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Spatial smoothing is a widely used preprocessing step in functional magnetic resonance

imaging (fMRI) data analysis. In this work, we report on the spatial smoothing effect

on task-evoked fMRI brain functional mapping and functional connectivity. Initially, we

decomposed the task fMRI data into a collection of components or networks by

independent component analysis (ICA). The designed task paradigm helps identify

task-modulated ICA components (highly correlated with the task stimuli). For the

ICA-extracted primary task component, we then measured the task activation volume at

the task response foci. We used the task timecourse (designed) as a reference to order

the ICA components according to the task correlations of the ICA timecourses. With the

re-ordered ICA components, we calculated the inter-component function connectivity

(FC) matrix (correlations among the ICA timecourses). By repeating the spatial smoothing

of fMRI data with a Gaussian smoothing kernel with a full width at half maximum (FWHM)

of {1, 3, 6, 9, 12, 15, 20, 25, 30, 35} mm, we measured the spatial smoothing effects.

Our results show spatial smoothing reveals the following effects: (1) It decreases the

task extraction performance of single-subject ICA more than that of multi-subject ICA;

(2) It increases the task volume of multi-subject ICA more than that of single-subject

ICA; (3) It strengthens the functional connectivity of single-subject ICA more than that of

multi-subject ICA; and (4) It impacts the positive-negative imbalance of single-subject ICA

more than that of multi-subject ICA. Our experimental results suggest a 2∼3 voxel FWHM

spatial smoothing for single-subject ICA in achieving an optimal balance of functional

connectivity, and a wide range (2∼5 voxels) of FWHM for multi-subject ICA.

Keywords: task fMRI, independent component analysis (ICA), task function mapping, function connectivity (FC),

spatial smoothing, task correlation, spatial correlation (scorr), correlation scale invariance

INTRODUCTION

A functional magnetic resonance imaging (fMRI) experiment captures brain activity via a time
series of images or a spatiotemporal series (represented by a 4D dataset). For a task fMRI study,
where the task paradigm was predefined (designed), we can extract the task activation map through
the use of task response correlation (voxelwise temporal correlations against the task stimuli
Moritz et al., 2000; Chen and Calhoun, 2015, 2016) or independent component analysis (ICA)
(Calhoun et al., 2001; Calhoun and Adali, 2012; Chen and Calhoun, 2016). Prior to ICA, the
raw fMRI data were usually subject to a standard SPM (http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/) preprocessing pipeline, including motion correction, spatial normalization, and spatial
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smoothing (filtering). Here, we report the effect of spatial
smoothing on the ICA-based brain task function analysis
through a variety of spatial smoothing settings during fMRI data
preprocessing.

A spatiotemporal fMRI dataset acquired from a brain fMRI
scan represents a spatiotemporal dynamic evolution of brain
activity, which can be decomposed into subactivities through an
ICA approach (Calhoun and Adali, 2012; Duff et al., 2012; Chen
and Glover, 2015). The ICA output consists of a collection of
maximally independent components, with each ICA component
representing a brain subactivity or a coherent network in a
pair of spatial mode (ICA map in variable r) and temporal
mode (ICA timecourse in variable t). The functional network
in an ICA component map may contain one or more local
activation blobs in brain space, which fluctuate similarly as
described by the ICA timecourse (intra-network coherence). By
calculating the temporal correlations among ICA timecourses,
we obtain a function network connectivity (FC) matrix (Jafri
et al., 2008; Chen et al., 2017a). The pattern in an FC matrix is
determined by the ordering (or labeling) of the ICA timecourses.
For a task fMRI ICA study, we can use the predefined task
paradigm (a cue of timecourse) to order the ICA components
in an order of task correlation, such that we may compare
ICA-based FC matrices generated from different ICA outputs
(where the ICA components are always disordered). Another
important reason to work on task fMRI ICA is that the ICA
technique can successfully extract the primary task performance
component (Duff et al., 2012; Xu et al., 2013; Chen and Calhoun,
2016),which provides a useful reference point for conducting
analysis.

Spatial smoothing is a typical preprocessing step for fMRI
analysis, which is usually implemented through aGaussian kernel
with a specification of full width at half maximum (FWHM)
(Friston et al., 1995, 2000; Lowe and Sorenson, 1997; Liu et al.,
2017). Its primary goal is to suppress spatial noise and enhance
the signal to noise ratio (SNR). Recent research (Liu et al., 2017)
shows that the spatial smoothing (with a large smoothing kernel)
may cause a correlation-based functional overestimation that can
be explained with a correlation scale invariance theory. Since the
FC calculation consists of temporal correlation, this may also
be impacted by the spatial smoothing effect as dictated by the
correlation scale invariance theory (Liu et al., 2017). With this
logic, we may partially explain the spatial smoothing effect on the
task-ordered FC matrix analysis.

The fMRI signals are noisy and weak (accounting for less than
a 5% change in energy consumption Raichle, 2010; Gonzalez-
Castillo and Bandettini, 2017). This can be mitigated by working
on multi-subject data; for example, through a group ICA
(Calhoun et al., 2001; Esposito et al., 2005). Accordingly, we
carried out our study on amulti-subject experiment (20 subjects).
Notwithstanding, there emerges a research trend on individual
fMRI study under a claim that “the data from a single subject
are actually meaningful and reliable” (Finn et al., 2015; Vogt,
2015). In support of this advocacy, we also provided a study on
a single-subject experiment in which we demonstrated our data
analysis method in technical details along with a comparison to
the multi-subject experiment.

METHODS

fMRI Data from Subject Experiments
The one single-subject fMRI dataset, which was originally
acquired for an inverse fMRI study (Chen et al., 2013; Chen
and Calhoun, 2015), was reused herein for demonstrating the
task-evoked ICA technique (reported below). This single-subject
dataset was acquired by scanning one heathy subject (age 44,
male) in a Siemens TrioTim 3T scanner while performing a finger
tapping task. This study used the following experimental settings:
standard GRE-EPI sequence, TR/TE = 3000/29ms, flip angle =
75◦, no slice oblique, voxel size= 3× 3× 3 mm3, matrix= 64×
64× 32, and 165 timepoints (five repetitions of [15 OFF, 15 ON]
plus 15 OFF). The fMRI data acquisition by spatial sampling with
[3,3,3] mm intervals produced a timeseries of isotropic images.

We also acquired a group of task fMRI datasets from 20
subjects (healthy, age 38 ± 10, 13 males) using the same 3T
scanner at the Mind Research Network (MRN) and similar
scan parameters (except for slice oblique = 20◦ and voxel size
= 3.75 × 3.75 × 4.55 mm3). We designate the fMRI data
acquired by spatial sampling with [3.75,3.75,4.55] mm intervals
as “anisotropic.” This subject group did not include the subject
who was used for isotropic fMRI data as aforementioned.

All of the fMRI data were acquired by scanning adult
volunteers at MRN. The MRI scans were approved by the
Institutional Review Board at MRN. Written consent was
obtained from each subject before scanning. We used one
isotropic dataset and a group of 20 anisotropic datasets for a
comparative study on the effect of spatial smoothing on single-
subject and multi-subject ICA data analyses.

Data Preprocessing
A timeseries of fMRI data (a 4D dataset) was subject to standard
SPM preprocessing, including motion correction (timeseries
image alignment), spatial normalization (resampled into voxels
of 3 × 3 × 3 mm3 in MNI brain space), and spatial smoothing
with a Gaussian smoothing kernel with a FWHM. In order to
observe the effect of spatial smoothing, the spatial smoothing
procedure was repeated with a range of FWHM = {1, 3, 6, 9, 12,
15, 20, 25, 30, 35} mm.

Independent Component Analysis (ICA)
Upon completion of the SPM preprocessing, we performed
a spatial ICA to generate a collection of ICA components
(consisting of spatial maps and timecourses in pairs). Let X[r,
t] denote a 2D matrix as generated by an arrangement of space
(r) × time (t) of the 4D spatiotemporal data; the group ICA
decomposition is represented by Chen et al. (2017a)

X[r, t] =

N
∑

n=1

XICA
n [r]⊗ XICA

n [t] (1)

where⊗ is a product operator (signifying space-time separation),
N the component number (empirically specified), and
{XICA

n [r],XICA
n [t]} represents the pair of spatial map and

timecourse of the nth ICA component.
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In a similar way, we applied a group-level ICA to the
multi-subject data by stacking the 2D space × time matrix of
individual subject data into an augmented 2D matrix along
the time dimension. In the results of group ICA [in a similar
formulation in Equation (1)], we obtained a collection of N
pairs of aggregate ICA components in which an aggregate ICA
spatial map represents a common subactivity, and the associated
timecourse represents its temporal evolution.

Upon ICA decomposition of task fMRI data, we conducted the
following task function analyses: the task identification in an ICA
component, the FC among the ICA components, and the spatial
overlap among the ICA components.

Task Identification from ICA Component
We let task[t] denote the designed task paradigm (stimuli
timecourse); we can then find the ICA-extracted task activation,
denoted by a pair {XICA

task [r],X
ICA
task [t]}, which are determined at the

maximal task correlation by

XICA
task [r] = XICA

n∗ [r],XICA
task [t] = XICA

n∗ [t]

with n∗ = argmax
n

{corr
(

XICA
n [t], task∗[t]

)

(2)

and task∗[t] = conv(task[t], hrf [t])

where corr denotes a Pearson correlation (correlation coefficient),
conv is a convolution, and argmax finds the argument at the
maximum condition. The designed square waveform task[t]
was convolved with a canonical hemodynamic function (hrf [t],
available in SPM package) to account for the sluggish and up-
shooting BOLD response.

In Figure 1, we demonstrate the task activation extractions
from our finger tapping experiment data (Figures 1A1,B1)
for single-subject ICA, and (Figures 1A2,B2) for multi-subject

ICA). To a great extent, a high maximal correlation (e.g.,
corr (X∗

n[t], task
∗[t]) > 0.9) serves as a justification (criterion) for

ICA-based brain function analysis (Chen and Calhoun, 2016). In
practice, the success of ICA-based task function extraction can
always be verified with a spatial conformation of an ICA spatial
map using the well-established brain function atlas (XICA

task [r]
verification) and a reproduction of the task paradigm in an ICA
component (XICA

task [t] verification).

Task-Correlation Ordering of ICA
Components
Using the temporal correlation of the task ICA timecourse against
all other ICA timecourses, wemay relabel the ICA components in
a descending order as given by

n1 > n2 s.t. |taskcorr(n1)| > |taskcorr(n2)| (3)

with taskcorr(n) = corr
(

XICA
n [t],XICA

task [t]
)

where s.t. stands for “such that” or “subject to.” The new ICA
index labeling in Equation (3) gives rise to XICA

task [t] = XICA
1 [t]

(n∗ = 1 as such). The first few ICA components, which assume
high |taskcorr| values (e.g., > 0.9), may be considered as high
task-relevant components; whereas the last ICA components,
which assume small |taskcorr| values (close to 0), are interpreted
as task-irrelevant components representing brain autonomous
subactivities not related to the task performance.

In Figure 2, we illustrate the ICA component relabeling in a
descending order of |taskcorr| (defined in Equation 3) from a
typical single-subject ICA study (spatial smoothing with a 2-voxel
(6mm) FWHM). In Supplementary Figure S1, we show the first
nine components (|taskcorr|> 0.15) from this single-subject ICA
decomposition.

FIGURE 1 | ICA-based task extractions from (A1,B1) a single-subject dataset and (A2,B2) group of 20 subject datasets. The designed task paradigm was a

timecourse of square waveform. The (x,y,z) coordinates denote activation foci in MNI brain space.
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FIGURE 2 | Illustration of ICA component relabeling according to a

descending order of task correlation (|taskcorr|). At the head of the ordering

are the task-relevant components (e.g., |taskcorr| > 0.8) and at the end are the

task-irrelevant components (e.g., |taskcorr| < 0.1).

Since ICA is a stochastic algorithm, its output components
may be somewhat different for various runs; we used the ICASSO
algorithm (Himberg et al., 2004) (implemented in the GIFT
software (http://mialab.mrn.org/software/gift) by running ICA
five times and selecting the best run (Ma et al., 2011). In order
to compare the ICA components generated from various runs
with different spatial smoothing, we used the group-information-
guided (GIG) back-reconstruction to produce the same number
of ICA components in a fixed component arrangement from
different runs. The resulting ICA components are then ordered
according to |taskcorr| in Equation (3), thus facilitating the FC
matrix comparison (see later).

Task Activation Volume Measurement
Upon establishing the task pattern recognition in an ICA
component (label n∗ in Equation 3), we can measure the primary
task activation volume at the activation foci (centroid of the
activation blob). In the ICA output, the ICA-extracted primary
task activation map XICA

task [r] is represented in the z-score of a
statistical t-test map. We can use this to calculate the activation
region volume by counting the voxels around the task foci that
assume values larger than a threshold (empirically determined)
(Chen et al., 2017b).When we let taskV denote the task activation
volume at a threshold th, it is measured by

taskV =
∑

r∈�(r0)

step(XICA
task [r] > th) (voxel) (4)

with step(x) =

{

1, x > 0
0, else

where �(r0) denotes a local spatial region around r0 as visually
determined at the task activation foci. The task activation volume

(taskV) is represented by a number of voxels, which can be
converted to a spatial volume in units of cm3 (e.g., 1 voxel = 0.3
× 0.3× 0.3= 0.027 cm3 for isotropic 3-mm voxels).

Task-Ordered FC Matrix
With the new ICA component labeling (in Equation 3), we may
establish a FC matrix, as given by

FC[n1, n2] = corr
(

XICA
n1

[t],XICA
n2

[t]
)

. (5)

The FCmatrix is bound in a value range [−1, 1], in dimensionless
unit. A large FC value signifies a high correlation between two
networks (components). A positive and negative sign represents
a para-correlation and anti-correlation, respectively. It is noted
that the FC matrix contains taskcorr in the 1st row (or column).

An FC matrix is a representation of temporal coupling
(synchrony). An on-diagonal block represents a subgroup of
correlations (a functional clique) that behave with a high
synchrony (coherence), and an off-diagonal block indicates
similar correlations between two functional subgroups. A block
in an FC matrix indicates the local homogeneity among the
function couplings. An average (mean value) of an FCmatrixmay
be due to either the balance of positive and negative correlations
(cancellation of prominent positive and negative correlations)
or due to no correlations (small correlations per se). Thus, we
can differentiate these two scenarios using the standard deviation
(std) of the FC matrix (Chen et al., 2017b). A large positive
swing cancels out a large negative swing in the mean value
of an FC matrix, but the large positive and negative swings
are reflected in the std value. That is, a high std value of an
FC matrix indicates a balance of strong positive and negative
couplings, while a small std value indicates irrelevance or no
coupling. Therefore, we suggest the use of mean(FC) ± std(FC)
for numerical characterization of the FCmatrices generated from
different spatial smoothing.

Task-Ordered Inter-Component Spatial
Correlation (scorr) Matrix
In a similar way to the temporal correlation matrix in
Equation (5), we calculate the spatial correlation (scorr) matrix
among the ICA spatial components by

scorr[n1, n2] = corr
(

XICA
n1

[r],XICA
n2

[r]
)

(6)

Obviously, a small scorr value represents a small spatial overlap
between the correlation patterns. Again, we may also characterize
the spatial smoothing effect on the spatial overlap of ICA
components in terms ofmean(scorr)± std(scorr).

Correlation Scale Invariance
According to the definition of the Pearson correlation coefficient
(Gonzalez and Wood, 2008), the correlation scale invariance
property (Hoeffding, 1994) is expressed by Liu et al. (2017):

corr(a1s1, a2s2) = corr(s1, s2) for a1 6= 0 and a2 6= 0. (7)

where s1 and s2 represent two signals, and a1 and a2 are two
arbitrary scales. Note that the corr value is invariant to the
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arbitrary scaling of the signals. For instance, a strong response
signal s1 (with a scale a1 = 1) and a weak response signal 10−3s1
(with a scale of a1 = 0.001) produce the same correlation value
with the stimuli (s2) as a result of corr(s1, s2) = corr(10−3s1,
s2). In extreme noiselessness, the correlation scale invariance
leads to a complete failure of the correlation-based functional
mapping (Liu et al., 2017). It is the ubiquitous noise that shapes
a correlation map according to noise level and signal strength.
Clearly, a smoothing may change the noise level, which in turn
influences the correlation map. Since the functional connectivity
(FC in Equation 5) and the corresponding functional spatial
overlap (scorr in Equation 6) are defined by a corr value,
both of them may be affected by spatial smoothing in certain
circumstances.

RESULTS

We report here our findings from the two experiments: the
single-subject experiment as designated by “single,” and the
multi-subject experiment with the “group” designation. During
SPM preprocessing, we performed spatial smoothing with a
Gaussian kernel with a kernel size as specified in terms of FWHM
(in units of mm). By repeating the spatial smoothing procedure
for a range of FWHM = {1,3,6,9,12,15,20,25,30,35} mm while
carrying out the other routines, we studied the effect of spatial
smoothing effects.

Task Identification from ICA Components
We applied ICA to the single-subject dataset and generated
40 ICA components [N = 40 in Equation (1), empirically
specified for reliable primary task activation extraction in a
moderate brain function decomposition]. First, we show that
ICA can reliably extract the task activation mode as determined
by the maximal correlation criterion in Equation (2). In
Supplementary Figures S2, S3), we show the ICA-extracted
task paradigm timecourses as obtained across a span of spatial
smoothing settings (designed with different FWHMs) for single-
subject ICA (Supplementary Figure S2) and multi-subject ICA
(Supplementary Figure S3). All of the ICA-extracted task
timecourses have a high correlation with the predefined task
design timecourses (corr > 0.9). Correspondingly, we show
the ICA-extracted task activation maps for the finger tapping
performance in Supplementary Figures S4, S5. It is clear
that the ICA-extracted task activation patterns are consistently
reproduced at the motor cortex after different spatial smoothing
(the activation blobs were displayed with orthogonal slices at the
same foci, as designed with the same (x,y,z) MNI coordinates).

With the ICA-extracted task component timecourse
[determined by Equation (2)], we then quantified the ICA’s
task extraction performance in terms of maximal taskcorr (in
Equation 3). With the ICA-extracted task component map,
we calculated the task activation volume in terms of taskV (in
Equation 4 with a threshold of z-score = 4). In Figure 3, we
show the maximal task correlations and taskV measurements,
for both the single-subject and multi-subject ICAs, with respect
to spatial smoothing. In Figure 3A, we show that the task
extraction performance of single-subject ICA decreases as

smoothing FWHM increases, whereas that of multi-subject ICA
increases slightly. Note that we display the group ICA taskcorr
in a black thick plot; the one special single-subject taskcorr in
a red thick plot (an isotropic dataset as acquired in 3 × 3 × 3
mm3 voxels); and together with several single-subject results
from the group (no particular selection from the anisotropic
datasets). Overall, the spatial smoothing reduces the ICA-based
task identification performance of single-subject ICA more than
that of group-subject ICA.

In Figure 3B, we show that both single-subject and multi-
subject ICA decompositions yield an everlasting increase in taskV
as the spatial smoothing FWHM increases. The spatial smoothing
imposes more effect on multi-subject taskV measurement than
on the single-subject taskV measurement. Specifically, the group-
level taskV is higher above all the single-subject taskV, and the
ever increasing taskV tends to saturate when FWHM > 20mm
(∼6 voxels).

Spatial Smoothing Effect on FC Matrices
With a group information template generated by an ICASSO ICA
on the 9 mm-FWHM-smoothed fMRI data, we obtained ICA
decompositions (through GIG-ICA) from the spatially smoothed
fMRI data with different FWHMs ({1, 3, 6, 9, 12, 15, 20, 25,
30,35} mm).

Based on ICA decomposition and ICA component relabeling
(in a descending order of |taskcorr| in Equation 3), we
calculated the FC in Equation (5). We show the FC matrices
under different smoothing (specified by FWHM in units of
millimeter) in Supplementary Figures S6, S7.The FC matrices
generated from the ICA-decomposed components under the
same smoothing are presented in Figure 4, in which we show
two single-subject ICA cases in Figures 4A1,B1; A2,B2 and
the multi-subject experiment in Figures 4A3,B3. It is seen
that the coupling strength [in terms of std(FC)] increases for
large-FWHM spatial smoothing for the single-subject ICA. In
comparison, the spatial smoothing has less effect on the FC
matrices of multi-subject ICA. The single-subject experimental
results in Figures 4A1,B1; A2,B2 show that the optimal FC
balance [in terms of minimal mean(FC)] reaches at the spatial
smoothing with 2∼3-voxel FWHM (corresponding to 6∼9mm).
In comparison, the spatial smoothing has less effect on the
multi-subject experiment (in Figures 4A3,B3).

Spatial Smoothing Effect on Scorr Matrices
We also calculated the spatial correlations among the ICA spatial
components, as represented in scorr matrices (in Equation 6),
with the same ICA component labeling as used for FC matrix
calculation. The scorr matrices for the single- and multi-
subject experiments are shown in Supplementary Figures S8, S9,
respectively. It is notable that the scorr matrices assume small
values (corr < 0.1), implying small spatial overlap of the ICA-
decomposed components under different smoothing parameters.

Based on the scorr matrices, we calculated the mean ± std
values and presented the errorbar plots in Figure 5 to
show the spatial smoothing effect with two single-subject
results (Figures 5A1,B1; A2,B2) and the group analysis result
(Figures 5A3,B3). Bascially, our experimental data analyses
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FIGURE 3 | Effect of spatial smoothing of fMRI on (A) task extraction performances (in terms of maximal task correlation) and (B) task activation volume

measurements for single-subject (one isotropic dataset and several anisotropic datasets) and multi-subject experiments.

results in Figure 5 show that the spatial smoothing has no
obvious effects on the ICA component overlap because the
overall scorr values are generally very small (corr < 0.2, see
display scales).

DISCUSSION

For brain function analysis using fMRI data, spatial smoothing
is always applied to the raw data for the sake of SNR gain. In
practice, the spatial smoothing was usually implemented through
the use of a Gaussian kernel with a certain FWHM. By applying
spatial smoothing with a large span of FWHMs, we observed
the effect of spatial smoothing on brain function analysis. In this

paper, we report on spatial smoothing effects on ICA-based task
fMRI data analysis in the context of task extraction capability
(Figure 3A), task activation volume measurement (Figure 3B),
functional connectivity (Figure 4), and spatial overlap among
ICA-decomposed subactivities (Figure 5).

The reasons for us to use the task fMRI data, rather than
resting-state data, to study the spatial smoothing effect are
2-fold. First, the designed task paradigm (predefined truth of task
timecourse) allows us to justify the ICA-based brain function
analysis as long as the task timecourse can be highly reproduced
in an ICA component timecourse (e.g. with a maximum
correlation > 0.9 in Figure 3A). Second, the predefined task
timecourse can be used as a reference to sort the ICA components
(e.g., in a descending order of |taskcorr|). In the task-correlation
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FIGURE 4 | Effect of spatial smoothing on brain task ICA-based FC analyses in terms of mean (FC) ± std(FC)for (A1,B1; A2,B2) two exemplary single-subject ICA

and (A3,B3) the 20-subject group ICA FC matrices under spatial smoothing in a range of FWHMs. (A1–A3) errorbar plots of mean(FC) ± std(FC); and (B1–B3) plots

of mean(FC) and std(FC).

ordering, the most task-relevant components are gathered at the
head of the list with high task correlations (in particular, the 1st
one is the ICA-extracted primary task component), and the task-
irrelevant components (such as noise and motion components)
are sorted at the end of the list with small task correlations.
This aspect is not available with resting-state fMRI data. Through
the use of an ICASSO algorithm for reliable ICA decomposition
(Himberg et al., 2004), we obtained a group information template
for the subsequent GIG-ICA (Du and Fan, 2013; Du et al.,
2016), thus facilitating the comparison among ICA components
generated in different runs.

In our experimental demonstration, we provided one
isotropic dataset and 20 anisotropic datasets, which all were
acquired from different subjects performing the same finger
tapping task inside the same scanner (3T Siemens TrioTim
scanner at MRN). The MRI scanning used a standard GRE-
EPI sequence with slight parameter differences in voxel size and
slice oblique (see Methods). The single-subject datasets were
then processed separately through the same ICA procedure.
Our experimental data analyses show that the particular
isotropic single-subject dataset produced the similar ICA task
function analysis performance as did the several non-isotropic
single-subject datasets under a range of spatial smoothing
(see Figures 4, 5). Specifically, the spatial smoothing causes a
reduction in task activation extraction performance (in terms
of taskcorr) and an increase in task volume measurement

(in terms of taskV), very much in a similar behavior. In
comparison in Figures 4, 5, the spatial smoothing imposes a
less effect on the group-level ICA (20 non-isotropic subject
datasets.

With minimal error from SPM spatial resampling and spatial
rotation, the particular single-subject isotropic data analysis
provides a good representative of single-subject ICA. In terms
of maximal |taskcorr| for task extraction performance, our
experiments in Figure 3A suggest a 2∼3-voxel FWHM for single-
subject data spatial smoothing, which is roughly in agreement
with the optimal empirical spatial smoothing setting (2-voxel
FWHM) as previously reported (Pajula and Tohka, 2014; Chen
et al., 2017b). In comparison, the group ICA task extraction
performance is insensitive to the spatial smoothing, as evidenced
in the flat taskcorr plot in Figure 3. In this particular experiment,
we see that the optimal group ICA performance can be achieved
through the use of a wide range of FWHM with roughly
2∼5 voxels (corresponding to 6∼15mm). On the other hand,
from Figure 3B, we observed that the group taskV tends to
saturate beyond 6-voxel FWHM, suggesting no more than 6-
voxel FWHM spatial smoothing for group-level ICA study.

Brain fMRI research has been widely performing at a group
level, perhaps due to the weakness of brain fMRI signal (brain
function response < 5% baseline signal), but there is an
emergence of fMRI analysis shifting to individual study (Chen
and Calhoun, 2015, 2016; Finn et al., 2015; Vogt, 2015). In
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FIGURE 5 | Effect of spatial smoothing on the spatial overlap of ICA-decomposed components with numerical characterization of mean(scorr) ± std(scorr) for

(A1,B1; A2,B2) two exemplary single-subject ICA and (A3,B3) the 20-subject group ICA. (A1–A3) errorbar plots for mean(scorr) ± std(scorr); (B1–B3) the plots

mean(scorr) and std(scorr).

this work, we present a single-subject experiment to support
the advocacy of individual fMRI study. The results indicate
that the ICA is a powerful task fMRI analysis approach based
on the success in task activation extraction (with corr >

0.90 in Figure 3A). In general, we observed similar effects
of spatial smoothing on both the single-subject and multi-
subject experiment data analyses (in despite of data acquisition
with somewhat different experimental settings). In particular,
we found that the spatial smoothing enhances the functional
connection strength more on the single-subject than on the
multi-subject data analyses (Figure 4).

The FC matrix consists of temporal correlations in which a
row of values represent the synchrony between one network and
all the other networks. For a brain FC study, we may cluster
the highly correlated components into subgroups (clusters)
by applying a functional parcellation procedure to the FC
matrix (Venkataraman et al., 2009), producing on-diagonal
blocks in the clustered FC matrix. In this work, we did
not perform functional clustering on the FC matrix. Instead,
we calculated an FC matrix based on the ICA timecourse
labels in a descending order of task correlation. We can then
straightforwardly analyze the structure and pattern in the task-
ordered FC matrix. Specifically, we observed both on-diagonal
and off-diagonal blocks in the task-ordered FC matrix. An
on-diagonal block with high correlation values in the FC

matrix represents a functional cluster (a clique or a strongly
coupled subgroup) that behaves synchronously (coherently).
An off-diagonal block indicates a homogeneity of inter-clique
coupling. A small value in an FC matrix implies no synchrony
or irrelevance.

We observed an irregular checkerboard pattern in the
task-correlation-ordered FC matrices (see Supplementary
Figures S6, S7), which is characteristic of on-diagonal and
off-diagonal blocks in different block sizes and shapes, that
were randomly distributed with positive and negative values.
The off-diagonal blocks assume similar values and homogeneity
as the on-diagonal blocks. The irregular mosaic patterns
were regenerated across a span of spatial smoothing settings,
consistently reproduced through GIG-ICA (Du and Fan, 2013;
Du et al., 2016).

Our experimental results revealed that spatial smoothing
enlarges the task activation volume measurements for both
single-subject and multi-subject ICA decompositions (see
Figure 3B). Although the smoothing-caused task blob
enlargement may be partially understood from the normal
spatial expansion and blurring effect of smoothing, we can
explain this more completely in the correlation scale invariance
theory (in Equation 7) that accounts for the interaction between
spatial smoothing and correlation (Hoeffding, 1994; Liu et al.,
2017). Specifically, the spatial smoothing reduces the image

Frontiers in Neuroscience | www.frontiersin.org 8 February 2018 | Volume 12 | Article 15

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chen and Calhoun Spatial Smoothing Effect on Task fMRI

noise level and dissimilarity among neighboring voxels, thus
increasing the correlations among the neighboring voxels.

Given a FC matrix, we suggest the use of mean(FC) for the
balance of positive and negative connections, and std(FC) for
the connection strength (Chen et al., 2017b). Due to cancellation
of positive and negative correlations, a small mean(FC) value
indicates a positive and negative balance in contingence with a
large std(FC) value. Our experimental results in Figure 4 show
that the FC balance [with a minimal mean(FC)] was reached in
the spatial smoothing with a 2∼3-voxel FWHM for the single-
subject ICA FC study. This finding also suggests a 2∼3-voxel
FWHM spatial smoothing.

Our results further show that spatial smoothing enhances
the function connection strength [in terms of std(FC)] in
Figure 4.We can also explain this phenomenon in the correlation
scale invariance theory to a considerable degree. The temporal
behaviors of the active voxels in an ICA component become
more similar due to spatial smoothing and thus increase
the temporal correlations (extending the swings of positive
and negative correlations in a statistical distribution of FC
values). There remains an incomplete understanding of how
spatial smoothing changes the FC matrix via ICA. Clearly,
the spatial smoothing changes noisy structures of the raw
images, which in turn causes a variation in ICA decomposition
and thereby produces a different FC matrix. The theoretical
study on the interactions among spatial smoothing, ICA,
FC (temporal correlation), and group average is an ongoing
research topic.

With the same task correlation ordering (for FC study) of
ICA components, we calculated scorr matrices (in Equation 6)
to observe the spatial overlapping among the ICA maps. Our
experiments show that spatial smoothing has no obvious effect
on the spatial overlap among ICA components (scorr < 0.2 in
Figure 5 and Supplementary Figures S8, S9).

CONCLUSION

Spatial smoothing is a typical preprocessing step for fMRI. Based
on single-subject and multi-subject experiments of task fMRI
(finger tapping action), we show that the spatial smoothing
of raw fMRI data has an effect on ICA-based brain function
analysis: a large FWHM smoothing reduces the task extraction
performance and enlarges the task activation volume. We also
show that the spatial smoothing can increase the functional
coupling strengths (in terms of std(FC)) while slightly enhancing
the positive and negative imbalance, and the spatial smoothing
imposes more effect on single-subject ICA FC than on the multi-
subject ICA FC. Our experimental results overall show that
the spatial smoothing with a 2∼3-voxel FWHM achieved an
optimal functional connectivity balance [a state with a minimal
mean(FC)].
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