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Recherche Médicale (INSERM),
France

*Correspondence:
Patricio Oyarzun

patricio.oyarzun@uss.cl

Specialty section:
This article was submitted to

Vaccines and Molecular Therapeutics,
a section of the journal

Frontiers in Immunology

Received: 25 August 2020
Accepted: 11 January 2021

Published: 26 February 2021

Citation:
Oyarzun P, Kashyap M, Fica V,

Salas-Burgos A, Gonzalez-Galarza FF,
McCabe A, Jones AR, Middleton D

and Kobe B (2021) A Proteome-Wide
Immunoinformatics Tool to Accelerate
T-Cell Epitope Discovery and Vaccine

Design in the Context of Emerging
Infectious Diseases: An

Ethnicity-Oriented Approach.
Front. Immunol. 12:598778.

doi: 10.3389/fimmu.2021.598778

ORIGINAL RESEARCH
published: 26 February 2021

doi: 10.3389/fimmu.2021.598778
A Proteome-Wide
Immunoinformatics Tool to
Accelerate T-Cell Epitope Discovery
and Vaccine Design in the Context of
Emerging Infectious Diseases: An
Ethnicity-Oriented Approach
Patricio Oyarzun1*, Manju Kashyap1, Victor Fica1, Alexis Salas-Burgos2,
Faviel F. Gonzalez-Galarza3, Antony McCabe4, Andrew R. Jones4, Derek Middleton4

and Bostjan Kobe5

1 Facultad de Ingenierı́a y Tecnologı́a, Universidad San Sebastián, Sede Concepción, Concepción, Chile, 2 Departmento of
Farmacologı́a, Universidad de Concepción, Concepción, Chile, 3 Center for Biomedical Research, Faculty of Medicine,
Autonomous University of Coahuila, Torreon, Mexico, 4 Institute of Systems, Molecular and Integrative Biology, University of
Liverpool, Liverpool, United Kingdom, 5 School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience
and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia

Emerging infectious diseases (EIDs) caused by viruses are increasing in frequency,
causing a high disease burden and mortality world-wide. The COVID-19 pandemic
caused by the novel SARS-like coronavirus (SARS-CoV-2) underscores the need to
innovate and accelerate the development of effective vaccination strategies against EIDs.
Human leukocyte antigen (HLA) molecules play a central role in the immune system by
determining the peptide repertoire displayed to the T-cell compartment. Genetic
polymorphisms of the HLA system thus confer a strong variability in vaccine-induced
immune responses and may complicate the selection of vaccine candidates, because the
distribution and frequencies of HLA alleles are highly variable among different ethnic
groups. Herein, we build on the emerging paradigm of rational epitope-based vaccine
design, by describing an immunoinformatics tool (Predivac-3.0) for proteome-wide T-cell
epitope discovery that accounts for ethnic-level variations in immune responsiveness.
Predivac-3.0 implements both CD8+ and CD4+ T-cell epitope predictions based on HLA
allele frequencies retrieved from the Allele Frequency Net Database. The tool was
thoroughly assessed, proving comparable performances (AUC ~0.9) against four state-
of-the-art pan-specific immunoinformatics methods capable of population-level analysis
(NetMHCPan-4.0, Pickpocket, PSSMHCPan and SMM), as well as a strong accuracy on
proteome-wide T-cell epitope predictions for HIV-specific immune responses in the
Japanese population. The utility of the method was investigated for the COVID-19
pandemic, by performing in silico T-cell epitope mapping of the SARS-CoV-2 spike
glycoprotein according to the ethnic context of the countries where the ChAdOx1 vaccine
org February 2021 | Volume 12 | Article 5987781
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is currently initiating phase III clinical trials. Potentially immunodominant CD8+ and CD4+
T-cell epitopes and population coverages were predicted for each population (the Epitope
Discovery mode), along with optimized sets of broadly recognized (promiscuous) T-cell
epitopes maximizing coverage in the target populations (the Epitope Optimization mode).
Population-specific epitope-rich regions (T-cell epitope clusters) were further predicted in
protein antigens based on combined criteria of epitope density and population coverage.
Overall, we conclude that Predivac-3.0 holds potential to contribute in the understanding
of ethnic-level variations of vaccine-induced immune responsiveness and to guide the
development of epitope-based next-generation vaccines against emerging pathogens,
whose geographic distributions and populations in need of vaccinations are often well-
defined for regional epidemics.
Keywords: immunoinformatics, T-cell epitope, ethnicity, emerging-infectious disease, epitope discovery, vaccine
design, SARS-CoV-2
INTRODUCTION

Emerging infectious diseases (EIDs) are defined as infections
whose incidence or geographic range is rapidly increasing or
threatens to increase in the near future. EIDs have emerged at
an unprecedented rate due to a plethora of factors driven by
globalization and climate change, posing serious threats to
public health and economies (1). Wildlife is considered to be
the major source of viral pathogens causing emerging zoonotic
outbreaks (2), including mosquito-borne diseases (e.g., dengue,
Zika fever) (3), rodent-borne hantaviruses (4) and bat-borne
diseases (5), such as Ebola hemorrhagic fever, Nipah virus
encephalitis and severe acute respiratory syndrome (SARS).
According to the World Health Organization (WHO), disease
outbreaks and epidemics caused by emerging pathogens are
increasing in frequency over the past decades (6). In late 2019,
the novel SARS-like CoV designated as 2019-nCoV (SARS-
CoV-2) emerged in the city of Wuhan, China, causing a global
pandemic with high morbidity and mortality (7). As of August
23nd 2020, SARS-CoV-2 has caused ~23 million cases of the
disease (COVID-19) and ~800,000 deaths across the world.

Vaccination is a critical tool in the response to unpredictable
outbreaks of EIDs, but the complete process for bringing a
vaccine from the research laboratory to the market is long,
complex, and expensive (8). Traditional live-attenuated or
whole-inactivated viral vaccines are slow to develop and have
biosafety issues that make them poorly suited to respond to a
rapidly evolving pandemic crisis, especially without the
advantage of time and prior knowledge or experience with
viral growth or pathogenesis mechanisms (1). Vaccine
development for emerging pathogens is thus moving onto
faster and more advanced recombinant and nucleic acid-based
(DNA/RNA-based) approaches that address these issues by
incorporating modern technologies and a rational design basis
(9, 10). Accordingly, among the most advanced COVID-19
vaccine candidates are those encoding the SARS-CoV-2 spike
(S) protein, which have proved to be safe and immunogenic over
clinical development stages (11–13). These type of vaccines has
recently initiated phase III clinical trials to evaluate protective
org 2
efficacy at population level, including a recombinant adenovirus-
vectored vaccine (ChAdOx1; NCT04400838) and a lipid
nanoparticle-encapsulated mRNA-based vaccine (mRNA-
1273; NCT04470427).

HLA class I and class II molecules play a central role in the
immune response by presenting peptide antigens to CD8+
cytotoxic T-cells (CD8+ T-cell epitopes) and to CD4+ helper
T-cells (CD4+ T-cell epitopes). However, the huge variability of
the HLA system is a major issue for epitope-based vaccine
design, since individuals display different sets of HLA alleles
with variable ligand specificities (HLA-epitope restriction) and
expression frequencies that substantially differ among ethnicities
(14). Careful consideration of the HLA genetic background is
thus paramount to ensure effectiveness and ethnically unbiased
population coverage during vaccine development, especially
considering variations in T-cell responses across multiple
ethnicities (15). This problem is underscored by a significant
body of evidence accounting for population-level associations of
HLA polymorphisms with vaccine-induced immune responses
(16) and also with vaccine failure (17, 18). Likewise, COVID-19
has been associated with disproportionate mortality amongst
world populations (19, 20) and recent literature indicates that
individuals from minority ethnic communities are at increased
risk of infection from SARS-CoV-2 and subsequently adverse
clinical outcome (21, 22). Individual genetic variations of the
HLA system (different genotypes) may help explain differential
T-cell mediated immune responses to the virus and could
potentially alter the course of this disease (23), which has been
well-described for the closely related SARS-CoV (24, 25).

Epitope-based vaccination is gaining interest in the scientific
community, which allows for rational design of the immunogens
based on short protein regions or peptides that avoid
non-essential viral components and potentially toxic or
immunosuppressive protein fragments (26, 27). These vaccines
offer the prospect for a more prominent role of HLA-restricted
T-cell immune responses (“T-cell vaccines”), by inducing large
repertoires of T-cell specificities and further enabling rapid and
economic large-scale production through recombinant DNA
technology (28). Predicting the specificity of HLA class
February 2021 | Volume 12 | Article 598778
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I-restricted CD8+ T-cell epitopes and HLA class II-restricted
CD4+ T-cell epitopes is also a major consideration for epitope-
based vaccine design, due to the influence of the HLA phenotype
in the ability to mount effective immune responses (16).
Therefore, immunoinformatics tools play a key role in this
arena, as they allow to accelerate epitope discovery and vaccine
design through in silico mapping of thousands of peptides
(proteome-wide analysis) and by helping reduce the time and
cost involved in experimental testing (21). In addition, these
tools offer a framework to rationally deal with the enormous
diversity HLA proteins, which reached 27,599 HLA alleles as of
July 2020 (20,192 HLA class I and 7,407 HLA class II alleles),
according to the IMGT/HLA Database (Release 3.41.0) (29).

A few immunoinformatics methods have been developed to
aid the selection of T-cell epitopes by considering the fraction of
individuals potentially covered by epitope-based vaccines (30, 31).
Our previously reported method Predivac-2.0 optimizes the
selection of HLA class II-restricted CD4+ T-cell epitopes
predicted for specific target populations (32, 33). Herein, we
extended our specificity-determining residues (SDRs) approach to
CD8+ T-cell epitope prediction and subsequently describe a
substantial enhancement of the method to build on the
emerging paradigm of rational epitope-based vaccine design. The
new Predivac-3.0 tool was successfully cross-validated and
benchmarked against state-of-the-art pan-specific methods suited
for population level analyses [NetMHCPan 4.0 (34), Pickpocket
(35), PSSMHCPan (36) and SMM (37)], which are capable of using
available experimental MHC binding data to infer binding
preferences toward uncharacterized MHC molecules (38).

Predivac-3.0 was investigated for proteome-wide ethnicity-
driven predictions to guide the discovery and selection of
immunodominant HIV-1 specific T-cell epitopes, as well as the
identification of epitope-dense regions (clusters) of CD8+ and CD4+
T-cell epitopes associated with high-population coverages
(hotspots), in agreement with previous work showing the utility
of in silico tools to identify epitope hotspots in the sequence of
protein immunogens tested in subjects from different ethnic
backgrounds (39, 40). We finally demonstrate the utility of the
tool in the context of vaccine development for COVID-19
pandemic, by providing insight into putative T-cell epitopes and
hotspots in the SARS-CoV-2 spike glycoprotein that are potentially
immunodominant for the countries where the ChAdOx1 vaccine
(University of Oxford/AstraZeneca) is currently carrying out phase
III clinical trials (The United Kingdom, South Africa and Brazil).

To the best of our knowledge this is the first computational
approach for ethnicity-driven proteome-wide discovery of T-cell
epitopes and hotspots capable of inducing large repertoires of
immune specificities in populations at risk of emerging
pathogens, especially because the geographic distributions of
the zoonotic viruses and populations in need of vaccinations
are often well-defined for regional epidemics. Therefore,
Predivac-3.0 holds potential to contribute in the understanding
of vaccine-induced immune responsiveness in population
contexts and to aid the rational design of epitope-based next-
generation immunogens considering ethnic-level variations of
vaccine induced immune responses for EIDs.
Frontiers in Immunology | www.frontiersin.org 3
MATERIALS AND METHODS

Semi-Automated Identification of
SDR Positions
The identification of specificity-determining residues (SDRs)
involved in peptide ligand-protein recognition events has been
described previously for protein kinases (the Predikin tool) (41,
42) and for HLA class II proteins (the Predivac tool) (33), based
on the inspection of crystal structures. Herein we introduce an
improvement to the method for SDR determination, by
implementing a Python-based semi-automated workflow to
assist and simplify the identification of SDR positions in the
peptide-HLA protein interface. We first constructed a dataset
comprising 57 peptide-HLA class I complex structures (19
unique allotypes) available at the Protein Data Bank (PDB)
(43) (Table S1). The structures were manually processed to
select only the a chain with the corresponding bound peptide,
focusing the analysis on the recognition region (groove) formed
by the floor (eight antiparallel b-sheet folds) flanked by two
polymorphic helical regions (a1 and a2 domains). The
interaction interfaces were analyzed with the standalone
version of the Arpeggio tool (44), which uses geometrical and
biochemical features to automatically calculate and classify
interatomic interactions between each pairs of atoms for a
wide range of contact types (hydrogen bonds, halogen bonds,
carbonyl interactions, hydrophobic interactions, among others).
We assessed the role of each a-chain residues in contributing to
peptide binding by considering all possible non-covalent
pairwise interactions to extract nearest-neighbor atoms at each
peptide position (p1 to p9), using Arpeggio´s default cut-off
distance (5 Å). A consensus list of positions mainly involved in
determining the interactions was built with a threshold of 30%
occurrence, i.e. the residue in the interaction was present in 30%
or more of the structures. Subsequently, analysis of conservation/
variability and identification of polymorphic positions were
carried out by means of two metrics: (i) Shannon entropy (45)
and (ii) conservation score metrics described by Valdar in 2002
(46), which is implemented in the AACon tool1. AACon receives
as input a list of aligned sequences in Clustal format, which was
performed using MAFFT with default parameters (47) over a
dataset of 10,089 HLA class I protein sequences (allotypes) from
the Immuno Polymorphism Database (IPD)-IMGT/HLA
Database release 3.37 (29). Finally, a small set of critical and
polymorphic residue positions from the consensus list was
selected as those dictating specific interactions in HLA class
I proteins.

Software Implementation
The new Predivac-3.0 method was re-written in Python 3.7 It
consists of a main module that queries a purposed-built database
of HLA class I and II specificity-determining residues (SDRs) that are
associated with HLA protein sequences with high-affinity peptide
binders (PredivacDB) and a database of HLA allele frequencies
February 2021 | Volume 12 | Article 598778
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available at the Allele Frequency Net Database2 (AFND) (48). The
PredivacDB was updated to include both experimentally validated
high-affinity peptide ligands for HLA class I and class II proteins
(Table S2). In total, the database contains 26,068 peptides,
accounting for 77 HLA class I alleles (23,373 peptides) and 29
HLA class II alleles (2,695 peptides) that were exported and filtered
from the Immune Epitope Database (IEDB) (49). HLA class I
peptides with sequence length of 9 residues and experimentally
determined binding affinity (KD/IC50/EC50) < 500 nM were
considered, while sequences were removed if their binding affinity
was determined by whole-cell based assays, non-natural atoms were
present or Ala percentage > 50%. The method implemented by
Predivac-3.0 requires from the user to provide the query proteome
(Fasta file with multiple sequences) and to select the target
population (country/region). The tool then fetches HLA allele data
for this population (from the AFND) and automatically extracts
SDRs information from the HLA query proteins to perform in silico
T-cell epitope mapping. This is carried out by implementing the
Predivac scoring scheme based on peptide ligands available in the
PredivacDB. The whole procedure allows to predict ethnicity-driven
CD8+ and CD4+ T-cell epitopes along with performing population
coverage analysis, through aworkflow that is subsequently explained.

Scoring Scheme
The Predivac binding score is calculated by establishing a predictive
correlation between the SDRs in the HLA query protein(s) and the
SDRs associated with HLA class I or class II proteins of known
specificity from a pre-generated database (PredivacDB), by following
the next steps: (i) SDRs are identified in the HLA protein sequence;
(ii) PredivacDB is queried with the SDRs to retrieve peptide ligands
associated with HLA proteins sharing similar residues in these
positions (SDRs are considered similar if their sequence
comparison using the BLOSUM62 substitution matrix returns a
positive score); (iii) amino acid frequencies and weights are calculated
from the binding data and (iv) in silico T-cell epitope mapping is
carried out by parsing the protein sequence (query) into overlapping
9-mer segments (peptides), which are recursively assigned a binding
score with the SDR-derived position weight matrix (sliding window
technique). Predivac-3.0 selects by default T-cell epitopes scoring in
the top 1% of the full set of peptides for a given protein, i.e. it employs
a Peptide Percentile Rank (PPR) of binding scores of 1 (PPR = 1).
However, the user is allowed to retrieve a greater number of putative
T-cell epitopes by setting higher stringencies of 1, 2 or 3.

Ethnicity-Driven T-Cell Epitope Mapping of
Viral Proteomes
A workflow of the algorithm is presented in Figure 1, showing
that Predivac-3.0 accepts as input both protein sequences (Fasta
file) and full proteome sequences (multi-Fasta file). The method
runs for single HLA alleles (allele-specific T-cell epitope
prediction) and for specific target populations (ethnicity-driven
T-cell epitope prediction), by fetching HLA allele frequency
distributions from ethnic populations available at the AFND.
Ethnicity-driven T-cell epitope mapping follows a five-step
process: (i) the user sets a target geographic region or country;
2http://www.allelefrequencies.net/
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(ii) the program retrieves from the AFND all available HLA class
I and class II allele frequencies for population samples occurring
in this country/region; (iii) the program applies the Predivac
scoring scheme to predict T-cell epitopes for each HLA allele and
then it searches for promiscuous epitopes restricted to as many
alleles as possible in the target population; (iv) population
coverage is calculated for each promiscuous T-cell epitope as
the fraction of individuals that would be potentially covered in
the selected target population, by implementing a previously
reported algorithm (50); and (v) two alternative methods are
implemented to select T-cell epitopes based on population
coverage: (a) Epitope Discovery and (b) Epitope Optimization.

Epitope Discovery
This method outputs a full list of single putative T-cell epitopes
with their corresponding positions in the query proteins sorted
by population coverage, providing thus a top-down peptide
ranking from the highest to minimal coverage calculated for
the target population. In addition, the user is allowed to set a
particular Population Coverage Threshold (PCT) to filter the
report for T-cell epitopes delivering population coverage values
higher than a given threshold (%). By default, the method
retrieves all predicted T-cell epitopes (PCT = 0%).

Epitope Optimization
Predivac-3.0 implements a genetic algorithm (GA) that explores
numerous combinations of putative epitopes to find a
combination of l epitopes that maximizes the target population
coverage. The pseudocode of the GA is shown below:

Algorithm 1 Genetic Algorithm

Input: Initial parameter for GA

PopSize  100
MaxIteration  50
Stopcicle  False
l  1
1: PopFitness Genetic.fitness(epitopeHits)
2: MaxFitness max(PopFitness)
3: BestIndividual  GetIndividual(PopFitness)
4: while MaxFitness ≤ 99 and not stopcicle do
5: stopcond False
6: i 1
7: Population  InitPopulation(epitopesHits,PopSize)
8: Population  PairwiseComb(Population,BestIndividual)
9: while i < MaxIteration and not stopcond do
10: PopFitness Genetic.fitness(Population)
11: Parents Genetics.selection(Population,PopFitness,0.2)
12: O f f spring  Genetic.crossover(Parents,Population)
13: Population  Genetic.mutatePopulation(O f f spring,mutation Rate = 0.2)
14: NewPopFitness  Genetic.Fitness(Population)
15: MaxFitness  max(NewPopFitness)
16: BestIndividual  GetIndividual(NewPopFitness)
17: if StopCondition() then
18: stopcond True
19: end if
20: i i+ 1
21: end while
22: i i + 1

(Continued)
February 2021 | Volume 12 | Article 598778
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Continued

Algorithm 1 Genetic Algorithm

Input: Initial parameter for GA

23: If StopCicle() then
24: stopcicle  True
25: end if
16: end while
27: return the best solution
Front
Predivac-3.0 seeds a first epitope (l = 1) to start the iterative
process, which corresponds to the epitope (or individual) delivering
the highest population coverage in the target population
(BestIndividual). Each individual represents an epitope/HLA
restricted alleles predicted by Predivac-3.0 (EpitopesHits). Then, a
random population of 100 individuals is generated at each GA cycle
(loop in lines 4-26) and subsequently paired with the previous
BestIndividual. At each GA iteration (inner loop in lines 9-21), each
individual is assigned a fitness score equal to the population
coverage calculated for the target population (region/country).
The top-20 individuals are selected to breed a new set of
iers in Immunology | www.frontiersin.org 5
individuals by random, pairwise crossover, i.e. the top quintile of
epitope combinations that retrieve the highest population coverage.
Inner iterations are run until MaxIteration is achieved or until
fitness score does not change during last 10 iterations. The GA runs
until population coverage reaches a MaxFitness ≥ 99% or until the
MaxFitness value does not change in two consecutive cycles by
considering 3 significant figures (StopCycle), upon which the list of
epitopes (best solution) is returned.
Immunodominant T-Cell Epitope Clusters
and Hotspots
For proteome-wide analysis, the program scans the protein sequences
to detect regions with high-epitope density that are associated with a
high population coverage in the target country/region. This process is
performed through the Epitope Discovery mode of Predivac-3.0, by
detecting clusters of epitope overlaps (in 9-mer regions) or by
detecting epitope-rich regions in windows-frames of user-defined
length (in 30-mer regions, by default). In 9-mer regions, epitope
density was determined by considering both partially and completely
overlapping epitopes, while in 30-mer regions only completely (full-
FIGURE 1 | Flow-chart representing the steps followed by Predivac-3.0 to perform in silico ethnicity-driven T-cell epitope mapping over viral proteomes. The user must input
the sequence of the query proteome (or individual proteins) and set the target population (country or geographic region), upon which the program retrieves from the AFND the
HLA class I and class II allele frequency data available for population samples occurring in this country/region. Then, it searches the input proteome/proteins for putative CD8+
and CD4+ T-cell epitopes and epitope-rich regions (clusters/hotspots) by applying the SDR-based approach and querying the PredivacDB (Epitope Discovery mode).
Predivac-3.0 also implements a genetic algorithm that explores and optimizes T-cell epitope combinations maximizing population coverage (Epitope Optimization mode).
February 2021 | Volume 12 | Article 598778
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length) overlapping epitopes were employed. Clusters meeting the
following criteria were selected for proteome-wide analysis: (i)
epitope density ≥ 90% of the top amount of T-cell epitope overlaps
(in a proteome basis) and (ii) population coverage ≥ 20% in the target
population. The statistical significance of these clusters was
determined through a simulation procedure consisting of randomly
selecting (1000 times) 10% of same-length regions, using the average
epitope density of each simulation as the epitope distribution to
calculate p-values. Those regions having p-value < 0.001 were
considered as clusters. Further, overlapping clusters were merged
together and potentially the most reactive (immunodominant)
regions with population coverages ≥ 80% were denoted as hotspots.
Validation of Allele-Specific Predictions
The predictive performance in identification of CD8+ T-cell
epitopes was measured in terms of the area under the receiver
operating characteristic curve (AUC), which is a graphical plot of
the sensitivity versus the false positive rate (1 - specificity) as the
discrimination threshold is varied. The AUC provides an indication
of the accuracy of a prediction method, where an AUC = 1
corresponds to perfect predictions and AUC = 0.5 reflects
random predictions. The method was assessed by leave-one-allele-
out cross-validation (LOOCV) using a dataset of 17,425 high-
affinity peptide binders restricted by 46 HLA class I alleles with
25 or more peptide ligands in PredivacDB, as previously reported
(33). In addition, the method was benchmarked against the pan-
specific methods NetMHCpan 4.0 (34), PickPocket (35),
PSSMHCpan (36), and SMM (37). Two datasets were employed:
(i) the IEDB-dataset, 5750 experimentally determined CD8+ T-cell
epitopes (restricted by 47 HLA class I alleles) selected from the
IEDB database and (ii) the DFRMLI-dataset, 887 high-affinity viral
peptide ligands (tumor antigens were excluded) restricted by 7 HLA
class I alleles (HLA-A*01:01, A*02:01, A*03:01, A*11:01, A*24:02,
B*07:02, B*08:01, and B*15:01) (dataset available in Supplementary
Data Sheet 1). The DFRMLI-dataset was built from high-
throughput binding affinity data available at the Dana-Farber
Repository for Machine Learning in Immunology3, which
accounts for the cytomegalovirus (CMV) matrix protein pp65
(51), the human respiratory syncytial virus (RSV) and the human
metapneumovirus (MPV) (52).
Assessment of Population-Based
Predictions
The ability of Predivac-3.0 to identify ethnicity-driven T-cell
epitopes was tested on the HIV-1 proteome, by comparing CD8+
T-cell epitope predictions against a validation dataset derived
from Los Alamos HIV Molecular Immunology Database4 (here
referred as the HIV-dataset), which consists of 103 unique CD8+
T-cell epitopes that were experimentally determined from in
vivo/in vitro studies carried out in Japan (53) (dataset available
in Supplementary Data Sheet 2). This dataset includes
immunodominant T-cell epitopes from the following HIV-1
3http://projects.met-hilab.org/DFRMLI/
4http://www.hiv.lanl.gov/content/immunology/
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proteins, using the reference strain HXB2 (GenBank K03455):
Integrase (Pol; UniProt ID: P04585), envelope glycoprotein
(gp160; UniProt ID: P04578), Gag polyprotein (Gag; UniProt
ID: P04591), Nef protein (Nef; UniProt ID: P04601), viral
protein R (Vpr; UniProt ID: P69726), and viral infectivity
factor (Vif; UniProt ID: P69723). The predictive accuracy and
efficiency were calculated by the following equations:

Accuracy   %ð Þ = number   of   correct  matches
total   number   of   validation   epitopes

� �
� 100 1

Efficiency   %ð Þ = number   of   correct  matches
total   number   of   predicted   epitopes

� �
� 100 2

A correct match means that a predicted 9-mer T-cell epitope
is equal to or it is contained in the sequence of an experimentally
determined T-cell epitope from the validation dataset. Several
analyses were further carried out regarding the capability of
Predivac-3.0 to identify well-described immunodominant T-cell
epitopes, including Japanese-specific protective epitopes from
Gag and Pol protein regions included in the T-cell mosaic
vaccine tHIVconsvX (Table S3) (44) and a number of T-cell
epitopes recognized across multiple ethnicities (Table S4) (15).
Proteome-Wide Visualization
Circular representations of the viral proteomes were generated to
visualize ethnicity-driven T-cell epitope distributions, population
coverage and immunodominant clusters (hotspots) across the viral
proteins. Proteomemaps were constructed using the Circos package
(54), which renders concentric layers of information in the
following data dimensions (from outside inward): (i) location of
CD8+ and CD4+ T-cell epitopes relative to the reference strain
HXB2 (epitope mapping); (ii) number of T-cell epitopes spanning
each amino acid position (epitope density maps); (iii) percentage of
individuals potentially covered by predicted T-cell epitopes in user-
defined target populations (population coverage), both at each
amino acid position (in nonameric clusters) and for windows
frames of user-defined amino acid length (epitope-rich regions);
and (iv) short epitope-rich regions associated with high-population
coverages in the target population (hospots).
SARS-CoV-2 Case Study
The spike glycoprotein of SARS-CoV-2 (UniProt ID: P0DTC2)
was investigated with the Predivac-3.0 tools (using the Epitope
Discovery and Epitope Optimization modes). The goal of this
analysis was to identify immunodominant CD8+ and CD4+
T-cell epitopes and putative clusters/hotspots that are
potentially specific or common to the populations of the three
countries (The United Kingdom, South Africa and Brazil) where
phase III clinical trials are currently underway for the
ChAdOx1 adenovirus-vectored vaccine (University of Oxford/
AstraZeneca). The Japanese population was additionally
considered for comparison purposes to include an Asian ethnic
background. HLA allele frequency distributions in the four target
populations are illustrated in Figure 2 (AFND data), including
HLA class I (loci A and B) and HLA class II alleles (locus DRB).
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RESULTS

Allele-Specific T-Cell Epitope Predictions
Predivac-3.0 was implemented and assessed for its new capability
of CD8+ T-cell epitope prediction, based on SDR positions
that were determined in the peptide-HLA (pHLA) class I
interaction interface through a combination of structural
analysis of pHLA complex crystal structures and sequence
analysis of HLA polymorphisms (see Materials and Methods).
SDRs in the HLA protein sequence that were selected and
implemented in the software are the following positions (for
each P1-P9 peptide ligand position): P1 (62, 163), P2 (7, 9, 62,
99), P3 (66, 156, 159), P6 (70, 73, 156), P7 (152, 155, 156), P8 (76,
77) and P9 (77, 97, 116). Interactions for P4 and P5 were not
considered, since the side-chains of amino acid residues in the
middle of the peptides protrude out of the binding groove,
delivering only marginal contributions to specificity.
Frontiers in Immunology | www.frontiersin.org 7
The LOOCV procedure to determine the accuracy on HLA
class I alleles involves the exclusion of a single allele from the
database and then assessing the performance using the binding
data associated with that particular excluded allele. To build
balanced datasets for AUC calculation, we followed an
established validation strategy based on splitting the source
protein of each epitope (positive) into overlapping peptides
of the same length, and all peptides except the annotated
peptide were taken as negatives. The predictive performance
is shown in Figure 3A, proving a strong capability to predict
high-affinity peptide ligands (overall AUC = 0.8). Predivac-3.0
was also benchmarked against state-of-the-art pan-specific
methods for 8 HLA class I alleles using the DFRMLI-dataset
(high-affinity peptide binders), yielding AUC values of 0.909
(Predivac-3.0), 0.900 (NetMHCpan-4.0), 0.914 (Pickpocket),
0.905 (PSSMHCpan) and 0.928 (SMM-align) (Figure 3B).
Finally, performance comparison for CD8+ T-cell epitope
FIGURE 2 | HLA class I and class II allele distributions in Japan and the countries where the ChAdOx1 vaccine (University of Oxford/AstraZeneca) is currently
developing phase III clinical trials (The United Kingdom, South Africa and Brazil). The pie charts highlight the five most frequent HLA class I alleles (A and B loci) and
class II alleles (DRB locus) in each population according to data from the AFND.
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predictions (IEDB-dataset) resulted in AUC values of 0.903
(Predivac-3.0), 0.915 (NetMHCpan4.0), 0.931 (PickPocket),
0.927 (PSSMHCpan) and 0.934 (SMM-align) (Figure 3C).
Frontiers in Immunology | www.frontiersin.org 8
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The performance of the tool to deliver correct predictions of
CD8+ T-cell epitopes and immunodominant hotspot was
evaluated for the specific ethnic context of the Japanese
population (using the Epitope Discovery and Epitope
Optimized modes), by determining the accuracy and efficiency
of the T-cell epitope mapping algorithm on the HIV-1 proteome
(Figure 4). Using default parameters (PPR = 1; PCT = 0%),
Predivac-3.0 predicted 374 putative CD8+ T-cell epitopes and
detected 46 epitopes out of a top number of 103 T-cell epitopes in
the HIV-dataset (accuracy = 44.7%; efficiency = 12.3%). The
accuracy curves followed a comparable declination slope for
the three PPR values (1, 2 and 3) and behaved similarly in
the identification of CD8+ T-cell epitopes as the PCT was varied
from 0 to 100%, with top accuracies (at PCT = 0%) of 44.7%
(PPR = 1), 57.3% (PPR = 2) and 67% (PPR = 3). The search
reduced up to 202 peptides by increasing the PCT to 20%,
reaching a slightly lower accuracy of 31.1% (32 correct
matches) with an increase in the predictive efficiency up to
15.8%. The predictive efficiency for PPR 1 continues to rise as
the PCT increases, unlike for PPR 2 and PPR 3 that tend to
maintain around average values. For PPR 1, the average
efficiency (19.3%) proved statistically higher (p<0.05) than
that for PPR 2 (13.9%) and PPR 3 (12.8%). For details, see
Table S5.

Proteome-Wide Analysis
Circular maps for visualization of ethnicity-driven CD8+ and
CD4+ T-cell epitopes are presented in Figure 5 for the Japanese
population, which provide information on the distribution of
T-cell epitopes density across the HIV-1 proteome (rings 1–4),
population coverage potentially afforded in the Japanese
population (rings 5–7) and putative T-cell epitope clusters
and hotspots (ring 8), both for nonameric T-cell epitope
FIGURE 4 | Predictive performance of Predivac-3.0 in identification of HIV-
1 CD8+ T-cell epitopes specific for the Japanese population. The main
figure illustrates the accuracy delivered by the tool at Peptide Percentile
Rank (PPR) values of 1, 2 and 3, while the threshold of individuals
potentially covered by the epitopes in this population was varied between 0-
100% (PCT). The inset figures show the predictive efficiency of the tool at
each PCT (for PPR 1, 2 and 3), while stacked bars represent the proportion of
positive predictions or matches (dark grey) with respect to the total number of
predictions (light grey).
A B C

FIGURE 3 | Validation of CD8+ T-cell epitope predictions. (A) Overall predictive performance of Predivac-3.0 measured by leave-one-out cross-validation over 46
HLA class I alleles having more than 25 associated peptide ligands in PredivacDB. The benchmark against pan-specific methods (NetMHCpan 4.0, Pickpocket,
PSSMHCpan and SMM-align) using (B) a dataset of experimentally validated CD8+ T-cell epitopes derived from the IEDB Analysis Resource (IEDB-dataset) and
(C) a dataset of high-affinity peptide ligands derived from the Dana-Farber Repository for Machine Learning in Immunology (DFRMLI-dataset) (See Material and
Methods).
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FIGURE 5 | Circular plots showing the distribution of putative T-cell epitope clusters (hotspots) mapped onto the HIV-1 proteome and their corresponding
population coverages predicted for the Japanese population, either for (A) nonameric windows frames of overlapped T-cell epitopes and (B) 30 residues long
window frames of epitope-rich regions. Circles display the following features from the outside inward, based on the numbering standard of the reference strain
HXB2 (GenBank K03455) for amino acid coordinates: ring 1, CD8+ T-cell epitope map (magenta dots), ring 2, CD4+ T-cell epitope map (blue dots); ring 3, CD8+
T-cell epitope density plot (magenta plot); ring 4, CD4+ T-cell epitope density map (blue plot); ring 5, population coverage calculated for CD8+ T-cell epitope
clusters (magenta plot); ring 6, population coverage calculated for CD4+ T-cell epitope clusters (blue plot); ring 7, population coverage calculated for the combined
set of CD8+ and CD4+ T-cell epitope clusters (black plot) and ring 8, putative hotpots for CD8+ T-cell epitope clusters (magenta lines) and CD4+ T-cell epitope
clusters (blue lines). The innermost ring is divided by five parallel lines delimiting segments of population coverage ranges between 0-19%, 20-39%, 40-59%, 60-
79% and 80-100%.
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overlaps (Figure 5A) and for short regions (30 residues
long) with high-concentration of putative T-cell epitopes
(Figure 5B). As shown in proteome-wide plots, T-cell epitopes
are concentrated in epitope-dense regions across the HIV-1
Frontiers in Immunology | www.frontiersin.org 10
proteome, allowing the detection of relevant interactions
between CD8+ and CD4+ T-cell epitope clusters located in
Pol (111–141, 879–950), Env (619–646), Gag (267–301), Nef
(68–109, 172–202), Vif (11–44), Vpu (26–49), and Rev (44–97).
FIGURE 6 | In silico HLA class I-restricted T-cell epitope mapping of the HIV-1 proteome (isolate HXB2) targeting the Japanese population, with the Epitope
Discovery and Epitope Optimization modes of Predivac-3.0. Bars represent the position of putative CD8+ T-cell epitopes in Pol, Env, Gag, Nef, Vif, Vpu, Vpr, Tat and
Rev proteins, whose height accounts for the number of HLA class I alleles restricted by each epitope and black diamonds denote matches with immunodominant
CD8+ T-cell epitopes from the HIV-dataset. Circles correspond to the population coverage potentially afforded by each epitope, using red color to highlight specific
epitopes delivering coverages ≥ 80% in the target population. Red arrows correspond to CD8+ T-cell epitopes predicted by Predivac-3.0 with the optimization
algorithm.
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These regions are potential immunodominant hotspots
delivering high population coverages in the Japanese population.
Epitope Discovery and Epitope
Optimization
The Predivac-3.0 output for the Epitope Discovery mode is
presented in Figure 6, showing the position of all predicted
CD8+ T-cell epitopes in the HIV-1 proteome (PPR = 1;
PCT = 0), as well as the putative number of HLA class I alleles
restricted by each epitope and the corresponding population
coverages in the Japanese population. Promiscuous CD8+ T-cell
epitopes predicted to cover ≥ 80% of this population are highlighted
with red circles and listed in Table 1 for the proteins Env
(4 epitopes), Gag (2), Nef (1), Pol (5), Rev (1), Tat (2) and Vpr
(1). The total number of CD8+ T-cell epitopes matching epitopes in
the HIV-dataset (46 epitopes) is presented in Table S6, including
Pol (21), Env (3), Gag (17) and Nef (5). Reactive T-cell epitopes
predicted to cover ≥20% of the Japanese population are listed and
described in Tables S7 (CD8+ T-cell epitopes) and Table S8
(CD4+ T-cell epitopes). The most reactive CD8+ T-cell epitopes
(and population coverages) predicted in Gag are MTNNPPIPV
(97%), AEWDRVHPV (94.9%), and ILDIRQGPK (69.5%); in Nef
AVDLSHFLK (84.6%), FPVRPQVPL (78.1%), YPLTFGWCF
(73.4%) and EEEEVGFPV (62.5%); and in Vpr FPRIWLHSL
(81.3%). Likewise, a putative CD4+ T-cell epitope predicted inside
a Gag cluster (RWIILGLNK) is predicted to cover 75.5% of the
Japanese population. Interestingly, the top epitope predicted by
Predivac-3.0 in the Nef protein (AVDLSHFLK) is also located
within a peptide sequence (TYKAAVDLSHFLKEK) that was
reported as the most frequently targeted (47%) from a cohort of
HIV-1 infected US individuals (n=47) and also found within the
predicted epitope cluster FPVTPQVPLRPMTYKAAVDL
SHFLKEKGGLEGLIHSQRRQDI. Finally, Table 2 describes the
optimal set of promiscuous CD8+ T-cell epitopes predicted with the
Epitope Optimization mode to maximize the population coverage
in this country.
Frontiers in Immunology | www.frontiersin.org 11
T-Cell Epitope Clusters and
Immunodominant Hotspots
Figure 7 illustrates the position, number of associated T-cell
epitopes and predicted population coverage (color scale 0-100%)
of 66 HIV-1 specific T-cell epitope clusters spanning Env
(14 epitopes), Gag (13), Nef (7), Pol (17), Rev (4), Tat (2), Vif
(5), Vpr (1) and Vpu (3), both for CD8+ and CD4+ T-cell
epitopes (magenta and blue bars, respectively). Detailed
information about these T-cell epitope clusters is provided in
Supplementary Material (Table S9). In addition, 48 epitope-
rich regions are highlighted along with the nonameric T-cell
epitope overlaps, according to information provided in the inner
ring of Circos plots (see Materials and Methods). Potentially
most reactive T-cell epitope clusters (hotspots) are highlighted
inside dotted-line rectangles, which are regions predicted to
deliver ≥ 80% of population coverage in Japan (Table 3). This
figure also shows the colocalization of 42 T-cell epitopes from the
HIV-dataset with several putative clusters (Table S10), which
predictively would represent an accuracy of 40.8% and an
efficiency of 63.6%. Detailed information on the position and
statistical significance of CD8+ and CD4+ T-cell epitopes in each
cluster predicted in the HIV-1 proteome are presented in Tables
S11 and S12. In addition, Figure 7 highlights the position of
11 Japanese-specific vaccine-induced CD8+ T-cell epitopes
(5 from Gag and 6 from Pol) that have proved protective
in this population in response to the mosaic bivalent T-cell
vaccine tHIVconsvX (55). While the four T-cell epitopes
directly predicted by Predivac-3.0 were RMYSPTSIL,
IYQEPFKNL, ELKKIIGQVR and TAFTIPSI, T-cell epitope
clusters were capable of capturing knowledge on the position
of 7 out of 11 epitopes. As shown for Pol, five epitopes were
colocalized with putative clusters predicted in this protein:
YTAFTIPSI (YTAFTIPSINNETPGIRYQYNVLPQGW),
IYQEPFKNL (IQKQGQGQWTYQIYQEPFK), ELKKIIGQVR
(VVESMNKELKKIIGQVRDQA), GERIVDII and GERIVDIIA
(YSAGERIVDIIATDIQTKE) and two additional epitopes
w e r e f o u n d w i t h i n G a g c l u s t e r s : RMY S P T S I
TABLE 1 | Putative CD8+ T-cell epitopes from the HIV-1 proteome (HXB2 isolate) predicted by Predivac-3.0 to cover over 80% of the Japanese population (Epitope
Discovery mode).

Protein Peptide Protein amino acid position No of HLA class I alleles Coverage (%)

Env SVNFTDNAK 274–282 18 86.3
Env KPCVKLTPL 117–125 30 85.7
Env STQLFNSTW 387–395 24 85.6
Env IVNRVRQGY 704–712 20 85.6
Gag MTNNPPIPV 250–258 37 97.4
Gag AEWDRVHPV 210–218 31 94.9
Nef AVDLSHFLK 84–92 15 84.6
Pol WEFVNTPPL 569–577 30 93.7
Pol SPAIFQSSM 311–319 29 93.7
Pol KQGQGQWTY 486–494 26 89.9
Pol RQHLLRWGL 361–369 29 89.0
Pol KTAVQMAVF 888–896 20 84.9
Rev RSGDSDEEL 4–12 28 87.5
Tat HQNSQTHQA 59–67 31 91.0
Tat ITKALGISY 39–47 30 87.0
Vpr FPRIWLHGL 34–42 21 81.3
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(ILGLNKIVRMYSPTSILDIRQGPKEPFRDYVDRFY) and
A T L E E M M T A ( L L V Q N A N P D C K T I L K A L
GPAATLEEMMTACQGVGG), providing insight into the
validity of these broadly protective clusters and T-cell epitopes
for the Japanese population. In addition, the position of several
putative T-cell epitope clusters (in Gag and Nef proteins)
overlapped with previously identified regions that were
frequently recognized in HIV-tested subjects from four
ethnicities (African-Americans, Caucasians, Hispanics, and
West Indians) (15). Figure 8 depicts the sequence and position
of putative CD8+ and CD4+ T-cell epitope clusters overlapping
these immunodominant regions, showing their colocalization
with 4 protein regions (2 in Gag and 2 in Nef), as well as several
putative CD8+ T-cell epitopes with high population coverages
predicted for the Japanese population, such as AEWDRVHPV
(Gag 210–218; 94.9%), MTNNPPIPV (Gag 250–258; 97%) and
AVDLSHFLK (Nef 84–92; 84.6%).

Application to SARS-CoV-2
Finally, to test the utility of the method we performed in silico
mapping on the spike glycoprotein of SARS-CoV-2. Figure 9
Frontiers in Immunology | www.frontiersin.org 12
presents the output for the Epitope Discovery mode by targeting
the United Kingdom, South Africa, Brazil and Japan, showing
the position of CD8+ and CD4+ T-cell epitopes and clusters
potentially immunodominant for these populations, as well as
the number of restricting HLAs and predicted population
coverages. Most reactive T-cell epitopes in each country
(population coverage ≥ 80%) are highlighted in red circles and
listed in Table 4, showing the presence of two CD8+ T-cell
epitopes that would afford high coverages for all the populations
(ESNKKFLPF and KQIYKTPPI) and the epitope GTITSGWTF
would be highly promiscuous for the South African, Brazilian
and Japanese populations. Figure 9 also highlights with red
arrows the set of T-cell epitopes that was selected through the
genetic algorithm (the Epitope Optimization mode) in order
to maximize the coverage in each target population (Table 5).
Top coverages (≥ 99%) could potentially be reached with 2 to 4
T-cell epitopes, with the exception of CD4+ T-cell epitopes for
the South African population (72.4% coverage). Table S13 shows
with more detail the combination of epitopes selected by the
algorithm at each generation. Finally, Table 6 summarizes T-cell
epitope clusters potentially delivering population coverages
TABLE 2 | Optimal combinations of CD8+ T-cell epitopes predicted by Predivac-3.0 in each HIV-1 protein to maximize population coverage (≥ 99%) in the Japanese
population (Epitope Optimization mode).

GA generation T-cell epitope Protein amino acid position Individual population coverage Combined population coverage

Env
3 SVNFTDNAK 274–282 0.863 1.0

KLTSCNTSV 192–200 0.486
DPEIVTHSF 368–376 0.648

Gag
2 MTNNPPIPV 250–258 0.974 0.996

GPAATLEEM 338–346 0.462
Nef
3 FPVTPQVPL 68–76 0.781 1.0

YPLTFGWCY 135–143 0.734
RPMTYKAAV 77–85 0.511

Pol
2 WEFVNTPPL 569–577 0.937 0.997

YTAFTIPSI 282–290 0.793
Rev
3 RSGDSDEEL 4–12 0.875 1.0

RQIHSISER 50–58 0.499
YLGRSAEPV 63–71 0.43

Tat
2 HQNSQTHQA 59–67 0.91 1.0

ITKALGISY 39–47 0.87
Vif
4 WQVMIVWQV 5–13 0.444 1.0

HIVSPRCEY 127–135 0.515
LQYLALAAL 145–153 0.705
RIRTWKSLV 17–25 0.11

Vpu
3 IPIVAIVAL 4–12 0.739 0.999

VEMGHHAPW 69–77 0.702
IIAIVVWSI 17–25 0.546

Vpr
3 FPRIWLHGL 34–42 0.813 0.992

REPHNEWTL 12–20 0.403
DTWAGVEAI 52–60 0.235
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≥ 80% in each target region (hotspots), providing a comprehensive
description in Supplementary Material for putative clusters
specific for the populations of the United Kingdom (Table S14),
Frontiers in Immunology | www.frontiersin.org 13
South Africa (Table S15), Brazil (Table S16) and Japan (Table
S17). One particular region that rises interest spans positions 150
to 185 (KSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQ),
TABLE 3 | Immunodominant T-cell epitope clusters (hotspots) predicted by Predivac-3.0 in the HIV-1 proteome (HXB2 isolate) that are associated with population
coverages ≥ 80% in the Japanese population.

Prot Cluster T-cell epitopes Population coverage (%)

Sequence Position
(start-end)

CD8+ T-cell
epitopes

CD4+ T-cell
epitopes

Env IISLWDQSLKPCVKLTPLCVSL 108–129
(114–123)

4 – 92.6

Env YAFFYKLDIIPIDNDTTSYKLTSCNTSVI 173–201
(175–197)

– 7 81.9

Env SVITQACPKVSFEPIPIHYCAPAGFAILKCNNKTF 199–233
(204–228)

8 – 88.5

Env STVQCTHGIRPVVSTQLLLNGSL 243–265
(250–258)

4 – 92.0

Env HSFNCGGEFFYCNSTQLFNSTW 374–395
(380–389)

4 – 85.7

Env LEQIWNHTTWMEWDREINNYTSLIHSLI 619–646
(624–643)

5 5 99.9

Env GLRIVFAVLSIVNRVRQGYSP
LSFQTHL

694–721
(700–719)

6 – 97.1

Gag HSNQVSQNYPIVQNIQGQMVHQAISPRTLNAWVKVVEEKAFSPEV 124–168
(128–162)

10 – 92.0

Gag MLKETINEEAAEWDRVHPVHAGPIA 200–224
(205–217)

4 5 99.0

Gag ILGLNKIVRMYSPTSILDIRQGPKEPFRDYVDRFY 267–301
(270–297)

5 4 98.4

Nef FPVTPQVPLRPMTYKAAVDLSHFLK
EKGGLEGLIHSQRRQDI

68–109
(75–102)

5 6 99.9

Nef RQDILDLWIYHTQGYFPDWQNY 106–127
(112–121)

4 – 81.4

Nef EWRFDSRLAFHHVARELHPEY 182–202
(187–197)

– 4 80.5

Pol YTAFTIPSINNETPGIRYQYNVLPQGW 282–308
(289–304)

5 – 95.6

Pol IEELRQHLLRWGLTTPD
KKHQKEPPFLWMGY

357–387
(359–381)

7 – 96.1

Pol IQKQGQGQWTYQIYQEPFK 484–502
(487–499)

4 – 931

Pol VQKITTESIVIWGKTPKFKLPIQKETWETW 527–556
(533–550)

6 – 88.1

Pol WTEYWQATWIPEWEFVNTPPLVK 557–579
(562–576)

5 – 97.1

Pol QVRDQAEHLKTAVQMAVFIHNFKRKGGIGGY 879–909
(886–903)

5 – 94.2

Pol ITKIQNFRVYYRDSRNPLW 932–950
(935–947)

– 4 85.7

Rev RSGDSDEELIRTVRLIKLLY 4–23
(8–19)

4 – 94.0

Rev RWRERQRQIHSISERILGTYLGRSAEPVPLQLPP 44–77
(48–70)

7 – 95.2

Rev VPLQLPPLERLTLDCNEDCGTSGTQGV 71–97
(74–95)

– 6 84.6

Rev TQGVGSPQILVESPTVL 94–110
(95–109)

4 – 93.9

Vif VWQVDRMRIRTWKSLVKHHMYVSGKARGWFYRHHY 11–44
(14–37)

5 4 88.5

Vif SLQYLALAALITPKKIKPPLPSVTKLTEDRWNKPQKTK 144–181
(148–175)

9 – 99.5

Vpu VIIEYRKILRQRKIDRLIDRLIER 26–49
(32–44)

4 4 90.7
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In each cluster sequence the core region of overlapped T-cell epitopes is highlighted in bold and underscored, providing further information on the amino acid position in each protein, the
number of putative T-cell epitopes and the predicted population coverage in the target population.
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FIGURE 7 | T-cell epitope clusters and hotspots predicted by Predivac-3.0 in the HIV-1 proteome, both for CD8+ T-cell epitopes (magenta bars) and CD4+ T-cell
epitopes (blue bars). The left axis indicates the number of T-cell epitopes associated with each cluster and population coverage potentially afforded by the clusters in
the Japanese population is represented according to a color scale in the range 0-100%. Potentially the most reactive (immunodominant) regions with population
coverages ≥ 80% (hotspots) are highlighted inside dotted-line rectangles, while horizontal bars in the bottom denote ethnicity relevant sequences identified in a
previous work (15) (black) and Japanese-specific HIV-1 vaccine-induced CD8+ T-cell epitopes (dashed). Small red rectangles on top of the clusters indicate the
location of CD8+ T-cell epitopes from the HIV-dataset that colocalize with these regions.
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which comprises both CD8+ and CD4+ T-cell epitope clusters
consistently predicted for the populations of the United Kingdom,
South Africa, Brazil and Japan.
DISCUSSION

The impact of HLA polymorphism on viral replicative capacity
and disease progression has been widely documented in patients
infected by HIV-1 (56, 57). For example, HLA-B*57 and HLA-
B*27 (protective alleles) are well-known to associate with
successful immune control of HIV-1 or slow progression to
disease both in Caucasians and African populations, but not in
Asians where the frequencies of these alleles are very low (<1%)
(58). By contrast, HLA-B*18:01, HLA-B*45:01 and HLA-B*58:02
(disease-susceptible alleles) are strongly associated with high
viral load and rapid disease progression in African populations
(59). In addition, considerable work has been conducted to
determine population-level HLA associations with vaccine-
induced immune responses, which are hypothesized as relevant
parameters contributing to vaccine failure (17, 60). For example,
the lack of response of a recombinant HIV-1 vaccine (ALVAC
Env-gp120) designed to induce clade-specific neutralizing
antibodies to HIV-1 in the RV144 phase III trial (Thailand)
was strongly associated with the presence of certain HLA class II
alleles (DRB1*11 and DRB1*16:02) (18), and a recent study
assessing the relationship between HLA genotypes and RTS,S
vaccine-mediated protection (malaria infections) showed a
strong protective association with three allele groups (HLA-
A*01, HLA-B*08, and HLA-DRB1*15/*16) (61). In the latter
work, the authors discussed the potential impact of these HLA
Frontiers in Immunology | www.frontiersin.org 15
correlations on vaccine immunogenicity and efficacy in risk
populations (such as the sub-Saharan African region) where
these alleles are present at a lower prevalence than in the UK or
USA where these Phase II trials were carried out. This problem is
further complicated by the fact that racial and ethnic minority
groups generally remain underrepresented in clinical trials (62),
limiting the capability to test the efficacy and safety of new
clinical interventions across diverse populations and leading to a
lack of T-cell data for ethnicities in which viral epidemic
currently spreads (15). Therefore, a vaccine that delivers good
results for certain groups in Phase I and II trials does not
necessarily guarantee strong protective responses in ethnic
minority populations that are in more urgent need of new
vaccine initiatives (63).

Genetic variability of the HLA systemmay affect susceptibility
and severity of the disease caused by SARS-CoV-2, as recently
discussed in a comprehensive in silico analysis of viral peptide-
HLA class I binding affinity across 145 HLA types (23). Although
it is still early within the SARS-CoV-2 pandemic for broad
association studies with HLA markers, recent work found that
HLA-C*07:29 and HLA-B*15:27 alleles statistically correlated
with the occurrence of COVID‐19 from a sample of 82 Chinese
individuals with COVID‐19 that were genotyped for HLA‐A, ‐B,
‐C, ‐DRB1, ‐DRB3/4/5, ‐DQA1, ‐DQB1, ‐DPA1, and ‐DPB1 loci
(20). In addition, several associations between HLA alleles
provide susceptibility [e.g., B*46:01 (24), HLA‐B*07:03 (64)
and HLA-DRB1*12 (65)] or protection [e.g., DRB1*03:01 (66)]
to the closely related SARS-CoV-1 have been previously
described in Asian populations.

Our immunoinformatics approach addresses this challenge
by providing a computational framework to deal with the
extent of HLA diversity. We have previously reported the
FIGURE 8 | HIV-1 specific T-cell epitopes predicted by Predivac-3.0 for the Japanese population (Epitope Discovery mode), which match immunodominant regions
identified across several ethnicities (15). Clusters of overlapped CD8+ (magenta) and CD4+ (blue) T-cell epitopes are highlighted for Gag and Nef, while population
coverages associated with the most reactive T-cell epitopes are indicated next to the corresponding sequences.
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pan-specific tools Predivac-1.0 (33) and Predivac-2.0 (32) to aid
CD4+ T-cell epitope-based vaccine design in the context of
genetically heterogeneous human populations. Herein, we
describe a significant enhancement in our Predivac approach
to contribute to the development of genetics-driven
immunization strategies that take into account the ethnic
diversity of T-cell recognition in the population to be
vaccinated. Predivac-3.0 enables proteome-wide ethnicity-
driven CD8+ and CD4+ T-cell epitope prediction to select
promiscuous T-cell epitopes priming broad immune responses
in target groups, with an additional focus on the identification of
immunologically relevant T-cell epitope-rich antigen regions
potentially affording high-coverage in the target population
(referred as hotspots). As shown in Figure 3A, the method was
successfully validated in LOOCV experiments for 45 HLA class I
Frontiers in Immunology | www.frontiersin.org 16
alleles (17,425 peptides) represented in PredivacDB (AUC = 0.8),
by employing a highly rigorous LOOCV methodology that
involves excluding an individual allele from the database and
then evaluating performance using the dataset of high-affinity
peptides restricted by that particular allele (positive dataset). In
addition, the tool proved outstanding performance in the
benchmarks (Figures 3B, C), delivering comparable accuracies
against top-performing state-of-the art methods using the IEDB-
dataset (average AUC = 0.915) and DFRMLI-dataset (average
AUC = 0.909). These AUC values (~0.9) are indicative of
excellent discrimination capability, while the lesser AUC (0.8)
obtained in LOOCV is typically expected as a consequence of the
more stringent experimental condition of systematically
removing 100% of the data for the specific tested allele. To
maintain balanced datasets for AUC calculation (LOOCV and
FIGURE 9 | In silico T-cell epitope mapping of the SARS-CoV-2 spike glycoprotein (UniProt ID: P0DTC2) targeting the populations of The United Kingdom, South
Africa, Brazil and Japan, using the Epitope Discovery and Epitope Optimization modes of Predivac-3.0. Bars in the plots represent the position of putative T-cell
epitopes, whose height accounts for the number of CD8+ and CD4+ T-cell epitopes. Circles correspond to the population coverage potentially afforded by the
epitopes in the target populations, with epitopes delivering coverages ≥ 60% indicated with red color. Shaded regions mark the position of putative T-cell epitope
clusters delivering population coverages ≥ 60% (hotspots). In addition, T-cell epitopes predicted by Predivac-3.0 using the optimization algorithm are indicated over
the circles with red arrows. A protein scheme with domain organization is presented on the bottom the figure, highlighting the position of the receptor-binding
domain (RBD) and heptad repeat 1 and 2 (HR1 and HR2). Aromatic amino-acid rich pre transmembrane regions (PTM) involved in the mechanism of viral entry are
represented in green color.
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TABLE 4 | List of the top promiscuous CD8+ T-cell epitopes in the SARS-CoV-2 spike glycoprotein predicted by Predivac-3.0 to deliver above 80% coverage in the
populations of the United Kingdom, South Africa, Brazil, and Japan (using the Epitope Discovery mode).

Protein Peptide Amino acid position Coverage (%) No. of HLA class I alleles

The United Kingdom
Spike ESNKKFLPF 554–562 86.9 29
Spike KQIYKTPPI 786–794 85.2 31
Spike GTKRFDNPV 75–83 82.8 15
Spike RVDFCGKGY 1039–1047 82.1 18
Spike MTSCCSCLK 1237–1245 80.9 18
Spike GVYFASTEK 89–97 80.2 16
South Africa
Spike KQIYKTPPI 786–794 88.5 128
Spike ESNKKFLPF 554–562 86.1 144
Spike GTITSGWTF 880–888 85.2 147
Brazil
Spike KQIYKTPPI 786–794 90.6 130
Spike ESNKKFLPF 554–562 80.9 144
Spike WTFGAGAAL 886–894 80.2 116
Japan
Spike ESNKKFLPF 554–562 93.8 33
Spike GTITSGWTF 880–888 91.2 33
Spike KQIYKTPPI 786–794 90.9 33
Spike KIYSKHTPI 202–210 90.5 27
Spike ITDAVDCAL 285–293 83.0 18
Spike WTFGAGAAL 886–894 82.9 24
Spike KEIDRLNEV 1181–1189 82.2 23
Spike TLDSKTQSL 109–117 81.0 11
In bold, epitope sequences that are potentially immunodominant in most of the countries.
TABLE 5 | Optimal combinations of CD8+ and CD4+ T-cell epitopes selected by Predivac-3.0 in the SARS-CoV-2 spike glycoprotein at the last generation of the
genetic (GA) algorithm, which maximize the population coverage in the United Kingdom, South Africa, Brazil, and Japan (Epitope Optimization mode).

T-cell
epitopes

Amino
acid

position

Individual
population
coverage

Combined
population

coverage (%)

Putative allele restriction

The United Kingdom
CD8+ T-cell epitopes
KIYSKHTPI 202–

210
0.762 99.2 A*02:01(0.288),B*07:02(0.152),B*51:01(0.046),A*01:01(0.207),A*03:01(0.137),A*11:01(0.069),A*24:02(0.068),

A*25:01(0.021),A*26:01(0.019),B*57:01(0.036)
RVDFCGKGY 1039–

1047
0.821

CD4+ T-cell epitopes
YHKNNKSWM 145–

153
0.283 99.9 DRB1*11:01(0.045),DRB1*13:01(0.043),DRB1*13:02(0.032),DRB1*07:01(0.137),DRB1*01:01(0.088),

DRB1*15:01(0.147),DRB1*04:04(0.040),DRB1*04:03(0.024),DRB1*03:01(0.135),DRB1*04:01(0.120),
DRB1*04:04(0.040)FPQSAPHGV 1052–

1060
0.449

VKQLSSNFG 963–
971

0.464

ICGDSTECS 742–
750

0.567

South Africa
CD8+ T-cell epitopes
KQIYKTPPI 786–

794
0.885 100% A*23:01(0.085),A*68:02(0.081),A*30:02(0.072),A*30:01(0.056),B*42:01(0.097),B*58:02(0.068),B*08:01(0.059)

B*40:06(0.039),B*57:03(0.032),A*23:01(0.085),A*30:02(0.072),A*24:02(0.051),B*42:01(0.097),B*15:03(0.076)
B*44:03(0.070),B*08:01(0.059),B*15:10(0.068),B*07:02(0.036),B*14:01(0.032).ESNKKFLPF 554–

562
0.861

MIAQYTSAL 869–
877

0.499

CD4+ T-cell epitopes
FQTLLALHR 238–

246
0.298 72.4 DRB1*13:01(0.128),DRB1*13:02(0.03),DRB1*10:01(0.004),DRB1*13:05(0),DRB1*03:01(0.137),DRB1*03:02

(0.09),DRB1*03:04(0.077),DRB1*09:01(0.008), DRB1*10:01(0.004)
YECDIPIGA 660–

668
0.516
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TABLE 5 | Continued

T-cell
epitopes

Amino
acid

position

Individual
population
coverage

Combined
population

coverage (%)

Putative allele restriction

FKNHTSPDV 1156–
1164

0.0178

FGAISSVLN 970–
978

0.008

Brazil
CD8+ T-cell epitopes
KQIYKTPPI 786–

794
0.906 99.2 A*02:01(0.178),A*23:01(0.037),B*48:03(0.045),B*08:01(0.041),B*18:01(0.040),B*51:01(0.038),B*35:06(0.035),

B*35:03(0.033),A*68:01(0.079),A*03:01(0.062),B*18:01(0.040),B*35:01(0.033),B*44:03(0.031),
IPFAMQMAY 896–

904
0.672

CD4+ T-cell epitopes
YSVLYNSAS 365–

373
0.766 99.2 DRB1*16:02(0.151),DRB1*08:02(0.136),DRB1*14:02(0.073),DRB1*11:01(0.032),DRB1*04:11(0.066),

DRB1*04:04(0.058),DRB1*07:01(0.054),DRB1*09:01(0.034),DRB1*16:02(0.151),DRB1*03:01(0.057)
VKQLSSNFG 963–

971
0.408

FKNHTSPDV 1156–
1164

0.179

FDEDDSEPV 1256–
1264

0.411

Japan
CD8+ T-cell epitopes
ESNKKFLPF 554–

562
0.938 99.9 A*24:02(0.319),A*26:01(0.072),A*26:02(0.018),B*52:01(0.104),B*15:01(0.083),B*51:01(0.083),B*35:01(0.078),

B*44:03(0.070),A*02:01(0.105),A*02:06(0.085),B*52:01(0.104),B*51:01(0.083),B*54:01(0.081),B*40:02(0.078),
B*40:01(0.051),B*40:06(0.047)KQIYKTPPI 786–

794
0.909

CD4+ T-cell epitopes
YSVLYNSAS 365–

373
0.727 99.4 DRB1*04:05(0.117),DRB1*15:02(0.084),DRB1*08:03(0.069),DRB1*13:02(0.052),DRB1*01:01(0.048),

DRB1*08:02(0.039),DRB1*14:08(0.118),DRB1*08:03(0.069),DRB1*08:02(0.039),DRB1*14:01(0.032),
DRB1*09:01(0.117),DRB1*15:01(0.055)MESEFRVYS 153–

161
0.574

IAQYTSALL 870–
878

0.316

LYENQKLIA 916–
924

0.231
Frontiers in Imm
unology |
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Putative HLA class I-allele restriction is provided along with their corresponding population frequency in each country (ANFD data).
TABLE 6 | Potentially immunodominant T-cell epitope clusters in the spike glycoprotein of SARS-CoV-2, predicted by Predivac-3.0 to yield coverages ≥ 80% in the
populations of the United Kingdom, South Africa, Brazil and Japan.

Cluster T-cell epitopes

Sequence Amino
acid

position

Population
coverage

(%)

CD8+ T-cell
epitopes

CD4+ T-cell epitopes

The United Kingdom
GTKRFDNPVLPFNDGVYFASTEK 82–90

(75–97)
99.9 GTKRFDNPV,

RFDNPVLPF,
LPFNDGVYF,
GVYFASTEK

–

KIYSKHTPINLVRDLPQGF 205–217
(202–
220)

85.0 KIYSKHTPI,
YSKHTPINL,
TPINLVRDL,
LVRDLPQGF

–

NENGTITDAVDCALDPLSETKCTLKSFTVEK 285–303
(280–
310)

93.7 NENGTITDA,
ITDAVDCAL,
AVDCALDPL,
ALDPLSETK,
ETKCTLKSF,
TLKSFTVEK

–

(Continued)
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TABLE 6 | Continued

Cluster T-cell epitopes

Sequence Amino
acid

position

Population
coverage

(%)

CD8+ T-cell
epitopes

CD4+ T-cell epitopes

NYLYRLFRKSNLKPFERDISTEI 457–465
(450–
472)

90.6 NYLYRLFRK,
RLFRKSNLK,
KSNLKPFER,
FERDISTEI

–

SVAYSNNSIAIPTNFTISVTTEI 711–719
(704–
726)

88.7 SVAYSNNSI,
AYSNNSIAI,
IPTNFTISV,
FTISVTTEI

–

IITTDNTFVSGNCDVVIGIVNNTV 1115–
1130
(1114–
1137)

89.7 – IITTDNTFV,ITTDNTFVS,
FVSGNCDVV,VSGNCDVVI,
VIGIVNNTV

South Africa
GTKRFDNPVLPFNDGVYFASTEK 82–90

(75–97)
99.9 GTKRFDNPV,

RFDNPVLPF,
VLPFNDGVY,
LPFNDGVYF,
GVYFASTEK

–

Brazil
GTKRFDNPVLPFNDGVYFASTEK 82–90

(75–97)
99.9 GTKRFDNPV,

RFDNPVLPF,
VLPFNDGVY,
LPFNDGVYF,
GVYFASTEK

–

VYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVF 150–190
(143–
194)

84.2 – VYYHKNNKS,YHKNNKSW,
MESEFRVYS,FRVYSSANN,
VYSSANNCT,YSSANNCTF,
FEYVSQPFL,FLMDLEGKQ,
LMDLEGKQG,MDLEGKQGN,
FKNLREFVF

YNYLYRLFRKSNLKPFERDISTEI 454–467
(449–
472)

84.3 – YNYLYRLFR,LYRLFRKSN,
YRLFRKSNL,LKPFERDIS,
FERDISTEI

Japan
STQDLFLPFFSNVTWFHA 52–65

(50–67)
86.8 STQDLFLPF,

TQDLFLPFF,
LPFFSNVTW,
FSNVTWFHA

-

GTKRFDNPVLPFNDGVYFASTEK 82–90
(75–97)

99.0 GTKRFDNPV,
RFDNPVLPF,
LPFNDGVYF,
GVYFASTEK

-

EFQFCNDPFLGVYYHKNNK 135–147
(132–
150)

93.5 EFQFCNDPF,
FQFCNDPFL,
FCNDPFLGV,
GVYYHKNNK

-

KSWMESEFRVYSSANNCTFEYVSQPFL 155–175
(150–
176)

93.3 KSWMESEFR,
SEFRVYSSA,
YSSANNCTF,
SANNCTFEY,
TFEYVSQPF,
FEYVSQPFL,

-

NENGTITDAVDCALDPLSETKCTLKSF 285–300
(280–
306)

95.6 NENGTITDA,
ITDAVDCAL,
AVDCALDPL,
ALDPLSETK,
ETKCTLKSF

-

(Continued)
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IEDB benchmark), negative examples were taken from the
epitope source protein, by splitting the sequence into
overlapping peptides of the same length as the epitope and
all peptides except the annotated peptide were assumed
as negatives.

We then focused on proteome-wide identification of
immunodominant hotspots in order to improve the value of
the method for vaccination purposes, in agreement with
numerous studies supporting that immunodominant T-cell
epitopes are not randomly distributed along the protein
sequence, but tend to cluster in limited regions of the antigen
undergoing efficient processing (39). The rationale behind this
approach is that only a few peptides from complete antigens
are7nbsp;capable of inducing significant responses following
immunization, which are those peptides presented to T-cells in
association with HLA class I and II molecules (67). Accordingly,
a significant body of literature underscores the influence of three-
dimensional structure of antigens over the likelihood of peptides
to be proteolytically released from the source protein, either
through the proteasome-mediated endogenous pathway (CD8+
T-cell epitopes) (68) and cathepsin-mediated exogenous
pathway (69). However, an alternate reasoning path correlates
immunodominant hotspots with promiscuous binding in
antigen regions containing a certain density of peptides that
bind multiple HLA types (40, 70). Because promiscuous peptides
can be presented to T-cells by many individuals (promiscuous T-
cell recognition), the identification of regions that are highly
enriched in MHC ligands holds potential to define population-
based biomarkers as correlates of immunological protection to
compare candidate vaccines in efficacy clinical trials (39, 71).

An earlier approach to select promiscuous epitopes is based
on the concept of supertypes, which are clusters of HLA
molecules sharing overlapping peptide repertories (72). Pepvac
is a computational tool based on this approach (30), which
depends on pre-calculated population coverages for five HLA
Frontiers in Immunology | www.frontiersin.org 20
class I supertypes (A2, A3, A24, B7, and B15) and accounts for
five major American ethnic groups (Black, Caucasian, Hispanic,
Native American and Asian). By contrast, allele-based selection
methods such as Predivac (32, 33) and OptiTope (31) define
promiscuous epitopes as those restricted to as many HLA alleles
as possible in a given target population. However, instead of
providing population coverage as a function of allele frequency
distributions, OptiTope performed “allele coverage” by summing
up for each locus the fraction of alleles targeted by predicted T-
cell epitopes in a given population. Although we could not
compare Predivac-3.0 with OptiTope, since the web-based tool
is not currently available, our method offers a more accurate
framework by implementing a population coverage algorithm
(50) based on HLA genotypic frequencies from the AFND (73),
which is the most comprehensive repository of immune gene
frequencies of worldwide populations. Therefore, our approach
takes into account the fact individuals display different sets of
HLA alleles with particular binding specificities and expression
frequencies that dramatically differ among different
ethnicities (32).

HIV-specific T-cell responses play a pivotal role in the anti-
HIV immune response (74). Therefore, the successful
identification of HIV-1 specific CD8+ T-cell epitopes in the
exploratory analysis for the Japanese population lends support to
the utility of the tool in ethnicity-driven T-cell epitope discovery
(Figure 4). We showed Predivac-3.0 was capable of identifying
46 out of 103 immunodominant T-cell epitopes (44.7%
efficiency) from the HIV-dataset with default parameters
(PPR = 1; PCT = 0%). Prediction accuracies gradually declined
as the population coverage threshold (%) increases for each PPR
value (1, 2 and 3), accounting for the growing number of CD8+
T-cell epitopes that are missed as the tool stops selecting epitopes
below that threshold limit. However, by filtering T-cell epitopes
covering ≥ 20% of the Japanese population (PCT = 20%) the
universe of predicted CD8+ T-cell epitopes to be searched
TABLE 6 | Continued

Cluster T-cell epitopes

Sequence Amino
acid

position

Population
coverage

(%)

CD8+ T-cell
epitopes

CD4+ T-cell epitopes

SVAYSNNSIAIPTNFTISVTTEI 711–719
(704–
726)

92.6 SVAYSNNSI,
AYSNNSIAI,
IPTNFTISV,
FTISVTTEI

-

YEQYIKWPWYIWLGFIAGLIAIV 1213–
1221
(1206–
1228)

85.6 YEQYIKWPW,
EQYIKWPWY,
WPWYIWLGF,
FIAGLIAIV

-

VYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGN 150–183
(143–
185)

88.8 VYYHKNNKS,YHKNNKSW,
MESEFRVYS,FRVYSSANN,
VYSSANNCT,YSSANNCTF,
FEYVSQPFL,FLMDLEGKQ,
LMDLEGKQG,MDLEGKQGN
Februar
In each cluster, the core region of overlapped T-cell epitopes is highlighted in bold/underscored, showing the amino acid position in each protein, the population coverage in the target
populations and the CD8+ or CD4+ T-cell epitopes associated to each cluster.
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decreased to 46% (from 373 to 201 epitopes), with a slight
reduction in the accuracy (from 44.2 % to 31.8 %). A good
trade-off must balance the predictive accuracy with a reasonable
amount of predicted T-cell epitopes to be experimentally tested
in the laboratory, because this number must be kept low enough
to make the tool useful in accelerating epitope discovery. Inset
plots in Figure 4 show that for PCT = 0% the number of putative
CD8+ T-cell epitopes increased from 373 (PPR = 1) to 583
(PPR = 2) and to 719 (PPR = 3), increasingly loosing utility for
experimental validation purposes. This is considered a good and
sensitive result, especially because the HIV-1 positive dataset
(103 CD8+ T-cell epitopes) accounts for a tiny portion (2.4%)
of the HIV-1 proteome (4234 amino acids), providing insight
into the methods capability to guide epitope discovery in
population context. Furthermore, the HIV-dataset only
accounts for currently characterized immunodominant T-cell
epitopes, leading to the reasonable supposition that accuracy
could potentially become higher as new Japanese-specific CD8+
T-cell epitopes are identified in the future. This assumption is
underscored by comprehensive HIV-specific epitope mapping
studies showing CD4+ and CD8+ T-cell responses across the
entire viral proteome (75, 76).

An interesting study case to explore the utility of the tool is
the mosaic bivalent T-cell vaccine tHIVconsvX, which comprises
5 Gag-specific and 6 Pol-specific T-cell epitopes (Table S3) with
the ability to suppress HIV-1 replication in vivo and correlate
with better clinical outcome (low pVLs and high CD4 counts) in
treatment-naïve HIV-1 clade B-infected Japanese individuals
(55). The reactivity of this vaccine has been recently
characterized in the Japanese population, proving that Gag-
specific T cell epitopes (5 epitopes) were found restricted by
HLA-B* 52:01, HLA-A*02:06, HLA-A*33:03, and HLA-B*40:02,
while the Pol-specific T-cell epitopes (6 epitopes) were restricted
by HLA-A*24:02, HLA-A*33:03, HLA-B*40:02, HLA-B*40:06,
HLA-B*51:01 and HLA-B*52:01. HLA-B*57, HLA-B*58, and
HLA-B*27 are well-known protective alleles for AIDS
progression in Caucasians and Africans infected with HIV-1
(65–67). However, the less-characterized HLA*B*52:01 allele
is prevalent in the Japanese population (68) and the HLA-
B*52:01-C*12:02 haplotype has been suggested to be protective
in Japanese individuals, where HLA-B*57, HLA-B*58, or HLA-
B*27 are present at very low frequencies in this population (50).
The CD8+ T-cell epitopes predicted by Predivac-3.0 to cover
79.3% of the Japanese population (YTAFTIPSI; 282-290) was
consistently predicted with HLA*B*52 allele restriction, which in
previous studies has been associated with low viral loads in HIV-
infected Japanese individuals (69) and also elicited HLA-
B*52:01-restricted CD8+ T-cells with strong ability to suppress
HIV-1 replication in this population (70).

Predivac-3.0 was effective in identifying immunodominant
T-cell epitopes in the HIV dataset, but also guided the detection
of Japanese-specific T-cell epitope clusters (hotspots) in the
HIV-1 proteome (Figures 5 and 6), in agreement with a recent
work that provided evidence in favor of the utility of
immunoinformatics tools to identify these regions exclusively
based on promiscuous HLA peptide binding (40). Indeed, the
Frontiers in Immunology | www.frontiersin.org 21
method was sensitive to capture information on the location of
additional CD8+ T-cell epitopes from the HIV-dataset that
overlapped putative CD8+ and CD4+ T-cell epitope clusters
(Figure 7). Putative clusters predicted by Predivac-3.0 are
additionally colocalized with 4 immunodominant regions
(2 in Gag and 2 in Nef) that are broadly recognized by HIV-
infected subjects from several ethnicities, showing the
clustering of several CD8+ and CD4+ T-cell epitopes
predicted by Predivac 3.0 (Figure 8; Table S9). These results
lend support to the reactivity of these regions in the Japanese
population, but also about their potential for “universal” T-cell-
based vaccination against HIV-1 in heterogeneous ethnic
populations (15, 77).

An interesting finding of the current study is the detection of
strong immunodominant hotspot signals in the regulatory
protein Rev, with four T-cell epitope clusters potentially
delivering population coverages above 80% in Japan (positions
4–23; 44–77; 71–97; 94–110). These regions hold interest for
vaccine development in this particular ethnic population,
suggesting crosslinking between CD8+ and CD4+ T-cell
epitopes between positions 71 and 110 of the protein. Indeed,
the research has largely focused on the assessment of immune
responses directed against Nef and late-expressed HIV-1
structural proteins (Gag, Pol and Env), which concentrate the
vast majority of well-defined T-cell epitopes (53). By contrast,
regulatory (Tat and Rev) and accessory proteins (Vpr, Vpu and
Vif) are less frequently targeted by cytotoxic T-cells in study
subjects from clinical interventions (75). This result is consistent
with previous works suggesting these proteins might be
promising targets for vaccine development (78). A substantial
amount of evidence points out that cytotoxic T-cell responses
directed against non-structural proteins (Tat, Rev, Vpr, Vpu and
Vif) contribute importantly to the total magnitude of the HIV-1
specific cellular immune response (79, 80). Because these
proteins are expressed earlier in the viral life cycle, their
recognition may occur before Nef down-modulates HLA class
I molecules on the surface of the infected cells and thus provide a
window of opportunity to the immune system to clear the
infected cell before the virus is released (81). Another CD8+
T-cell epitope predicted by Predivac-3.0 within a cluster region
of Vpr is the HLA-A*02:01-restricted peptide AIIRILQQL (82,
83), which is located in a functionally important region involved
with perinuclear localization of the protein (84, 85). This peptide
has been shown to correlate inversely with plasma viral load and
positively with CD4 count in a study involving a cohort of HIV-1
infected individuals expressing the HLA-A*02:01 allele (80). A
study about HLA haplotype frequencies in the Japanese
population states that ~80% of this population could be
responsive for a vaccine containing T-cell epitopes presented
by HLA-A*02:01 (86).

HLA diversity is likewise a crucial host genetic factor in
determining variations in the T-cell responses of HIV-infected
patients across multiple ethnicities (15). In this regard, the
Japanese-specific density maps (T-cell epitope clusters/
hotspots) predicted in the HIV-1 proteome are different to
those available at Los Alamos HIV Molecular Immunology
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Database, accounting for population-level specificities in HLA
class I and II frequencies. Interestingly, T-cell epitope clusters
allowed a higher efficiency (63.6%) in detecting the position of
immunodominant T-cell epitopes from the HIV-dataset (by
means of colocalization) than that obtained through direct
epitope prediction (12.3%), while both approaches delivered
similar accuracies around 40–45% (default parameters PPR = 1;
PCT = 0%). Ethnic specificity of HIV immunodominant
patterns has been also discussed in a meta-analysis of epitope
mapping data from three large vaccination clinical trials carried
out in different countries (Merck16, HVTN 054 and HVTN
502/Step), which showed that HIV-1 T-cell responses clustered
into distinct hotspot patterns associated with study subjects
with different ethnic background (39). Similarly, our analysis
carried out on the SARS-CoV-2 spike glycoprotein showed
immunodominance patterns accounting for population-
specific T-cell epitopes and clusters in the four studied
populations (The United Kingdom, South Africa, Brazil and
Japan), but also for a few putative immunodominant T-cell
epitopes and regions that are of interest for “universal”
vaccination purposes as they bind to multiple HLA alleles of
high prevalence in all the populations (Figure 9). This is
also consistent with a recent work showing association of
COVID-19 disease with disproportionate mortality among
ethnic populations, as specifically observed by the lower
mortality rate in the Indian and South Asian subcontinent
than in the West (19). To the best of our knowledge these
sequences and regions have not been previously reported and
can be of interest in the light of the ChAdOx1 vaccine
development, which is currently undergoing phase III clinical
trials in human volunteers (The United Kingdom, South Africa
and Brazil). These results might be also of value for the mRNA-
1273 vaccine and for other adenoviral vaccine candidates
encoding the S protein antigen.

In short, we support the perspective that this is an
immunoinformatics approach that can provide valuable
knowledge of T-cell epitopes and immunodominant regions
(clusters) to help understand how variation in HLA may affect
vaccine-induced immune responses in a population context.
Understanding this layer of complexity is also relevant in the
context of vaccination trials, since underrepresentation of
minorities is an issue that might lead to a resulting body of
clinical knowledge that is not generalizable (skewed findings)
and a lesser discovery rate of protective T-cell epitopes in
certain populations. Predivac-3.0 provides tools to guide the
discovery of population-specific epitopes and clusters in the
context of SARS-CoV-2 and of other emerging pathogens
(EIDs), holding potential to improve vaccine design and clinical
trial protocols for evaluation of vaccine candidates in individuals
with different genetic or ethnic backgrounds (phase II/III trials).
CONCLUSIONS

Population-level HLA associations are crucial factors determining
variations of vaccine-induced immune responses across multiple
ethnicities. Predivac-3.0 addresses this problem by implementing
Frontiers in Immunology | www.frontiersin.org 22
a computational framework for rational design of CD8+ and CD4
+ T-cell epitope-based vaccination, which allows guiding epitope
discovery according to HLA allele frequencies in specific ethnic
populations. Our immunoinformatics tool showed a strong
performance in the identification of CD8+ T-cell epitopes by
leave-one-out cross-validation (AUC ~0.8) and comparable
accuracies when benchmarked against state-of-the-art pan-
specific methods (AUC ~0.9). We further proved that Predivac-
3.0 was accurate and sensitive for in silico identification of HIV-1
specific CD8+ T-cell epitopes that are immunodominant in the
Japanese population. The method also captured information at
proteome-level of epitope-rich areas of HLA promiscuity
(hotspots), shedding light onto its capability to identify HIV-1
vaccine-induced and protective T-cell epitopes. We finally
showed the utility of Predivac-3.0 in the context of the current
COVID-19 pandemics, by applying the Epitope Discovery and
Epitope Optimization tools to predict comprehensive lists of
population-specific T-cell epitopes and clusters in the SARS-
CoV-2 spike glycoprotein for the countries where phase III
clinical trials of the ChAdOx1 vaccine are currently being
carried out. Putative T-cell epitopes identified for HIV-1 and
SARS-CoV-2 are suitable candidates to be experimentally tested
for effective vaccine protection, as they hold the potential to
induce broad immune responses in the corresponding target
populations. In addition, proteome-wide plots (Circos and
hotspots) not only allowed for better visualization of the
predictions, but also provide the ability to capture knowledge
on ligand enrichment areas (based on promiscuous HLA peptide
binding) and to detect interactions between the distribution and
density of both ethnicity-driven CD8+ and CD4+ T-cell epitopes.
Overall, we propose that incorporation of knowledge about
HLA prevalence in the target population and immunological
hotspots into the predictive algorithm might contribute to the
development of novel vaccination strategies that support a more
prominent role of T-cell mediated immune responses against
emerging viral pathogens, as well as to gain understanding on
how variation in HLA may affect vaccine-induced immune
responses in a population context. Our immunoinformatics
approach is particularly suited to be applied for EIDs associated
with well-defined regions or countries, as it accounts for ethnic-
level variations of immune responsiveness in the populations in
need of vaccination.
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