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Abstract: In Parkinson’s disease (PD), brain oxidative stress and mitochondrial dysfunction con-
tribute to neuronal loss as well as motor and cognitive deficits. The transcription factor NRF2 has
emerged as a promising therapeutic target in PD because it sits at the intersection of antioxidant and
mitochondrial pathways. Here, we investigate the effects of modulating NRF2 activity in neurons
isolated from a A53T α-synuclein (A53TSyn) mouse model of synucleinopathy. Embryonic hip-
pocampal neurons were isolated from A53TSyn mice and their wild type (WT) littermates. Neurons
were treated with either the NRF2 activator dimethyl fumarate (DMF) or the NRF2 inhibitor ML385.
Reactive oxygen species (ROS), dendritic arborization and dendritic spine density were quantified.
Mitochondrial bioenergetics were also profiled in these neurons. A53TSyn neurons had increased
ROS and reduced basal and maximal mitochondrial respiration relative to WT neurons. A53TSyn
neurons also displayed decreased dendritic arborization and reduced spine density. Treatment with
DMF reduced ROS levels and improved both mitochondrial function and arborization, while inhibi-
tion of NRF2 with ML385 exacerbated these endpoints. Modulation of NRF2 activity had a significant
effect on mitochondrial function, oxidative stress, and synaptic plasticity in A53TSyn neurons. These
data suggest that NRF2 may be a viable target for therapeutic interventions in PD.

Keywords: alpha-synuclein; NRF2; dimethyl fumarate; Parkinson’s disease

1. Introduction

While motor symptoms are the predominant clinical manifestation of Parkinson’s
Disease (PD), cognitive impairment also occurs in the majority of cases as the disease
progresses, affecting as many as 80% of patients who have had the disease 15 years or
longer [1]. Yet, cognitive impairment is often overlooked as a target for therapeutic inter-
vention. Increased oxidative stress [2], diminished mitochondrial function [3] and neuronal
loss contribute to both motor and cognitive symptoms in PD [4–6]. The accumulation
of aggregated α-synuclein (aSyn) found in Lewy bodies is the pathological hallmark of
PD and believed to contribute to the degeneration of neurons [5]. Aggregated aSyn has
also been shown to increase reactive oxygen species (ROS) and disrupt mitochondrial
function [7].

Multiple studies have demonstrated a relationship between mitochondrial function,
antioxidant capacity and cognitive function. In mice, cognitive decline is associated with
dysfunctional mitochondria [8], increased oxidative damage [9], and decreased brain and
plasma antioxidants [10–12], whereas over-expressing mitochondrial antioxidant enzymes
has been shown to improve memory in rodents [13–15]. These observations have further
underscored the therapeutic potential of targeting both antioxidant and mitochondrial
pathways to improve cognitive function.

The transcription factor NRF2 (nuclear factor erythroid 2-related factor 2, also called
NFE2L2) regulates the endogenous antioxidant response pathway by binding to antioxidant
response elements (AREs) in the promoters of target genes and modulating the expression
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of antioxidant enzymes [16]. NRF2 has also been shown to regulate the expression of
mitochondrial proteins as well [17]. The increased mitochondrial dysfunction and oxidative
stress seen in the PD brain suggest that NRF2 may be a promising target for therapeutic
intervention. This idea is supported by findings from a genome-wide association study that
found that a functional haplotype in the human NFE2L2 promoter that results in increased
transcriptional activity of the NRF2 was associated with decreased risk and delayed onset
of PD [18].

Further evidence supporting a role for targeting NRF2 in PD is the fact that loss of
NRF2 in an aSyn overexpressing mouse was shown to result in increased aSyn accumu-
lation and neuronal death [19,20]. In our own lab we have found aged mice that do not
express NRF2 have impaired hippocampal mitochondrial function, decreased expression of
synaptic proteins and impaired cognitive function relative to wild-type (WT) animals [21].
We saw similar effects in neurons isolated from those mice including impaired mitochon-
drial function as well as decreased synaptic density and reduced dendritic arborization [22].
Conversely, activation of NRF2 by a variety of compounds has been shown to induce
antioxidant response, improve mitochondrial health, enhance synaptic density and be
neuroprotective in in vitro models of other neurodegenerative diseases [23]. These same
effects are seen with in vivo NRF2 activation along with enhanced cognitive function [23].

In this study we take the first step towards evaluating the therapeutic potential
of targeting NRF2 for cognitive enhancement in PD by exploring effects of modulating
NRF2 activity on the physiological underpinnings of improved cognitive function, namely
synaptic density. In humans, decreased synaptic density is associated with diminished
cognitive capacity [24] and we have seen in our own lab that dendritic spine loss is also
correlated with reduced cognitive performance in mice [25]. Here, in addition to evaluating
the effects of NRF2 activity on dendritic arborization and spine density we will also
investigate mitochondrial and antioxidant effects in hippocampal neurons isolated from
the A53TSyn mouse model of synucleinopathy.

2. Materials and Methods
2.1. Culture of Primary Hippocampal Neurons

Mice were housed in an AALAC certified facility and maintained in a climate-controlled
environment with a 12-h light/12-h dark cycle and fed a Pico Lab Rodent Diet 5LOD (Lab-
Diets, St. Louis, MO, USA). Diet and water were supplied ad libitum. All procedures were
conducted in accordance with the NIH Guidelines for the Care and Use of Laboratory Ani-
mals and were approved by the institutional Animal Care and Use Committee of Oregon
Health and Science University.

Hippocampal neurons were isolated from A53TSyn embryonic mice, based on the
methods of Kaech and Banker [26]. eGFP-A53TSyn transgenic mice were generously
donated by Dr Vivek Unni [27]. The Unni lab has shown that the GFP tag in no way
interferes with the aSyn protein dynamics or accumulation [28,29]. These mice were
bred to C57BL6 mice acquired from Jackson Laboratories. Embryos were harvested at
18 days of gestation from anesthetized females. A53T positive progeny were phenotypically
distinguished by be exposure to a fluorescent light source. Hippocampi were dissected,
gently minced, trypsinized, and triturated to generate suspensions of dispersed neurons.

2.2. Analysis of Dendritic Arborization

Sholl analysis was used to assess dendritic complexity. Neurons were plated at a den-
sity of 130,000 in 60 mm dishes in MEM medium (GIBCO/Life Technologies, Waltham, MA,
USA), 5% FBS (Atlanta Biologicals, Flowery Branch, GA, USA), 1× Anti-Anti (GIBCO/Life
Technologies) and 0.6% glucose (Sigma-Aldrich, St. Louis, MO, USA), each dish containing
3 poly-l-lysine-coated nitric acid treated glass coverslips with paraffin wax spacers. After
3 h, the coverslips were flipped into 60 mm dishes containing mouse neural stem cell-
derived glial cells (provided by Dr. Gary Banker, Jungers Center, OHSU) and maintained in
6 mL Neurobasal Medium supplemented with 1× GlutaMAX (GIBCO/Life Technologies),
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1× Anti-Anti (GIBCO/Life Technologies) and 1× GS21 neural supplement (ThermoFisher,
Waltham, MA, USA). Dishes were fed every week by removing 1 mL of the culture medium
and adding 1 mL fresh Neurobasal medium that included GlutaMAX, Anti-Anti and Neu-
ronal Culture Medium Supplement, with the first feed at 5 days in vitro (DIV) containing
6 µM (1 µM Final) cytosine β-d-arabinofuranoside hydrochloride (AraC; Sigma-Aldrich).
Coverslips were fixed in 4% PFA in PBS at 12, 19, or 26 DIV and treated with DMSO as
a vehicle control, 20 µM DMF or 1 µM ML385 for 7 days prior to fixation. Coverslips
were stained with Anti-MAP2B (Sigma-Aldrich #M4403; 3.3 µg/mL) and Goat anti-mouse
IgG1-Cy3 (Jackson ImmunoResearch #115-165-205; 1.5 µg/mL). Immunostained neurons
were imaged with a Zeiss ApoTome2 microscope and blinded Sholl analyses were per-
formed using the Fiji platform. Thirty isolated, non-overlapping cells were analyzed per
coverslip. Arborization data was pooled across 3 independent experiments (3–5 coverslips
per genotype and treatment condition in each experiment) providing at least 300 cells per
genotype.

2.3. Analysis of Dendritic Spine Density

For the analysis of dendritic spine density, 150,000 hippocampal neurons were electro-
porated with plasmids encoding enhanced Green Fluorescent Protein (eGFP) and plated
onto dishes with coverslips containing 300,000 WT or A53TSyn cortical neurons per dish.
Cortical neurons were plated 7 days prior to the addition of the hippocampal neurons. This
strategy promoted robust FIJI software.

2.4. Cell Viability Determination

Cell viability was determined using the CellTiter 96 Aqueous Non-Radioactive Cell
Proliferation Assay (Promega, Madison, WI, USA) as per the manufacturer’s instructions.
Neurons were plated at a density of 25,000 cells per well of a poly-l-lysine coated 96-well
plate and grown for 5 days in Neurobasal media with GS21, Anti-Anti and GlutaMAX.
Cells were then treated with increasing concentrations of DMF or ML385 and viability was
quantified two days later. Assays were conducted with 4–8 wells per treatment condition
per plate. The assays were repeated 3–4 times yielding a total of 16–24 replicates per
treatment condition.

2.5. NRF2 Activation Assay in HepG2-ARE Reporter Cells

HepG2 cells that stably express a firefly luciferase gene under the control of the
ARE promoter were obtained from BPS Bioscience. Cells were grown in MEM medium
supplemented with 10% FBS, 1% non-essential amino acids, (Life Technologies, Waltham,
MA, USA), 1 mM sodium pyruvate and 1% penicillin/streptomycin. Cells were plated
at a density of 30,000 per well in a 96-well plate and treated for 48 h with increasing
concentrations of either DMF or ML385 and NRF2 activity was quantified using the Pierce
Firefly Luc One-Step Glow Assay Kit (Thermo) as per the manufacturer’s instructions.
Luminescence was normalized to total protein content as determined by a bicinchoninic
acid (BCA) assay.

2.6. Analysis of Mitochondrial Function

Mitochondrial function was evaluated using the Seahorse Bioscience XFe96 Extracellu-
lar Flux Analyzer. aSyn neurons were plated at a density of 60,000 cells/well on 96 well
Seahorse culture plates (Agilent Technologies, Santa Clara, CA, USA) in DMEM/F12 con-
taining N2 growth supplement. After 5 days, cells were treated with either DMSO, DMF
(20 µM) or ML385 (1 µM). Two days later cells were switched into assay medium (pH 7.4)
containing XF Base medium (Seahorse Bioscience), 5.5 mM glucose and 1mM sodium-
pyruvate and analyzed using the MitoStress Kit as previously described [30]. Neurons can
survive roughly 10–14 days without a feeder layer of glial cells, so taking measurements
after 7 days allowed us to capture changes that occur in the cell before viability becomes
an issue. Oxygen consumption rate (OCR) was measured under varying conditions. After
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three initial baseline measurements of OCR, the ATP synthase inhibitor oligomycin (1 µM)
was added and three subsequent measurements were taken. Next an ETC accelerator,
p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (FCCP at 1.5 µM), was added and
after 3 measurements were taken, mitochondrial inhibitors rotenone (1 µM) and antimycin
(1 µM) were added, and three final measurements were taken. Data was normalized to total
DNA content, which was determined from each well using the CyQuant kit (Invitrogen,
Waltham, MA, USA) as per the manufacturer’s instructions.

2.7. ROS Quantification

A53TSyn hippocampal neurons were plated at a density of 75,000 cells per well in a
lysine coated 96-well plate and allowed to grow in Neurobasal medium with GlutaMAX
and GS21 for 5 days, followed by treatment with either DMSO, DMF (20 µM) or ML385
(1 µM) for 2 days. ROS content was assessed by a Cellular ROS Assay Kit (Abcam 113851)
as per the kit’s instructions. A BCA was used to normalize the values to the total protein
content of each well. Data was collected across three independent experiments with at least
6 wells per genotype in each experiment.

2.8. Gene Expression

Neurons were plated at a density of 250,000 cells per well in lysine coated 12-well
plates. RNA was extracted using Tri-Reagent (Molecular Research Center, Cincinnati, OH,
USA) and reverse transcribed with the Superscript III First Strand Synthesis kit (Invitrogen)
to generate cDNA.

Gene expression was determined using TaqMan Gene Expression Master Mix (In-
vitrogen) and commercially available TaqMan primers (Invitrogen) for Kelch-like ECH-
associated protein 1 (Keap1), NAD(P)H Quinone Dehydrogenase 1 (Nqo1), Heme oxygenase
1 (Hmox1), Glutamate-Cysteine Ligase Catalytic Subunit (Gclc) and glyceraldehyde 3-
phosphate dehydrogenase (Gapdh). Quantitative PCR (qPCR) was carried out on a StepOne
Plus Machine (Applied Biosystems) and gene expression was analyzed using the delta-delta
Ct method normalizing to expression of Gapdh.

2.9. Statistics

Statistical significance was calculated using student’s t-tests for two-way comparisons
or ANOVA followed by pairwise post hoc testing, for comparisons of more than two groups.
Significance was defined as p ≤ 0.05. Analyses were performed using Excel or GraphPad
Prism8.

3. Results
3.1. Determination of Non-Lethal Concentrations of DMF and ML385

To determine the appropriate concentration of DMF or ML385 to be used in our
experiments, WT hippocampal neurons were treated for 48 h with the NRF2 activating
compound, DMF, at concentrations ranging from 1 to 50 µM. No significant cell death
was observed at any concentration (Figure 1A). WT neurons were also treated with the
NRF2 inhibitor ML385 at concentrations ranging from 0.1 to 20 µM. Significant toxicity was
evident at 10 and 20 µM ML385 (Figure 1B).

3.2. NRF2 Activation by DMF and Inhibition by ML385 and NRF2-Regulated ARE
Gene Expression

The HepG2-ARE cell line express a firefly luciferase gene under the control of the
ARE promoter and therefore can be used to assess NRF2 activation following compound
treatment. Robust NRF2 activation was seen following 48 h of treatment with 20 µM
DMF. Co-treatment with 1 µM ML385 attenuated this activation (Figure 2A). A similar
activation following DMF treatment was observed in primary hippocampal neurons treated
with DMF. Expression of the NRF2 target Gclc, Hmox1, and Nqo1 was increased by DMF
treatment in both WT and A53TSyn (Figure 2B).
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Figure 2. DMF activates NRF2 in vitro and this activation is inhibited by ML385. (A) 20 µM DMF
significantly induces NRF2 expression in HepG2-ARE cells, and co-treatment with 1 µM ML385
significantly inhibits this effect. (B) 20 µM DMF significantly induced expression of NRF2-ARE genes,
GCLC, HMOX1, and NQO1 in WT and A53TSyn neurons (n = 10–12). Significance is relative to
control unless otherwise indicated (* p < 0.05, ** p < 0.01, *** p < 0.001).

Because NRF2 activity is heavily regulated through binding with KEAP1, we also
evaluated Keap1 gene expression in order to determine if there were differences in basal
expression between WT and A53TSyn neurons. We found that there was no difference in
expression between the two genotypes (Supplementary Figure S1).

3.3. NRF2 Activity Alters Mitochondrial Function and Oxidative Stress in A53TSyn Neurons

A53TSyn hippocampal neurons showed a deficit in mitochondrial bioenergetic profile
relative to WT neurons. These deficits were attenuated by DMF treatment or exacerbated
by ML385 administration (Figure 3A). Basal respiration, the average of the three initial
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readings, in A53TSyn neurons was significantly lower than that of WT neurons (Figure 3B).
DMF treatment attenuated this deficit in A53Tsyn neurons and increased basal oxygen
consumption rates in WT neurons as well. ML385 treatment also reduced basal respiration
in A53TSyn neurons but had no effect on basal respiration in WT neurons (Figure 3B). A
similar, though non-significant, trend toward reduced oxygen consumption in A53Tsyn
neurons relative to WT was also seen in maximal respiration, the average of the three
readings following FCCP addition, as well as spare capacity. DMF treatment significantly
increased maximal respiration in A53TSyn neurons and although not statistically significant,
resulted in a trend towards increased maximal respiration in WT neurons. The difference
between the maximal oxygen consumption rate and the basal oxygen consumption rate is
the spare capacity of the cell and reflects the amount of extra ATP that can be generated in
response to a sudden increase in energy demand. DMF treatment increased spare capacity
in A53TSyn neurons but ML385 had no effect on spare capacity. Neither treatment affected
spare capacity in WT neurons.
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In addition to mitochondrial dysfunction, increased ROS levels were also evident in
A53TSyn neurons relative to WT. DMF treatment attenuated this increase resulting in ROS
levels that were not different from WT controls. DMF treatment did not alter ROS levels in
WT neurons. ML385 treatment further increased ROS levels in A53TSyn neurons but had
no significant effect in WT neurons (Figure 4).

3.4. Modulation of NRF2 Activity Affects Synaptic Plasticity

Previous studies in our lab and others have shown that hippocampal neurons isolated
from mouse models of beta amyloid accumulation exhibit a dystrophic phenotype, charac-
terized by a reduction in dendritic spine density and impaired arborization [31–33]. Here,
we applied the same techniques to determine if the same dystrophic phenotype could be ob-
served in neurons isolated from a mouse model of synucleinopathy. After 12 days in vitro
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(DIV) (Figure 5A), no differences in dendritic arborization were seen between A53TSyn
and WT neurons, but at 19DIV (Figure 5B), a reduction in arborization was apparent that
became even more pronounced after 26DIV (Figure 5C).
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One week of treatment of neurons with DMF beginning at day 19 attenuated the
deficit in arborization in A53TSyn neurons by day 26 back to the same levels as WT.
A similar increase in arborization was also seen with DMF treatment in WT neurons
(Figure 6A,B). In contrast, arborization at day 19 following ML385 administration on day
12 resulted in exacerbated impairment in arborization in A53TSyn neurons such that on
19 DIV the difference between genotypes were comparable to what was seen between the
untreated A53TSyn neurons and WT neurons after 26 DIV (Figure 6C). ML385 treatment
likewise impaired arborization in WT neurons as well (Figure 6D) indicating that NRF2
activity can affect dendritic arborization. Because we observed an effect of ML385 in WT
neurons without any exposure to an oxidative insult, we wanted to examine if that could
be explained by an effect of ML385 treatment on Keap1 expression. However, ML285 did
not significantly alter Keap1 expression in neurons of either genotype indicating that the
negative effect on arborization seen in WT neurons was not the result of changes in Keap1
levels (Supplementary Figure S1).
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Figure 6. DMF improves dendritic complexity in A53TSyn and WT hippocampal neurons. At 26 DIV,
DMF treatment eliminated the deficit in arborization in A53TSyn hippocampal neurons relative
to WT neurons (A,B). Conversely A53TSyn neurons treated with ML385 exhibited an even greater
reduction in dendritic arborization at 19DIV than untreated A53TSyn neurons (C,D). Significance is
relative to control unless otherwise indicated (* p < 0.05, ** p < 0.01, *** p < 0.001).

Dendritic spine density was quantified at 14 DIV and found to be significantly de-
creased in A53TSyn neurons. DMF treatment of A53T neurons restored dendritic spine
density to a similar level of the control WT neurons. Although not statistically significant,
following ML385 treatment, there was a trend toward an even greater decrease in spine
density (Figure 7). Neither ML385 nor DMF treatment had a significant effect on spine
density in WT neurons.
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4. Discussion

In this study we found that modulating NRF2 activity had a significant effect on
mitochondrial function, oxidative stress, and synaptic plasticity in aSyn overexpressing
neurons. The A53TSyn mouse overexpresses a human aSyn gene with the A53T mutation.
These animals develop severe motor impairments at approximately one year of age as
well as profound synucleinopathy and cognitive deficits around the same age [34]. We
observed that in hippocampal neurons isolated from these animals, there were significant
deficits in dendritic arborization and spine density relative to WT neurons. Diminished
mitochondrial function and increased intracellular ROS was also seen in the isolated
A53TSyn neurons. We found that DMF activated NRF2 in primary hippocampal neurons
and this activation attenuated the synaptic deficits observed in A53TSyn neurons, restored
mitochondrial function and normalized ROS levels. NRF2 inhibition with the compound
ML385 exacerbated the existing deficits in A53TSyn neurons.

To our knowledge, this is the first report of deficits in spine density and arborization
in primary A53TSyn neurons in culture. However, similar reductions in spine density
were reported in the caudate putamen of 8- and 4-month old A53TSyn mice in vivo [35].
Similarly, in an inducible model of aSyn overexpression, aSyn accumulation was correlated
with structural synaptic deficits, and suppression of the aSyn expression reversed these
synaptic deficits [36].

Likewise, we believe this is the first report of bioenergetics deficits and increased
oxidative stress in isolated A53TSyn neurons. It has been reported that aged A53TSyn mice
exhibit mitochondrial abnormalities that are apparent at 11–14 months of age [34]. Our
findings are also similar to mitochondrial deficits observed in human neuroblastoma cells
overexpressing the A53T or A30P mutations in aSyn, where increased ROS and reduced
oxygen consumption were seen relative to cells expressing WT aSyn [37]. Increased oxida-
tive stress has also been observed in blood leukocytes of PD patients [38] and mitochondrial
dysfunction, particularly impairments in complex I has been widely reported in the PD
brain [39].

The beneficial effects of NRF2 activation on mitochondrial function and oxidative
stress that we observed in this study are consistent with previous research on DMF and
other NRF2 activating compounds in cellular models of PD. For example, in SH-SY5Y cells,
DMF reduced ROS levels and protected against cytotoxicity caused by 6-hydroxydopamine
(6-OHDA) treatment [40]. DMF has also been shown to improve mitochondrial function
and induce mitochondrial biogenesis in healthy human cells [41]. Another NRF2 activat-
ing compound tert-butylhydroquinone (tBHQ) was able to reverse increased ROS and
diminished mitochondrial function in in A53T mutant aSyn-expressing N2a cells [42]. The
mechanism by which NRF2 activation improves mitochondrial function is not clear. It
has been hypothesized that this may have to do with effects on aSyn clearance. In fact, it
has recently been shown that NRF2 activation by tBHQ resulted in reduced aSyn levels,
however, this effect was observed only in astrocytes and not in neurons [43]. It is unlikely,
therefore, that the beneficial effects on NRF2 activation seen in this study is the result of
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effects on aSyn clearance since our experiments were carried out in neurons grown in
isolation. However, this limitation of the present study could be investigated in future
work using primary neurons grown in co-culture with astrocytes.

The findings from this study are also in line with previous the reported in vivo effects
of DMF in models of PD and other neurodegenerative disease. In the MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine) neurotoxin-induced model of PD, NRF2 activation by
DMF similarly reduced oxidative damage and decreased aSyn accumulation [44]. Similarly,
oral treatment of DMF in 6-OHDA-treated mice induced expression of NRF2-regulated
genes, and protein levels of NRF2 and attenuate 6-OHDA induced oxidative stress and
neuroinflammation [40]. DMF treatment also seems to be beneficial for PD-related mo-
tor deficits. In a PD model using AAV mediated aSyn overexpression, DMF treatment
decreased motor deficits and reduced dopamine cell loss [20].

Our findings that NRF2 inhibition exacerbated impairments in mitochondrial function,
oxidative and synaptic density in A53TSyn neurons supports the existing literature de-
scribing the effects of NRF2 inhibition by ML385 in other contexts. Our lab has previously
shown that inhibition of NRF2 with ML385 resulted in heightened levels of intracellular
ROS in cortical neurons isolated from the 5xFAD mouse model of beta amyloid accumula-
tion [45]. In vivo, ML385 administration was also found to increase oxidative stress and
inflammation in otherwise healthy mice [46]. The inhibition of NRF2 by ML385 occurs
via direct binding to the protein which interferes with its ability to bind to target DNA
sequences [47]. Our finding that ML385 does not affect Keap1 expression is in line with
this reported mechanism of NRF2 inhibition. The fact that we observed impaired dendritic
arborization in WT neurons not exposed to an exogenous stressor suggests a role for NRF2
in regulating synaptic plasticity under normal conditions.

Such a role for NRF2 is also supported by previously published data from our own
lab showing that hippocampal neurons isolated from NRF2 knockout (NRF2KO) mice
display reduced dendritic complexity and synaptic density relative to WT neurons [22].
Increased ROS and deficits in mitochondrial function was also observed in NRF2KO
neurons compared to WT neurons [22]. Loss of NRF2 in the context of PD has also led
to deleterious effects on oxidative stress and neuronal health. A recent study found that
human aSyn overexpressed in NRF2KO mice induced even worse oxidative damage than
seen in the aSyn overexpressing mice that did express NRF2 [19]. Similarly, loss of NRF2
was shown to result in exacerbated loss of dopamine neurons and more pronounced motor
deficits in an AAV-mediated aSyn overexpression model [40].

The effects we observed in this study of modulating NRF2 activity on synaptic plastic-
ity suggest that the same modulation could have significant consequences for cognitive
function in PD as synaptic density correlates very strongly with cognitive function in both
rodents and humans [22,24,48–50]. Although, to our knowledge, the effects of modulating
NRF2 activity on cognition have not been specifically investigated in PD models, there is
evidence in aging and other neurodegenerative disease that NRF2 plays a role in main-
taining cognitive function. Our own lab has demonstrated that loss of NRF2 results in
accelerated cognitive decline during aging in mice [21]. Conversely, activation of NRF2
results in cognitive enhancement in a variety of conditions associated with cognitive im-
pairment. Treatment with a NRF2 activating extract of the plant Centella asiatica has been
shown to improve learning, memory, and executive function in mouse models of aging
and beta amyloid accumulation [25,31]. Sulforaphane, another potent NRF2 activating
compound found in cruciferous vegetables, ameliorated cognitive deficits in mouse models
of Alzheimer’s disease, traumatic brain injury and vascular cognitive impairment [51–54].
Cognitive enhancing effects of DMF have also been described in rodent models of sepsis
and vascular dementia [55,56]. Even more convincing perhaps is a recent finding from a
clinical trial of DMF in multiple sclerosis patients showing slowed cognitive decline over
two years of treatment [57]. This strongly suggests that NRF2 activation could be a viable
therapeutic strategy for cognitive enhancement in a broad range of diseases.
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5. Conclusions

In summary, we have shown that activation of NRF2 can improve mitochondrial
and synaptic impairments in A53Tsyn hippocampal neurons, while inhibition of NRF2
exacerbates these endpoints. Future studies are needed to confirm these effects in vivo
in this and other models of PD to determine the therapeutic utility of targeting NRF2 to
improve cognitive function in PD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11010026/s1, Figure S1: Keap1 gene expression in primary
neurons.
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