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Abstract: Streptomyces spp. are prolific sources of valuable natural products (NPs) that are
of great interest in pharmaceutical industries such as antibiotics, anticancer chemotherapeutics,
immunosuppressants, etc. Approximately two-thirds of all known antibiotics are produced by
actinomycetes, most predominantly by Streptomyces. Nevertheless, in recent years, the chances
of the discovery of novel and bioactive compounds from Streptomyces have significantly declined.
The major hindrance for obtaining such bioactive compounds from Streptomyces is that most of
the compounds are not produced in significant titers, or the biosynthetic gene clusters (BGCs) are
cryptic. The rapid development of genome sequencing has provided access to a tremendous number
of NP-BGCs embedded in the microbial genomes. In addition, the studies of metabolomics provide
a portfolio of entire metabolites produced from the strain of interest. Therefore, through the integrated
approaches of different-omics techniques, the connection between gene expression and metabolism
can be established. Hence, in this review we summarized recent advancements in strategies for
activating cryptic BGCs in Streptomyces by utilizing diverse state-of-the-art techniques.
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1. Introduction

Natural products (NPs) derived from microbes generally possess diverse ecological and
environmental impacts such as altering phenotypes, fitness, and community composition of microbes
in the context of the environmental factors or ecological settings [1]. Nevertheless, in the context
of human welfare, these NPs have been proven to be wonder molecules with diverse biological
activities, such as antibacterials, anticancer agents, antihelminths, antidiabetics, anticholesterols,
immunosuppressants, etc. Thus, they are important lead targets in the field of drug discovery
and development [2,3]. Approximately 80% of anticancer agents and roughly 50% of all Food and
Drug Administration-approved drugs are derived from such NPs [4]. Among all microorganisms,
the actinomycetes are a prolific source of such valuable compounds that are of great interest to
medicine, agriculture, and industry [5,6]. Approximately two-thirds of all known antibiotics are able
to be produced by actinomycetes, most predominantly by Streptomyces [7]. Similarly, various species
of Streptomyces, have been characterized as major producers of anticancer drugs [8]. In addition,
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Streptomyces are capable of producing effective compounds with diverse bioactivities as antihelminths,
anti-oxidants, immunosuppressants, herbicides, and insecticides [9,10].

Streptomyces is a genus of Gram-positive and aerobic bacteria with high G+C content.
Their taxonomic classification categorizes them within phylum: Actinobacteria, class: Actinomycetes,
order: Actinomycetales and family: Actinomycetaceae. The genus Streptomyces was proposed by
Waksman and Henrici [11]. Waskman and colleagues were pioneers for isolating bioactive compounds
from various Streptomyces, such as actinomycin from a culture of Streptomyces antibioticus [12],
streptothricin from Streptomyces lavendulae [13], and streptomycin from Streptomyces griseus [14].
These innovations led to the discovery, isolation, and evaluation of the bioactivity of diverse molecules
from various Streptomyces.

Recent research indicated that the rate of new NP discovery has been maintained despite a drop
in the number of compounds making it through regulatory approval pipelines [15]. However,
the emergence of antibiotic-resistant pathogens or drug-resistant disease conditions and most of
the NPs are not produced in significant titers or the biosynthetic gene clusters (BGCs) are cryptic,
or the producer strains are not genetically tractable, which pose the greatest challenge for NPs based
drug discovery [16–18]. In such cases production can be achieved in other production platforms as
genetically tractable alternative hosts or suitable heterologous hosts [17–19].

The rapid development of genome sequencing technology has provided access to enormous
numbers of BGCs in the microbial genomes. In addition, the advances in the studies of metabolism
and metabolite profiling can also illustrate the entire network of metabolism and regulatory
system contributing to biogenesis of the particular metabolite [19]. Thus, these multi-omics
techniques have established a proper connection between genomic information, gene expression
levels, and metabolism [20]. Thus, this knowledge provides new opportunities for discovering a larger
diversity than those isolated to date [20,21]. All this progress has resulted in the development of
a powerful method for NPs discovery termed “genome mining”. Unlike the traditional bioactivity
directed way of isolating NPs, in genome mining, bioinformatics analysis of the sequenced microbial
genomes can predict the BGC for NPs, which may be usually silent in the ordinary culture conditions,
and are prospective targets to be activated [22,23]. Such genome mining approaches have been
successfully utilized for obtaining isolatable quantities of compounds usually produced in low titers.
Fundamentally, the genome mining-based NP characterization is mediated by two major strategies.
The first approach can be tuning the production by altering physiological conditions, the use of
elicitors/chemicals, and modulating the regulatory system in the native host. The second approach
can be production in the rationally engineered heterologous host [18]. However, the heterologous
expression suffers from various disadvantages, such as the limited efficiencies in the cloning of large
BGCs; unavailability of a suitable expression platform; and incompatibility of the biosynthetic elements,
such as biosynthetic precursors, regulations, and cofactors. These constraints provide strong support
for the quest for mining NPs from native producers, including genetic and chemical induction-based
approaches [18,24]. Moreover, it is evident that a single potent Streptomyces encodes more than
20–30 BGCs for diverse bioactive compounds among them most of them are cryptic, but it is not feasible
to transfer all BGCs to heterologous host in the single setting. The holistic transfer of individual gene
clusters in the single heterologous host or each gene cluster in separate heterologous hosts along with
optimization of production parameters for target molecules is next to impossible effort. Therefore,
the tuning or activation of the cryptic BGCs by the chemical modulation or the genetic intersection
in the native host provides a tremendous opportunity for obtaining targeted, as well as untargeted NPs.
Thus, this approach in most cases uncovers the unprecedented discovery of novel chemical structures
with efficient biological activities [18]. In addition, the engineering/modulation steps may be less
rigorous than the optimizations required in heterologous expressions, which requires rigorous steps of
host selection and cloning, and in most cases, engineering of the producer host, optimizing the media
components, and even the perturbation of regulation systems [24]. This review summarizes recent



Microorganisms 2020, 8, 616 3 of 18

advancements in strategies for activation and discovery cryptic BGCs in Streptomyces, thus utilizing
it as the most efficient native host for the production of promising bioactive molecules.

2. Ribosome/RNA Polymerase Engineering Approach

“Ribosome engineering” was coined in 1996, when streptomycin was used to induce the mutation
of rpsL (gene encoding ribosomal protein S12) in Streptomyces lividans, resulting in the activation of
actinorhodin production. The point mutation occurred by changing of Lys-88 to Glu [25]. The nucleotide
guanosine 5′-diphosphate 3′-diphosphate (ppGpp) plays an important role by responding to nutrient
limitation, and initiating the biosynthesis of antibiotics, whereas ppGpp binds to RNA polymerase [26].
ppGpp is synthesized by ppGpp synthase (RelA), which is a subunit of the ribosome. The mutation
of ribosomal protein S12 by streptomycin leads to an increase in the amount of ppGpp. As a result,
the secondary metabolite production is enhanced or activated [27]. Challenging Streptomyces with
streptomycin often introduces the mutation in ribosomal protein S12 in the spontaneous resistant
strain. Additionally, it often introduces mutation in rsmG (encoding for 16S rRNA methyltransferase)
in the resistant strain. The mutation in 16S rRNA methyltransferase can also enhance the S-adenosyl
methionine (SAM) synthetase activity and the transcription level of secondary metabolism; which results
in activating the cryptic pathway [28,29]. Similarly, rifampicin was used to activate the production
of actinorhodin in Streptomyces coelicolor A3(2) and S. lividans. It was found that rifampicin induced
mutation in rpoB (encoding the β-subunit of RNA polymerase). This mutation makes RNA polymerase
mimic the function of ppGpp-RNA polymerase bound form, which leads to activation of the cryptic
pathway [30–32]. Similarly, induction of combined drug-resistant mutations for different antibiotics
such as streptomycin, gentamicin, and rifampin was used to continuously increase the production
of antibiotics in a stepwise manner in S. coelicolor. The single, double, and triple mutants displayed
a remarkable increase in the production of ActII-ORF4 (a pathway-specific regulatory protein)
in the same hierarchical order as observed for the increase in the production titer of actinorhodin [33].

Further, the ribosome engineering strategy was used to activate antibiotic production from
a large number of actinomycetes using streptomycin, rifampicin, or gentamicin [34]. In the test of
different actinomycetes strains, two out of seven Streptomyces strains (efficiency 29%), and five out
of 61 non-Streptomyces strains (efficiency 8%) were activated for secondary metabolites production.
The technique was also applied to soil-isolated strains, where antibiotic production in 51 Streptomyces
strains and 15 non-Streptomyces strains were activated successfully, among 119 Streptomyces strains
and 234 non-Streptomyces strains, with the efficiency of 43% and 6%, respectively [34]. Similarly,
rifampicin was used to induce the mutation in rpoB in S. griseus, S. coelicolor, S. antibioticus,
S. lavendulae, Streptomyces parvulus, Saccharopolyspora erythraea (Sac. erythraea) and Amycolatopsis orientalis
(Amy. orientalis) [34]. This led to enhanced production of streptomycin (S. griseus), actinorhodin
(S. coelicolor), actinomycin (S. antibioticus), formycin (S. lavendulae), erythromycin (Sac. erythraea)
and vancomycin (Amy. orientalis). Transcriptional level analysis of cryptic pathway in S. griseus,
S. coelicolor, and Sac. erythraea by real-time PCR showed that the cryptic pathway was activated
in the rpoB and rsmG strains, 3 to 70-fold increase in transcription [35]. Rifampicin was used
for the activation of fredericamycin production in deep sea-derived Streptomyces somaliensis [36].
The efficiency of different antibiotics, such as rifampicin, streptomycin, paromomycin, erythromycin,
and gentamicin were compared for enhancing antibiotic production and activating the silent gene
in Streptomyces diastatochromogenes. The production of toyocamycin, tetramycin A, tetramycin P,
and tetrin B were highest (4.1, 7.8, 5.1, and 12.9-fold, respectively) while using paromomycin to
induce the mutation. Similarly, rsmG mutant strain of S. diastatochromogenes substantially increased
the production of toyocamycin and also activated silent genes involved in the biosynthesis of secondary
metabolites [37].

Similarly, the ribosome engineering strategy was employed by using several antibiotics together
to generate a multiple drug-resistant strain. The S. coelicolor A3(2) resistant strain of seven or eight
antibiotics (such as streptomycin, gentamycin, rifampicin, paromomycin, geneticin, fusidic acid,
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thiostrepton, and lincomycin) was generated, that produced 1.63 g/L of actinorhodin, that is 180-fold
higher than wild-type strain [38]. The site-directed mutagenesis (SDM) strategy was also used to
modify the rpsL in S. lividans. From a previous study, the K88E mutation of ribosomal protein S12 can
be introduced by streptomycin, which leads to activate undecylprodigiosin production in S. lividans.
Different individual point mutations including K88E mutant was generated by SDM and it was found
that the L90K and R94G mutants can enhance undecylprodigiosin production by 2.9 and 1.9-fold
higher than K88E mutant strains of S. lividans, respectively. However, the L90K or R94G mutant strains
did not show an increasing level of resistance to paromomycin and streptomycin [39].

The ribosome engineering can be a simple, efficient, and time-saving strategy for activation of
the silent gene cluster using common antibiotics. Moreover, the artificial induction of such mutations
with the SDM method can be a very promising strategy for enhancing the production of compounds
or activating the silent genes gene clusters, which could not be easily achieved by screening strains
in antibiotic media.

3. The OSMAC Approach Mediated by Co-Culture

More than a decade ago “One Strain Many Compounds” (OSMAC) was employed as a successful
strategy for isolation and identification of up to 20 different new secondary metabolites from
the Streptomyces [40]. OSMAC approaches cover different strategies, such as changing medium
composition and cultivation status, or co-cultivation with other strain(s). The alteration of the media
component has a prominent impact on obtaining new NPs from Streptomyces through the OSMAC
approach. For example, the chemical investigation of the extract from the marine-derived strain
Streptomyces sp. C34 grown on ISP2 (yeast malt extract agar) medium resulted in the isolation of
four new ansamycin-type polyketides. However, only three compounds could be extracted from
the modified ISP2 medium, which contained glycerol, rather than glucose [41]. Streptomyces sp.
DSM 14386 produced five new compounds (17–21) in medium supplemented with 1.5% NaCl, while
this strain produced two brominated congeners (22,23) in medium containing 1.5% NaBr [42]. Similarly,
a novel antibacterial cyclodepsipeptide, named NC-1(24), was produced by a red soil-derived strain
Streptomyces sp. FXJ1.172 when cultured in GYM medium supplemented with ferric ion [43].

Similarly, the changes in culture conditions have a prominent impact on tuning the production
of novel compounds in the OSMAC approach. Streptomyces sp. CHQ-64 produced six new
antifungal polyene-polyols reedsmycins A-F and two new cytotoxic hybrid isoprenoid alkaloids
indotertine A and drimentine F in liquid medium under shaking condition, while this strain
produced a new hybrid isoprenoid alkaloid drimentine I under static condition [44]. The culture of
Streptomyces sp. HZP-2216E in solid medium as 2216E and GYM (glucose-yeast extract medium),
and liquid medium as GMSS (Gause’s medium with sea salt) resulted in the isolation of two new
compounds as 23-O-butyrylbafilomycin D, and streptoarylpyrazinole A, and a unique indolizinium
alkaloid streptopertusacin A [45,46].

Recently, the OSMAC approach based on the co-culture method is a very popular approach of
elicitation of cryptic biosynthetic pathways. The co-cultivation results in alteration of the environmental
setting by incorporating the multi-dimensional interspecies interaction. This method not only involves
physical interaction between the species but also involves cross-talks between their metabolic pathways
or signaling cascades, thus, results in unprecedented activation of the biosynthesis of novel NPs from
Streptomyces. The co-culture of S. coelicolor M145 with other actinomycete strains (Amycolatopsis sp.
AA4, Streptomyces sp. E14, Streptomyces sp. SPB74, and Streptomyces viridochromogenes DSM 40736)
resulted in the production of at least 12 different versions of a molecule called desferrioxamine [47].
Co-cultivation of Streptomyces leeuwenhoekii C34 and Aspergillus fumigatus MR2012 in ISP2 medium
resulted in the yield of a new luteoride derivative, and a new pseurotin derivative, whereas none of
these compounds could be detected in axenic culture. When S. leeuwenhoekii C58 was co-cultivated
with A. fumigatus MR2012, a lasso peptide chaxapeptin was produced, which displayed significant
inhibitory effect on human lung cancer cell line A549 [48,49].
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4. Application of Rational Chemical Elicitors

The regulation of the NP production involves multiple regulatory cascades and internal networking,
which has immense implications for the control of biosynthesis and the production of such NPs [50].
In secondary metabolism, there are two levels of regulations: (1) specific regulation for the pathway
of biosynthesis, and (2) pleiotropic regulation for controlling the multiple pathways of biosynthesis.
Pleiotropic regulators indirectly control the production of NPs, often located in clusters, or modulate
the pathway-specific genes [51,52]. Elicitors are small molecules, acting as signal molecules, which can
respond to many of the pleiotropic regulators [53]. The elicitors are very diverse. They can be
antibiotics (chemical synthetic or biosynthetic compounds), inhibitors or activators of enzymes, or any
compounds which can affect the metabolism of Streptomyces [52,54–56]. In 1967, the first elicitor,
A factor, a γ-butyrolactone, was reported, which controls the biosynthesis pathway of streptomycin
and spore formation [53,57]. Not only that, γ-butyrolactones regulate the production of a large class of
antibiotics in different Streptomyces, including virginiamycins (Streptomyces virginiae) and showdomycin
(S. lavendulae) (Figure 1B) [52,54]. PI factor, a 2,3-diamino-2,3-bis(hydroxymethyl)-1,4-butanediol,
can activate the production of pimaricin (Figure 1B) in Streptomyces natalensis. Additionally,
hydromethylfuran was shown to induce methylenomycin variants (Figure 1B) in S. coelicolor [55].

Thus, the application of new elicitation strategies can be an effective strategy for streamlining
the activation of cryptic biosynthesis gene clusters. Several attempts of conventional screening
methods using elicitor have been attempted to activate cryptic pathways. In 2012, a new approach of
High-Throughput Elicitor Screens (HiTESs) of cryptic gene clusters was utilized to activate the silent
biosynthesis pathways, whereas the S. coelicolor based model system was used. The production
of the blue color compound (actinorhodin) and the red-colored compound (undecylprodigiosin)
(Figure 1B) were used as the indicator compounds as they were easy to detect visually. Further 30,569
small molecules were used for screening the elicitors for activating the production of actinorhodin
in S. coelicolor. Among them, 112 compounds affected, and of these, 19 compounds enhanced
the production of actinorhodin. One of these compounds, ARC2, displayed pleiotropic regulations by
enhancing the production of actinorhodin by 2 to 5-fold, and enhanced the production of germicidins
(Figure 1B) to 3-fold, while decreasing the production of daptomycin-like calcium-dependent antibiotic
by approximately 2-fold [52,58,59].

The major drawback of this method is that it is difficult to activate the particular silent gene
cluster of interest. To solve this problem, a new strategy was developed by combining HiTESs
with the reporter-guided genes. To test this idea, the cryptic BGC of malleilactone was activated
in Burkholderia mallei by integrating the lacZ reporter gene to malL, a gene essential of the BGC of
malleilactone. Screening elicitors by HiTESs based on LacZ activity from a library of 800 compounds,
they successfully awakened the cryptic gene cluster to get different malleilactone analogs (Figure 1B) [60].
HiTESs combined with reported-guided strategy were also used in Streptomyces, for the first time for
activating a sur cluster, the nonribosomal peptide synthetase (NRPS) gene cluster in Streptomyces albus
and isolating different surugamide derivatives (Figure 1B). They used two reporter systems, XylE and
eGFP, to apply HiTESs. They integrated the reported gene in the downstream of Psur promoter
(the promoter driving the expression of the sur gene cluster). HiTESs were performed using
502 compounds as the elicitors, whereas two excellent elicitors, etoposide and ivermectin, could
activate the sur cluster. The optimal concentrations for activating the sur cluster are at ≈23 µM
(for etoposide), and ≈30 µM (for ivermectin), respectively [56]. Therefore, combining HiTESs with
the reported-guided genes can be a very useful strategy to activate the silent biosynthesis gene
clusters of interest. The principle of HiTESs combined reporter-guided screening approach is shown
in Figure 1A. It can save time, in the case of many compounds that need to be induced in different
strains, and new compounds are sought. However, the major disadvantage of this strategy is that
when this approach is applied, it requires hundreds to thousands of chemicals for screening purposes,
which may not available in every laboratory.
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Figure 1. Overview of High-Throughput Elicitor Screens (HiTES) combined reporter-guided screening
approach using rational elicitor. (A) Overview of HiTES combined reporter-guided screening approach
using rational elicitor. The red arrows represent the promoter. The green arrows represent the reporter
gene. (B) Structure of compounds are activated by HiTES combined reporter-guided screening approach
using rational elicitor.
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5. Transcription Factor Decoys Approach

Transcription factor decoys (TFDs) are short double-stranded DNA molecules that mimic
the specific binding site in the promoter of a transcription factor. They can interfere with gene expression
by aberrant binding between the transcription factor and the target promoter. When the copy number
of the TFDs is large, the repressor or activator only binds with the TFDs. That leads to decreased
binding of the repressor or activator with the promoter. The results are de-repression or de-activation
of the target gene by the TFDs. The TFD strategy has been widely applied in mammalian cells and
preclinical studies [61,62].

However, the TFD strategy was used for the first time to activate the cryptic BGCs
in Streptomycetes [63]. As it is difficult to exactly predict the regulatory DNA fragments in the BGCs,
DNA fragments of approximately 100 base pairs were cloned to both the upstream and downstream of
open reading frames (ORFs) in the target BGC. These DNA fragments, the TFDs, were transferred
into the native hosts. For proof of concept, they activated two silent BGCs of actinorhodin and
undecylprodigiosin in S. lividans 66 by using the low-throughput TFD strategy. Five putative regulators
in the BGC of actinorhodin and three putative regulators in the BGC of undecylprodigiosin were cloned
as the TFDs, and each TFD was introduced into S. lividans individually. Multiple copies of the TFDs
that exist in the cell can bind to repressors, leading to a reduction of the binding between repressors and
promoters, leading to activation of the silent genes. They found that two TFDs, RsliM14I and RsliM14II,
can activate actinorhodin, and two TFDs, RsliM18I and RsliM18III, can activate undecylprodigiosin.
Further, the TFD strategy with a low-throughput screen was implicated in S. coelicolor A3(2), S. albus
J1074, and Streptomyces sp. F-5635. This strategy was employed to activate 11 silent BGCs, whereas
four silent BGCs (36% success rate) were successfully activated, in which butyrolactol A (Figure 2) was
activated in Streptomyces sp. F-5635.

In the case of the target BGCs that synthesize color compounds, screening is easy. However,
for the colorless compounds that are not easily identified (the compounds absorb in the UV region,
or do not absorb the light), it increases the challenge for deducing the results of activation. To find
a solution, the TFD strategy was developed by combining with reporter-guided strategy and using
the high-throughput screening approach. The TFDs were constructed with a reporter gene (example:
GFP) to make a library of vectors. This library of vectors was transformed into native Streptomyces host,
and screening based on the expression of the reporter gene can assist in the selection of the recombinant
strains (Figure 2). This strategy was used for activating 10 silent BGCs in Streptomyces griseofuscus
B-5429 and Streptomyces sp. F-4335 responsible for biosynthesis of oxazolepoxidomycin A (Figure 2),
whereas five of them (50% success rate) were successfully activated. This strategy is simpler than other
strategies that use deletion or genome editing, such as the deletion of a negative regulator. However,
the efficiency of this approach is not high at about 36–50% for the activation of silent BGCs [63].
Therefore, there is still room to improve this strategy by further engineering strategies.
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6. Promoter Replacement Strategy Using CRISPR-Cas9 Technique

In 1987, Ishino et al. sequenced the characteristic clustered regularly interspaced short palindromic
repeats (CRISPR) from E. coli for the first time, but their function was not fully understood [64]. Twenty
years later, there was no report about these repeats until in 2007, Barrangou et al. investigated
the function of CRISPR. They found that after a viral infection, bacteria integrate spacers from the phage
genome to create CRISPR, combined with Cas protein, that can resist phages by spacer–phage sequence
similarity [65]. The fundamental information on the biological role of CRISPR-Cas9 and detailed
studies about its mechanism of action and structural aspects have been already explored [66–70].

Due to its biotechnological application for precise genome engineering it was successfully
applied in the mammalian system in 2013 [71]. After that, there was a revolution in the use of
the CRISPR system for editing the multiplex genomes in a variety of hosts across all domains of life.
The CRISPR-Cas9 system was also used for the multiplex genome editing of Streptomyces strains.
The vectors pCRISPomyces-1 and pCRISPomyces-2 derived from suicide vector pKC1139 were widely
used in the genome editing of Streptomyces. The pCRISPomyces vectors allow the easy assembly of
gRNA and editing of templates by Golden Gate assembly or the conventional digestion/ligation method.
By using the CRISPR-Cas9 system, the redN from the BGC of undecylprodigiosin, and actVA-ORF5 from
the BGC of actinorhodin in S. lividans 66, phpD and phpM from the BGC of phosphinothricin tripeptide
in S. viridochromogenes DSM 40736 were successfully deleted [72]. In addition, they also successfully
deleted the full lanthipeptide BGC in S. albus J1074 [72]. Based on the same platform, a pKCcas9dO
vector was constructed for editing the genome of S. coelicocor M145, including the single gene deletion,
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as actII-orf4, red, and glnR, and the full BGC of actinorhodin (23.3 kb), undecylprodigiosin (31.6 kb),
and Ca2+-dependent antibiotic (82.8 kb). The multiplex gene deletion of actII-orf4 from the actinorhodin
BGC and redD from the undecylprodigiosin BGC was manifested by the co-expression of Cas9 and
multi-sgRNA expression modules. Furthermore, the point mutation of rpsL was successfully induced
by CRISPR-Cas9 [73]. Therefore, CRISPR-Cas9 represents a time-saving and highly efficient tool for
genome editing in Streptomyces strains.

The promoter replacement strategy is a very efficient approach for activating silent BGCs
in Streptomyces. The constitutive promoter as ermE* was knocked in on the upstream region of core
genes of NRPS gene cluster and PKS-NRPS gene cluster in S. albus J1074, resulting in activation of
the blue indigoidine (Figure 3B) and polycyclic tetramate macrolactam family as 6-epi-alteramides
A and B (Figure 3B) [74]. Later, the promoter replacement strategy was developed by applying
CRISPR-Cas9 to activate the silent gene clusters in streptomycetes. KasOp* promoter was used for
the knock-in experiments to native hosts (Figure 3A) [75,76]. Ten silent biosynthesis gene clusters in five
Streptomyces strains, namely S. albus, S. lividans, Streptomyces roseosporus NRRL15998, Streptomyces
venezuelae ATCC10712, and S. viridochromogenes DSM 40736, were activated by replacing native
promoter by KasOp* promoter of the core genes of silent gene clusters. These biosynthesis gene
clusters were involved in types I, II, and III PKSs, non-ribosomal peptide synthetase (NRPS), hybrid
PKS–NRPS, and phosphonate clusters. The editing efficiency per total screened strains was very high
from 50% to 100%, and the efficiency of activation was 100%, whereas a novel pentangular type II
polyketide (Figure 3B) was discovered in S. viridochromogenes and three different types of compounds
as macrolactam, photocyclized alteramide A and FR-90098 (Figure 3B) were produced by engineered
S. roseosporus [76]. More recently, the production of auroramycin (Figure 3B), a type I PKS, was
successfully activated in S. roseosporus NRRL 15998 by using CRISPR-Cas9 based knock-in of KasOp*
promoter its silent type I PKS BGC [77].

The promoter replacement is the very efficient strategy for the activation of the cryptic BGCs.
The only limitation of this strategy is that in some strains, the genetic manipulation is not amenable [77].
Overall, this strategy has the potential to become a key method to activate cryptic biosynthesis gene
cluster in Streptomycetes, because of the high efficiency in genome editing, versatility in application
in diverse Streptomyces strains or most types of BGCs, and being easy to apply, and saving time.
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7. Recent Approaches for Discovery/Characterization of Cryptic Natural Products

In addition to the systematic activation of cryptic BGCs, there is equivocal requirement for parallel
developments in techniques for bioactivity screening, isolation and separation methods, and analytical
chemistry [19,78]. Recently, there has been an enormous development in robust analytical techniques
and comparison with reference databases in both genomic and metabolite profile levels. Basically,
the approaches have been categorized as top-down approaches based on metabolomics studies and
bottom-up approaches centered on genomics studies and finally interconnecting both of them [78].
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7.1. Top-Down Approach Based on Metabolomics

The top-down approach is based on prior analysis of metabolites and subsequent analysis of
the genomic data. Metabolomics is an effective analytical technique that encompasses the profiling of low
molecular weight metabolites between medium and high throughput environments. In this approach,
different biological samples are statistically analyzed and correlated, with the activity of interest
focusing on differentially produced compounds as potential biomarkers. Therefore, metabolomics has
the potential to lead to the discovery of novel NPs [79,80]. Recently, the development in analytical
techniques, such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry
analysis has advanced the metabolomics approach to a new horizon. Different NMR techniques,
such as J-resolved, COSY, TOCSY, HSQC, and HMBC, have the potential to precisely elucidate
the chemical structure of the natural product. However, it is ineffective on impure organic
compounds, because there are chances of signal-overlapping issues. To address these types of
complexities, chromatography-hyphenated NMR (HPLC-NMR) has been introduced into metabolic
analysis [81]. The incorporation of solid-phase-extraction (SPE) for injection sample refinement or
integration of mass spectrometric instrumentation can fine-tune the structural evaluation of chemical
components in NMR-based metabolomics studies. By using this LC-SPE-NMR approach [82] and
LC-DAD-SPE-MSNMR instrumentation [83] comprehensive structural information can be deduced.
Hence, it is feasible to get insight into the chemical composition of crude extracts through in-silico
analysis leading to the assessment of the valuable components present on the extract or fraction
at the early stage.

A workflow of NMR-based metabolomics and bioinformatics was utilized for the identification
of novel pyranonaphtoquinones. The constitutive expression of the pathway-specific activator,
qin in Streptomyces sp. MBT76 resulted in the activation of the biosynthesis of a cryptic type
II PKS compound belonging to the family of pyranonaphtoquinones. The genomics analysis
facilitated by structural evaluation identified the chemical structures belonging to the family
of 8-C-glycosyl-pyranonaphthoquinones. The qinimycins A–C possessed structural features
including a rare 5,14-epoxidation and unprecedented 13-hydroxylation in pyranonaphthoquinones.
A deoxyaminosugar was unusually attached to the pyranonaphthoquinone backbone similar to
BE-54238A and BE-54238B [84].

The continued advances in the large-scale acquisition and analysis of metabolomic data has made
it possible to thoroughly process complex metabolite samples leading to the discovery of novel small
molecules. The metabolomics-based comparison of supernatants of Streptomyces chartreusis cultivated
in different media, using liquid chromatography-coupled with tandem MS, and further analysis by
molecular networking, led to the characterization of diverse NPs, including the isolation of a new
polyether ionophore, named deoxacalcimycin [85]. By employing genome mining the previously
unreported capability of a marine sponge-derived isolate, namely Streptomyces sp. SM17, to produce
surugamide A was identified [86]. Similarly, the detailed metabolomic analysis of 4160 fractions
obtained from 13 actinomycetes maintained under 32 different culture conditions was performed
by 1H NMR spectroscopy and multivariate analysis [87]. Metabolomics screening using liquid
chromatography-high resolution mass spectrometry enabled the identification and purification of
terrosamycin A and B, and two polycyclic polyethers that are active against breast cancer from
the fermentation broth of Streptomyces sp. RKND004 [88].

7.2. Bottom-Up Approaches Based on Genomics

The bottom-up approach based on genomics has been utilized to unveil new NPs that are usually
undetected under standard fermentation conditions [89]. These strategies incorporate the combination
of functional genomics and bioinformatics to identify the products of activated BGCs. The recent
advances in genome sequencing have not only eased the robust availability of genomic information of
Streptomyces, but also the availability of high-quality data can be utilized by different bioinformatic
tools. The interrogation of genome information by these bioinformatics tools provides the effective
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approach for connecting particular BGCs to specific NPs. The diverse bioinformatics tools such
as ClustScan [90], antiSMASH 5.0 [91], ClusterFinder [92], PRISM [93], ARTS [94], BAGEL4 [95],
RiPPER [96], and RODEO [97] are utilized for analysis of diverse BGCs responsible for formation of
PKS, NRPS, and RiPP compounds. Thus, concrete information about BGCs can assist in designing
systematic isolation techniques and structural elucidation of NPs based on correlation of genomic
information with the metabolite profile. Moreover, the availability of a global repository of BGCs from
different microbes has also assisted with the precise prediction of the BGCs based on comparative
analysis of BGCs in databases [98]. More recently, the advances in the bioinformatic exploration of
genomic data have enabled the sophisticated computational framework for systematic exploration of
BGCs [99].

8. Conclusions and Future Perspectives

In this review, we summarized several versatile methods that are used to activate silent natural
product BGCs by the manipulation of regulatory genes, ribosomal engineering, co-cultivation, or precise
genome engineering mediated by CRISPR-Cas9. However, there are advantages and disadvantages to
each method. For example, although the particular biosynthetic pathway-specific manipulation can
link the product and the gene cluster directly, it can only activate one specific gene cluster at a time.
The manipulation of the global regulatory genes, ribosomal engineering, and cultivation in varied
conditions may activate several BGCs at a time, but it is difficult to link the specific metabolites with
the BGCs. For those methods toward multiple BGC activation, if an easy way can be found to link
the particular BGCs to their specific products, respectively, then the high-throughput activation of
cryptic biosynthetic pathways can become feasible. In other instances, the revolutionary technology
for precise genome engineering like CRISPR-Cas9 has disadvantages, such as the non-specificity of
DSBs, the toxicity of Cas nuclease, and poor expression levels of cas9 gene or sgRNAs, which have
been major bottlenecks for their application in multiplexed fashion [100]. However, there have been
attempts to improvise the application of CRISPR-Cas9 by employing conjugating with base-editing
enzymes [101] and in the future, many breakthroughs can update the application of these approaches.
The application of CRISPR interference (CRISPRi) [102] and CRISPR activation (CRISPRa) [103]
in addition to gene deletions in multiplexed fashion, can bring forth rational metabolic engineering
approaches for activating cryptic BGCs mediated by multi-repurposing of precursor pathways,
regulators, and biosynthetic enzymes.

The ease of availability of the genome sequence of diverse Streptomyces has unfolded the genomic
context of all the BGCs, including cryptic BGCs, that can be analyzed by versatile in silico based BGC
prediction software (ActinoBase) [104]. Nevertheless, these tools provide an effective prediction of
diverse NPs belonging to different compound classes as PKS, NRPS, RiPPs, or hybrids, but still much
greater robustness and higher precision can be expected. In addition, the availability of web-based tools,
such as MASST [105], have enabled high-throughput screening of NPs based on their mass fragmentation
patterns, which can enable the precise prediction of the metabolite from the culture broth, independent of
the purification and structural elucidation steps. Furthermore, the available knowledge resources from
genomics and metabolomics can be employed for strain engineering, biosynthetic pathway engineering,
synthetic biology, systems biology, and media optimization technology for the production of such
cryptic/known biomolecules in significant titers [106]. Such burgeoning development in both genetic
studies, as well as metabolic profiling, can be further harnessed in metabolic engineering strategies
by the application of computational approaches, such as artificial intelligence (AI). These approaches
can be effective in simulating the connection between the genomics and metabolomics to generate
intelligence in these production hosts, so that they can sense the environmental condition, and respond
rationally [107]. Therefore, the next dimension for the activation of cryptic BGCs can be based on
computational optimization of genomics, proteomics, and metabolomics, based on machine learning
and AI. Such information can be utilized for the reincarnation of a particular production host by robust
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synthetic biological tools, or genome engineering approaches based on the predicted mathematical
models and simulations.
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