They found that BTK inhibitors such
as Ibrutinib specifically blocked NLRP3 activation, while Xid mice (that express functionally inactive BTK) had
reduced NLRP3-dependent inflammation in vivo. Liu et al. [37] observed similar results with BTK inhibitors
and Btk-deficient mice, and importantly observed decreased NLRP3 inflammasome activation in primary
myeloid cells from patients with X-linked agammaglobulinemia (XLA) that have mutations in BTK. Both
groups observed that BTK could directly interact with NLRP3 and ASC, but whether BTK could directly phos-
phorylate NLRP3 was unknown [36,37]. A recent study from Bittner et al. [38] identified direct BTK-mediated
phosphorylation of NLRP3 and linked this to the subcellular location of NLRP3. A polybasic motif in the
linker region between the PYD and NACHT of NLRP3 is critical for binding to phosphatidylinositol-4-
phosphate on the trans-Golgi network and subsequent inflammasome activation [27]. Bittner et al. identified
four novel phosphorylation targets of BTK, NLRP3 Tyr136, Tyr140, Tyr143 and Tyr168, the first three of
which are located within the polybasic region. Stimulation of NLRP3 with nigericin induces BTK-mediated
phosphorylation of NLRP3 that weakens the interaction between NLRP3 and the Golgi. NLRP3 is consequently
released, allowing NLRP3 oligomerisation and inflammasome formation in the cytosol [38]. However, as dis-
cussed above in relation to Ser5, Mao et al. [20] have characterised BTK as a negative regulator of NLRP3.
These contradictory findings may be partly attributed to differences in the concentration of LPS used and
mouse models employed by the different studies, and these experimental differences are extensively discussed
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by Mao et al. [20]. It is also possible that BTK is required to regulate distinct stages of NLRP3 activation. Thus,
during priming BTK may keep PP2A and NLRP3 activity in check by controlling Ser5, but when an activation
signal is sensed and the dispersed TGN forms BTK then phosphorylates NLRP3 at the polybasic motif, to
facilitate its release from the TGN. Although most of the current evidence currently suggests BTK activity is
required for NLRP3 inflammasome activation, further studies are necessary to clarify the role of BTK in
NLRP3 regulation.

Tyrosine 861 (mouse Tyr858)
The LRR domain of NLRP3 is not essential for its activation, but phosphorylation of Tyr861 within the LRR
has been identified as a negative regulator of NLRP3 [39,40]. Spalinger et al. [40] reported that protein tyrosine
phosphatase non-receptor 22 (PTPN22) directly interacts with NLRP3 in an ASC-dependent manner, inducing
dephosphorylation of Tyr861. Following NLRP3 activation, phosphorylated NLRP3 interacts with
Sequestosome 1 (SQSTM1), a molecule that is involved in targeting substrates to the phagophore. This pathway
limits inflammasome activity as only NLRP3 that has been dephosphorylated by PTPN22 will escape recruit-
ment to the autophagosome, thus being protected from degradation and allowing inflammasome assembly
[41]. The kinase responsible for Tyr861 phosphorylation is currently unknown, but autophagy also mediates
the degradation of inflammasome components including pro-caspase-1, pro-IL-1β, and ubiquitinated NLRP3,
highlighting the closely interwoven pathways of inflammasome activation and autophagy [42–44].

Pyrin
Pyrin is a 95 kDa protein encoded by the MEFV gene. Mutations in MEFV cause inflammatory syndromes
including Familial Mediterranean Fever (FMF) and Pyrin-Associated Autoinflammation with Neutrophilic
Dermatosis (PAAND) [45–47]. Over 15 years ago it was shown that pyrin signalling is dependent on the phos-
phorylation state of Ser208, Ser209, and Ser242 [48]. In a yeast 2-hybrid screen in HeLa cells, Jéru et al. [48]
found that these phosphorylations enable the 14-3-3 family of scaffolding proteins to bind to pyrin. However,
the kinases involved and the significance of pyrin phosphorylation in immune cells was unknown. Further
studies revealed that in myeloid cells the GTPase RhoA activates serine-threonine kinases of the PKC superfam-
ily, PKN1 and PKN2 (also termed PRK1/PRK2), to phosphorylate pyrin at Ser208 and Ser242 (Ser205 and
Ser241 in mice). Phosphorylation at these sites keeps pyrin inactive in the steady state by allowing its binding
to several isoforms of 14-3-3 proteins [49,50]. Three independent groups then showed that pathogens such as
Yersinia pestis and Clostridium difficile, or chemical triggers that inhibit GTPase RhoA, activate the pyrin
inflammasome by preventing its phosphorylation and binding to 14-3-3 scaffolds [49–51]. Thus, like NLRP3,
pyrin senses the disruption of cellular homeostasis rather than specific ligands.
Unsurprisingly, pathogens have also developed evasion mechanisms that exploit pyrin phosphorylation. For

example, the Yersinia pestis effector molecule YopM acts as a bridging molecule between pyrin, the host
kinases PKN1 and PKN2 and the ribosomal protein S6 kinases 1-3 to facilitate pyrin phosphorylation and
increase 14-3-3 binding. This prevents pyrin activity resulting in reduced bacterial clearance [51,52].
PAAND is an autoinflammatory syndrome caused by an Ser242Arg mutation, that prevents Ser242 phos-

phorylation and the inhibitory interaction of pyrin with 14-3-3 proteins [47]. FMF-associated mutations on the
other hand are found in the B30.2/SPRY domain of pyrin where they decrease the threshold for activation,
likely by removing the requirement for microtubules in pyrin inflammasome formation [53,54]. FMF mutations
on their own do not activate pyrin but combined with either broad-spectrum PKC family inhibitors or with
PAAND Ser242Arg mutation (which all block Ser242 phosphorylation) cause excessive auto-activation of pyrin
and subsequent inflammation [47,55]. These data suggest at least two critical check-points in pyrin inflamma-
some activation: one dependent on microtubules, and another on phosphorylation of Ser242. The sensitivity to
PKC inhibitors can be used to diagnostically distinguish FMF patient monocytes, which rapidly activate the
pyrin inflammasome in response to PKC inhibition [56].
A recent preprint study conducted by Mangan et al. [57] found that stimulation with toxin B from C. difficile

(TcdB) was also not sufficient to activate the pyrin inflammasome in human macrophages. Although short
term LPS priming increased Ser242 phosphorylation which was removed by stimulation with TcdB, this did
not, on its own, induce pyrin activation. Prolonged LPS priming was required to increase pyrin expression and
activation in response to TcdB [57]. These results further support the hypothesis that in human macrophages
Ser242 phosphorylation is not the only checkpoint that prevents pyrin activation.
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Interestingly, FMF mutations are not always detrimental. In the Turkish population, they underwent positive
selection during periods of the bubonic plague, a deadly disease caused by Yersinia pestis. FMF mutations
prevent Yersinia effector protein YopM binding to the B30.2 domain and subsequent YopM-facilitated Ser208
and Ser242 phosphorylation and pyrin inhibition [52]. Resistance to YopM inhibition allowed FMF carriers to
launch pyrin-dependent inflammation that conferred increased fitness against Yersinia pestis during bubonic
plague [52]. To date no phosphatase has been described to dephosphorylate pyrin, and the exact chronological
hierarchy between changes to the phospho-sites and the B30.2 domain is unknown. Pyrin phosphorylation
sites and associated regulators are illustrated in Figure 2.

NLRC4
The NLRC4 inflammasome is a sensor of bacterial invasion. It recognises the presence of flagellin and type III
secretion systems by detecting cytosolic rod and needle proteins [58]. Qu et al. [59] first described NLRC4
phosphorylation at Serine 533 by PKCσ. In immortalised mouse macrophages reconstituted with NLRC4 carry-
ing a Ser533Ala mutation, this modification was found to be critical for ASC speck assembly and caspase-1
processing [59]. Further work using an NLRC4 Ser533Ala knock-in mouse model showed that bone marrow-
derived macrophages (BMDM) from this mouse did not show a complete reduction in NLRC4 response
against Salmonella Typhimurium infection, but rather a delayed response relative to wild-type NLRC4 [60].
The leucine-rich repeat kinase (LRRK2) was also shown to phosphorylate Ser 533, raising the question whether
its activity is redundant with PKCσ or whether different kinases are activated in distinct cell types and infection
models [61].
Interestingly, a separate study proposed that Ser533 phosphorylation can occur independently of NAIP5, the

adaptor molecule responsible for flagellin recognition in the NLRC4 inflammasome complex. This study also
found that Ser533 phosphorylation can be triggered by a broad range of flagellins, including those that do not
lead to NLRC4-dependent IL-1β production, such a Helicobacter pylori [62]. These observations led to a model
where Ser533 phosphorylation is an essential priming step for NLRC4, although it is not tiggered by direct fla-
gellin recognition and is insufficient to cause NLRC4 activation. A contrastive recent study using an independ-
ently generated NLRC4 Ser533Ala knock-in mouse only observed small differences in wild-type versus NLRC4

Figure 2. Phosphorylation of inflammasome sensors, ASC, and caspase-1.

Phosphorylation of the inflammasome sensors pyrin and NLRC4, ASC and caspase-1 can regulate inflammasome activation.

These modifications can be activating (left) or inhibitory (right) and the kinases and phosphatases responsible are included

where known.
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Ser533Ala BMDM stimulated with cytosolic flagellin or Salmonella Typhimurium [63]. Tenthorey et al. used
the same mutation and stimulation protocol as Qu et al. thus it remains to be determined what caused the
opposing results on the function of Ser533 phosphorylation [60,63]. Potential reasons could include different
animal housing conditions that lead to changes in the microbiome, or different cell culture conditions for
BMDM e.g. the amount of L929 media used, 5% versus 20% [60,63].
Ser533 is in the NLRC4 HD2 domain that binds to the LRR region and may regulate NLRC4 autoinhibition

[64]. Hu et al. [64] suggested that Ser533 phosphorylation strengthens the HD2–LRR interaction, indicating a
negative regulatory role for phosphorylated Ser533. To date, no phosphatases have been described that depho-
sphorylate this site, which would likely be needed to disrupt the HD2–LRR interaction and allow NLRC4 acti-
vation. This auto-inhibitory role for phosphorylated Ser533 contradicts the activity-promoting role proposed by
others and is derived from the structure of the protein expressed in insect cells. Further studies are needed to
determine what role Ser533 phosphorylation plays in different cell types and whether other groups can recon-
cile the existing data on the Ser533Ala mutant in vivo. NLRC4 phosphorylation sites and associated regulators
are illustrated in Figure 2.

AIM2 and NLRP1
AIM2 senses infection and danger by directly detecting the presence of cytosolic double-stranded DNA [65–67].
NLRP1 can be activated indirectly upon cleavage of its N-terminus by pathogen derived proteases such as
Bacillus anthracis Lethal Factor or enteroviral 3C proteases [68–70]. Recently, it was also shown that NLRP1
can be activated directly by binding long dsRNA generated during Semliki Forest virus infection in epithelial
cells [71]. No phosphorylation sites responsible for regulating the activity of either AIM2 or NLRP1 have been
characterised, although several putative sites have been identified in high-throughput screens according to
PhosphoSitePlus® [72]. Interestingly, AIM2 has inflammasome-independent roles in mouse models of colon
cancer and in Experimental Autoimmune Encephalomyelitis (EAE), a mouse model of multiple sclerosis [73–75].
In cancerous colonic epithelial cells AIM2 binds and inactivates the kinase DNA-PK, which is needed for AKT
activation and regulates colon cancer progression [73]. In EAE, AIM2 interacts with PP2A to limit AKT activity
in T cells [75]. Both studies suggest that AIM2 and AKT can interact and possibly influence each other’s activity.
However, the canonical AIM2 inflammasome pathway is insensitive to AKT inhibition [17]. Whether AIM2 or
NLRP1 are regulated by phosphorylation, and if so, which kinases control them, remains to be discovered.

Regulation of the inflammasome adapter ASC
The adaptor protein ASC is involved in inflammasome formation for all sensors, although it is not essential for
NLRC4 and NLRP1 [2]. ASC is therefore a key target for regulation, and phosphorylation controls ASC local-
isation and its interaction with other inflammasome complex proteins. ASC phosphorylation sites and asso-
ciated regulators are illustrated in Figure 2.

Tyrosine 146 (mouse Tyr144)
Hara et al. [76] showed that Spleen Tyrosine Kinase (Syk) activity is required for phosphorylation of ASC at
Tyr144 (human Tyr146). This phosphorylation is crucially needed for ASC speck oligomerisation, although
direct phosphorylation could not be shown in an in vitro kinase assay [76]. A later study found that Syk add-
itionally phosphorylated ASC at Tyr187. Single mutations of either Tyr146 or Tyr187 did not abrogate ASC
speck formation pointing towards a redundant role for these residues [77]. Chung et al. [78] expanded these
models and suggested that ASC phosphorylation is indirectly mediated by Syk, as Syk activates the kinase Pyk2
which then phosphorylates Tyr144. Chung et al. also found that the activity of another member of the focal
adhesion kinase (FAK) family, FAK was required for IL-1β production. However, FAK could not directly phos-
phorylate Tyr144 implying a role for FAK at a different site in ASC or at a different step in the pathway [78].
In addition, protein kinase R (PKR) has been described to bind multiple inflammasome sensors, and PKR
inhibition decreased all inflammasome activities such caspase-1 cleavage, and IL-1β, and HMGB1 secretion
[79]. This conclusion has been challenged in other experimental models suggesting there may be cell type or
stimulus specific effects of PKR in inflammasome regulation [80,81]. Darweesh et al. [82] observed that during
adenovirus infection PKR is prevented from binding to ASC and that PKR inhibition reduces ASC Tyr146
phosphorylation in THP-1 cells. Whether PKR is a direct Tyr146 kinase or a scaffold for other kinases, and if
this interaction is specific to viral infections remains to be answered. More recently, Gavrilin et al. [83] identi-
fied cAbl kinase as a regulator ASC phosphorylation at Tyr146 in THP-1 cells. The cAbl-deficient THP-1 cells
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had reduced, but not absent levels of phosphorylated Tyr146, suggesting that other kinases such as Syk and
PKR may act redundantly at this site [83]. Interestingly, cAbl deletion affected only NLRP3, but not other
ASC-dependent inflammasomes, but a mechanism remains unclear.

Tyrosine 60 and 137 (mouse Tyr60, Tyr137 unique to humans)
There are also two possibly inhibitory phosphorylations described for ASC at Tyr60 and Tyr137. Broad inhib-
ition of protein tyrosine phosphatases (PTPases) was found to block NLRP3- and AIM2-mediated IL-1β pro-
duction that was dependent on these two residues [84]. The kinases and phosphatases that regulate Tyr60 and
Tyr137 are currently unknown.

Mouse serine 16 and 193 (human Thr16 and Ser195)
Phosphorylation also influences the intracellular location of ASC. Martin et al. [85] demonstrated that ASC is
retained in the nucleus in the steady state by binding to IKKα via ASC Ser16 and Ser193. During LPS priming,
the ASC-IKKα complex is translocated to the perinuclear area, in a process dependent on inhibitory-κB kinase
epsilon (IKKε, also known as IKK-i). The inflammasome-activating signal two leads to activation of the phos-
phatase PP2A which binds to and inactivates IKKα thereby releasing ASC in the cytosol for inflammasome
assembly [85]. As described earlier, PP2A also dephosphorylates NLRP3 suggesting that PP2A regulates at least
two steps in the NLRP3 pathway [16]. As PP2A knockdown inhibited NLRP3 but not AIM2 responses, it
remains to be investigated whether a redundant phosphatase such as PP1 could play an additional role for ASC
trafficking upon AIM2 activation [85]. ASC does not contain a nuclear localisation sequence (NLS), and in
many cells including BMDMs it is found in the cytosol. This poses the question how and when ASC gets trans-
located in the nucleus. Hara et al. [76] also reported that ASC is mainly located in or around the nucleus
bound to phosphorylated JNK. Contrary to ASC, JNK does contain an NLS, making it a possible interaction
and translocation partner.

Regulation of inflammatory caspases
Caspase-1 is a directly inflammasome-associated caspase that is phosphorylated by the p21-associated kinase
PAK1 at Ser376 [86]. In monocytic THP-1 cells stimulated with Helicobacter pylori LPS, Ser376 is phosphory-
lated and leads to caspase-1 activation (Figure 2) [86]. As described earlier PAK1 also regulates NLRP3 at
Thr659 during E. coli infection, suggesting PAK1 regulates multiple inflammasome proteins during bacterial
infection. In contrast with the inflammatory caspases, phosphorylation of the apoptotic caspases-3, -7, -8 and
-9 downstream of multiple pro-inflammatory signalling pathways has been well studied. Nearly all these phos-
phorylations were found to inhibit caspase activity either by blocking interactions between initiation and
effector caspases or by blocking substrate binding [87–91]. Interestingly, LPS can induce caspase-8 phosphoryl-
ation and inactivation in neutrophils suggesting it plays a dual role in priming inflammasome activation while
blocking apoptotic pathways [89]. A second member of the PAK family, PAK2, has been reported to phosphor-
ylate caspase-7 at multiple residues that prevent its activation by caspase-9 [90,91]. PAK1 and PAK2 display
96% sequence homology indicating the possibility of shared substrates. Any potential functional redundancy
between PAK1 and PAK2 in phosphorylating caspase-1 or -7 remains to be investigated. Recent research has
shown that the apoptotic caspases-3 and -7 inhibit inflammasome-mediated cell death by cleaving GSDMD
into an inactive fragment. Caspase-8 on the other hand can promote inflammatory cell death by releasing the
active C-terminal domain of GSDMD [3]. Future work may reveal how the phosphorylation state of caspases as
well as their interacting kinases and phosphatases control the balance between apoptosis and pyroptosis.

Regulation of inflammasome substrates
Cleavage of IL-1β, IL-18, and GSDMD represent the final step of inflammasome activation [92]. IL-1β has one
described phosphorylation site at Ser134, but its functional significance remains unknown as mutation of
Ser134 did not affect the stability or secretion of IL-1β [93]. No direct phosphorylations have been described
for IL-18, but both IL-1β and IL-18 are subject to significant regulation as they are transcribed as inactive pro-
forms that require enzymatic cleavage for activation. They are also regulated by other PTMs, such as ubiquityla-
tion [93]. GSDMD is the executioner of pyroptosis and to date has not been found to be directly phosphory-
lated [94]. However, like other inflammasome substrates, it is also regulated via other PTMs [95]. Interestingly,
two other gasdermins, GSDMA and GSDME, were shown to be phosphorylated at Thr6 and Thr8, respectively
[96,97]. These phosphorylations block their pore forming capability and inhibit pyroptosis [97]. GSDMD does
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not carry a Threonine residue within the first 20 amino acids, but a Serine residue at position 3 could be a
potential target for a similar mechanism. Future studies will likely uncover more phospho-regulated sites in gas-
dermins and the phosphatases involved in removing their inhibitory phosphorylations upon inflammasome
activation.

Conclusions
Phosphorylation and kinase/phosphatase signalling pathways control many cellular processes and are particu-
larly prominent in immunity. For example, cytokine receptor signal transduction pathways rely on Jak tyrosine
kinases to activate Stat transcription factors [98].The inflammasome pathway is not a classical signalling
cascade involving membrane receptors, downstream kinase(s), and activation of transcription factors, but it is
now apparent that phosphorylation also plays a critical role in regulating inflammasome activity. The phos-
phorylation of inflammasome sensors and the adapter ASC control the protein–protein interactions necessary
to form the inflammasome complex. Recent research has highlighted how the subcellular localisation of inflam-
masome proteins is essential for complex formation and is also regulated by phosphorylation. For example,
NLRP3 localisation to the trans-Golgi network appears to be regulated by PKD and BTK [26,38]. While our
knowledge of inflammasome pathway phosphorylation has expanded, it is difficult to reconcile the numerous
phosphorylation and dephosphorylation events that have been reported. How inflammasome phosphorylation
occurs temporally, spatially, and alongside other PTMs such as ubiquitination is not understood. Whether
some phosphorylations are cell type and stimulus specific is also in many cases unclear. The challenges of
studying inflammasome phosphorylation include the lack of well characterised phospho-specific antibodies, dif-
ferences in mouse and human cell models, and the translation of in vitro identified phospho-sites to in vivo
disease relevance (e.g. NLRC4 Ser533) [99,100]. Despite these obstacles there are already reports using specific
kinase inhibitors to modulate inflammasomes in vivo. For example, the BTK inhibitor Ibrutinib has been
shown to reduce NLRP3 activation in mouse models of ischemic brain injury [36] and high-fat diet-induced
chronic metabolic inflammation [36,101]. These results suggest that targeting phosphorylation events in the
inflammasome pathway is a promising therapeutic approach.

Perspectives
• The importance of the field: Inflammasome activation and subsequent cell death often occurs

within minutes to an hour, so the pathway must be dynamically controlled to prevent exces-
sive inflammation. Phosphorylation is a fundamental PTM modification that allows rapid
control over protein function.

• Summary of current thinking: Phosphorylation regulates the subcellular localisation, protein–
protein interactions, and functions of inflammasome sensors and adapters and is an important
regulatory checkpoint in inflammasome activity.

• Future directions: A deeper understanding of inflammasome phosphorylation, cell type specifi-
city, and in vivo disease relevance, will undoubtably provide opportunities to develop novel
therapies for inflammasome-mediated diseases.
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