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Abstract: Exposures to environmental pollutants are often composed of mixtures of chemicals that can
be highly correlated because of similar sources and/or chemical structures. The effect of an individual
chemical on a health outcome can be weak and difficult to detect because of the relatively low level
of exposures to many environmental pollutants. To tackle the challenging problem of assessing the
health risk of exposure to a mixture of environmental pollutants, we propose a statistical approach to
assessing the proportion of the variation of an outcome explained by a mixture of pollutants. The
proposed approach avoids the difficult task of identifying specific pollutants that are responsible
for the effects and may also be used to assess interactions among exposures. Extensive simulation
results demonstrate that the proposed approach has very good performance. Application of the
proposed approach is illustrated by investigating the main and interaction effects of the chemical
pollutants on systolic and diastolic blood pressure in participants from the National Health and
Nutrition Examination Survey.

Keywords: environmental health; estimating equation; linear model; mixture of pollutants;
random matrix

1. Introduction

Environmental pollutants are a major source of risk to public health. Evaluating
the risks from environmental pollutants is challenging because the pollutants are always
mixtures of chemicals and can be highly correlated due to similar exposure pathways
and/or chemical structures [1]. In addition, the effect of an individual chemical on a
health outcome can be weak and difficult to detect because of the relatively low level of
exposures to many environmental pollutants. Recent technological advances allow for
measuring a large number of environmental chemicals in biologic and environmental
samples. Conventional statistical methods encounter substantial difficulties in analyzing
such data where high-dimensional covariates can be highly correlated and the effects of the
covariates on the outcome can be weak [2].

One approach to dealing with highly correlated covariates in regression analysis is
to apply principal component regression, which uses linear combinations of covariates
that explain a large portion of covariate variation as input to the regression model. The
principal components method weights each covariate and can be hard to interpret because
such combinations are not unique. Factor analysis is traditionally used to improve the
interpretation. When data are of high dimension, Zou et al. [3] proposed a sparse principal
component analysis that restricts each principal component to sparse non-zero weights by
shrinkage approaches such as Lasso [4] or elastic net [5]. One problem with the principal
components regression approach is that components accounting for a large portion of the
covariate variation do not necessarily explain a substantial proportion of the variation of the
outcome. The partial least squares approach [6–8] addresses this problem by considering
both the covariates and the outcome in forming the components. Chun and Leles [9]
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proposed a sparse version of the partial least squares that generates linear combinations of
sparse covariates for better prediction and interpretation.

When the covariate effects are weak and numerous, it is more attractive to first
estimate the variation of the outcome explained by the covariates [10]. Both principal
component regression and partial least squares involve choosing the number of components
to be included in the regression model. Neither is guaranteed to obtain a stable sparse
representation of the components of the regression model even if the linear regression
model holds. This prevents us from obtaining an unbiased estimation of the total variation
explained by the measured covariates in general. When the sparsity does hold in the
linear regression model, Cai and Guo [11], Verzelen and Gassiat [12], and Cai and Guo [13]
proposed optimal estimators of the variation explained by the measured covariates. In
practice, we may not know if the sparsity assumption holds. In this case, a more attractive
estimator of the variation explained by the covariates is to use the normal random-effects
model [14]. The method of Yang et al. [14], termed genetic complex trait analysis (GCTA),
was proposed for estimating the narrow-sense heritability in the genome-wide association
study of single-nucleotide polymorphism (SNPs) effects on a complex trait. The estimator
is consistent when the SNPs are independent and the number of SNPs is in the comparable
order of the sample size [14]. Dicker [15] studied the asymptotic distribution of a similar
estimator under the normality assumption for the independent covariates. Janson et al. [16]
proposed an alternative approach termed EigenPrism to construct confidence intervals for
the total variation explained by the covariates also under the normality assumption for the
independent covariates and the residual errors.

The methods for inference in Yang et al. [14], Dicker [15], and Janson et al. [16] all
rely on the normality assumption on data generation. Chen [17] proposed an estimating
equation approach that relies neither on the normality assumption of the covariates nor the
residual errors. This estimator was shown to be consistent and asymptotically normally
distributed under some reasonable conditions. One key assumption is the independence of
the covariates in the model. Yet, in the study of environmental pollutants, it is often the
case that the pollutants are correlated. To address this problem, we propose to use a special
weighting matrix along with strategies for estimating the correlation matrix with possible
supplemental data. The proposed approach enables us to estimate the explained variation
by the environmental pollutants and to examine interaction effects of those pollutants.

We apply this approach to the analysis of the association of chemical pollutants, in
particular persistent organic pollutants (POPs), such as polycholorinated biphenyls (PCBs),
on systolic and diastolic blood pressure in a cross-sectional dataset from the National
Health and Nutrition Examination Survey (NHANES), 1999–2004. The selection of this
health outcome was motivated by previous investigations that demonstrated associations
of POPs with prevalent or incident hypertension [18–20] and increases in systolic and
diastolic blood pressure [21,22] in populations with general exposures, such as NHANES,
and those living near highly contaminated areas.

2. Material and Methods
2.1. Estimation of the Total Effects of Exposures

Denote the health outcome by Y and the exposures to the mixtures of pollutants
by X, composed of p individual chemicals: X1, · · · , Xp, i.e., X =

(
X1, · · · , Xp

)t. Let the
mean prediction of the health outcome Y given the exposures X be E

(
Y
∣∣X1, · · · , Xp

)
.

The proportion of the variation of the health outcome explained by the collection of the
environmental exposures is defined as

r2 =
var
{

E
(
Y
∣∣X1, · · · , Xp

)}
var(Y)

. (1)

If there is no association between the health outcome and the environmental exposures,
the mean prediction is a constant, and thus the proportion of the explained variation is
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zero. When the dimension of the environmental exposures is low, it may be feasible to first
estimate the regression model and then assess the proportion of the variation explained.
When the dimension of the exposures is high, the approach of estimating the regression
model first becomes difficult to impossible to carry out. We propose an alternative approach
that directly estimates the proportion of the explained variation without the need to estimate
the regression model first. Assume the linear model linking the health outcome and the
pollutants as

Y = β0 + β1X1 + · · ·+ βpXp + ε, (2)

where E(ε) = 0, var(ε) = σ2. Let β =
(

β1, · · · , βp
)t and ∑ = var(X). The proportion of

explained variation under the linear model (2) becomes

r2 =
βt ∑ β

βt ∑ β + σ2 .

If the covariance matrix ∑ is known, a decorrelation transformation can be applied
to transform X1, · · · , Xp into uncorrelated variables Z1, · · · , Zp through

(
Z1, · · · , Zp

)
=(

X1, · · · , Xp
)

∑−1/2 . After the decorrelation transformation, the linear model becomes

Y = β0 + α1Z1 + · · ·+ αpZp + ε, (3)

where α =
(
α1, · · · , αp

)t and var
(
Z1, · · · , Zp

)
= Ip, the identity matrix. Furthermore,

αtα = βt ∑ β. The proportion of outcome variation explained by covariates
(
Z1, · · · , Zp

)
under model (2) can be rewritten as

r2 =
αtα

αtα + σ2

Under model (3), let the observed outcomes be Yi, i = 1, · · · , n, and the observed
exposures be

(
Zi1, · · · , Zip

)
, i = 1, · · · , n. The proportion of the explained variation r2 can

be directly estimated by

r̂2 =
tr
[
W
{

ỸỸt −
(

In − 11t

n

)}]
tr
[
W
{

M−
(

In − 11t

n

)}] (4)

where Ỹ =
(
Y1 −Y, · · · , Yn −Y

)
/σY, Y = 1

n

n
∑

i=1
Yi, σ2

Y = 1
n−1

n
∑

i=1
(Yi −Y)2, 1 = (1, · · · , 1)t,

and M = (Mik)n×n with

Mik =
1
p

p

∑
j=1

(
Zij − Z+j

)(
Zkj − Z+j

)

and Z+j = 1
n ∑n

i=1 Zij, and W = (I + λM)−1(M− I)(I + λM)−1 for fixed λ ≥ 0. One
major advantage of using (4) to estimate the proportion of the explained variation is that it
allows for high-dimensional exposures in model (3). The dimension of the exposures p can
be as large as or even greater than the sample size n, as long as the increase in dimension is
approximately a linear function of the sample size. Chen [17] showed that the estimator for
r2 behaves well in the high-dimensional setting.

2.2. Decorrelation of the Exposures with Possibly Supplementary Exposure Data

The estimation of the proportion of the explained variation by (4) is based on model (3),
which requires the exposures be de-correlated before being used. In practice, the covariance
matrix may not be known a priori. One idea is to use the estimated covariance matrix
for the decorrelation. However, there are potentially two problems in implementing this
idea when the exposures are of high dimension. First, the covariance matrix may not be
directly estimable when the dimension is high. For example, the empirical estimate of the
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covariance matrix does not yield a good estimate of the covariance matrix if p is close to or
larger than n. Second, even if the covariance matrix can be estimated in some ways, the
resulting estimator of the proportion of the explained variation may not behave well. We
propose the following approaches to address these issues.

When n > p, the covariance matrix can be directly estimated by the empirical estimator
as ∑̂ =

(
∑̂jk

)
, where

ˆ∑jk =
1

n− 1

n

∑
i=1

(
Xij − X+j

)(
Xik − X+k

)
and X+j =

1
n ∑n

i=1 Xij, j = 1, · · · , p. When n ≤ p, to continue the use of the empirical esti-
mator for the decorrelation, it is required to have additional supplementary covariate data.
Suppose a separate sample of covariates only is available to use. Denote the supplementary
data by Xi1, · · · , Xip, i = n + 1, · · · , n + N, where n + N > p. The empirical estimator of

the variance matrix ∑̂ =
(

∑̂jk

)
, where

ˆ∑jk =
1

n + N − 1

n+N

∑
i=1

(
Xij − X+j

)(
Xik − X+k

)
and X+j =

1
n+N ∑n+N

i=1 Xij, j = 1, · · · , p. Note also that if supplementary covariate data are
available, the supplementary data can also be used for the covariance matrix estimation
when n > p. With the covariance matrix estimated, decorrelation can be carried out by the
following approach, (

Zi1, · · · , Zip
)
=
(
Xi1, · · · , Xip

) ˆ∑
−1/2

i = 1, · · · , n. The estimation approach in (4) can then be carried out using the decorrelated
covariate data Z in M and W, denoted, respectively, by M̂ and Ŵ. The estimator of the
proportion with estimated weight matrix is

r̂e
2 =

tr
[
Ŵ
{

ỸỸt −
(

In − 11t

n

)}]
tr
[
Ŵ
{

M̂−
(

In − 11t

n

)}] . (5)

It has been shown that the empirical estimate of the covariance when n > p and the
empirical estimate when n ≤ p with supplementary exposure data can yield well-behaved
estimator of r2 by the method in (4) and (5), respectively. More details can be found in Chen
(2021). Note, however, current theory does not support the use of other types of covariance
estimators in place of the empirical estimator, including the frequently used sparse matrix
approaches in high-dimensional settings.

2.3. Confounder Adjustment and the Variation Explained by a Subset of Exposures

In estimating the proportion of the variation of a health outcome explained by a set of
exposures, it is often the case that some confounders need to be adjusted. Another relevant
question is estimating the proportion of the variation of a health outcome explained by
a subset of the exposures. In this case, we need to account for the fact that the subset of
exposures may be correlated with the rest of the exposures and that the rest of the exposures
may also explain a proportion of the variation of the health outcome. These two problems
are similar from a statistical point of view. We treat them in a single framework, where we
label the confounders and the exposures together by covariates.

Let the set of covariates be divided into two sets, denoted by XA =
(
Xj, j ∈ A

)t and

XB =
(
Xj, j ∈ B

)t, where A and B are two disjoint index sets. For example, XA can be
the collection of confounders and XB be the collection of exposures. Suppose that we are
interested in estimating the proportion of the additional variation of the health outcome
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explained by the set of covariates XB after the subset of covariates XA are already included
in the model. The proportional of additional variation explained is

r2
B|A =

E[var{E(YXA, XB)XB}]
var(Y)

.

Under the linear model in (6),

r2
B|A =

βt
B

(
∑BB−∑BA ∑−1

AA ∑AB

)
βB

var(Y)
, (6)

where the covariance matrix for (XA, XB) is

∑ =

(
∑AA ∑AB
∑BA ∑BB

)
p×p

.

The proportions of the variation of Y explained by (XA, XB) and XA alone are, respectively

r2
AB =

(
βt

A, βt
B
)

∑
(

βt
A, βt

B
)t

var(Y)
and r2

A =

(
βA + ∑−1

AA ∑AB βB

)t
∑AA

(
βA + ∑−1

AA ∑AB βB

)
var(Y)

.

They are related through r2
B|A = r2

AB − r2
A. Estimation of r2

B|A can therefore be obtained by

r̂2
B|A = r̂2

AB − r̂2
A,

where r̂2
AB and r̂2

A are, respectively, the proportions of variation estimated by data on
(Y, XA, XB) and on (Y, XA). The estimation approach can be either the direct estimating
equation approach assuming covariate independence, or the supplementary covariate
approach allowing correlated covariates.

2.4. Estimation of the Total Interaction Effects

One important practical question in environmental health research is whether interac-
tions among pollutants exist. To answer this question, linear model (1) can be expanded to
include interactions as follows,

Y = β0 + β1X1 + · · ·+ βpXp + ∑p−1
j=1 ∑p

k=j+1 γjkXjXk + ε, (7)

For estimating the total variation explained by both the main and interaction effects,
the estimator r̂2 or r̂2

e may be used depending on whether the covariance matrix needs to
be estimated. For estimating the proportion of variation explained by the interaction effects
only, the problem can be cast into the covariate adjustment formulation discussed in the
previous section. Let XA =

(
X1, · · · , Xp

)
and XB =

(
X1X2, · · · , Xp−1Xp

)
. The proportion

of variation explained by the interaction terms given the inclusion of the main effect terms
is r2

B|A. The parameter may be estimated using the method described in the last section.

2.5. Inference on the Explained Variation

One important question to ask in practice is whether the explained variation by
a mixture of exposures is non-zero. To answer this question, we propose to use the
permutation test. Specifically, we first permute the outcomes among the subjects and
recalculate the estimated value for r2. By comparing the r2 estimator based on the permuted
data with that from the original data, and repeating the process for many times, we can
estimate the p-value for testing the hypothesis of no explained variation. Specifically, we
test the hypothesis,

H0 : r2 = 0 vs. HA : r2 > 0.
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The following permutation algorithm is used.

1. Compute r2 estimator using one of the proposed methods based on data (Y1, X1), · · · ,
(Yn, Xn). Denote the estimate by r̂2

o .
2. Permute the outcome Y1, · · · , Yn, to Yτ(1), · · · , Yτ(n), where τ is a randomly selected

permutation of indices 1, · · · , n. Compute r2 estimator using the same method based
on permuted data

(
Yτ(1), X1

)
, · · · ,

(
Yτ(n), Xn

)
. Denote the estimate by r̂2

τ .

3. Repeat step 2 for N times. The estimated p-value is the frequency of r̂2
τ > r̂2

o , i.e.,

p̂− value =
#
{

τ
∣∣r̂2

τ > r̂2
o
}

N
.

To take into consideration the accuracy of the Monte Carlo simulation approach in
computing the p-values, we obtain an upper bound of the true p-value by

p̂− value bound = p̂− value + 0.427/
√

N

The second term is obtained from the upper bound of the 95% confidence interval
for p-value equals 0.05. The p-value bound is more appropriate to use when the estimated
p-value is small in comparison to the accuracy that can be achieved by the Monte Carlo
simulation approach.

Another question often asked in practice is whether the explained variation by a
mixture of exposures is non-zero after adjusting for confounders. This also includes the
additional explained variation of a group of exposures after other groups of exposures are
already explained. One such example is the additional variation explained by interactions.
The hypothesis to be tested can in general be stated as

H0 : r2
B|A = 0 vs. HA : r2

B|A > 0.

The following permutation algorithm can be used after the decorrelation transformation:

1. Compute r2
B|A estimator using one of the proposed methods based on data (y1, XA1, XB1),

· · · , (yn, XAn, XBn). Denote the estimate by r̂2
B|Ao.

2. Permute the covariates XB1, · · · , XBn, to XBτ(1), · · · , XBτ(n), where τ is a random
selected permutation of indices 1, · · · , n. Compute r2

B|A estimator by the same method

based on the permuted data (Y1, XA1, XBτ(1)), · · · ,
(

Yn, XAn, XBτ(n)

)
. Denote the

estimate by r̂2
B|Aτ

.

3. Repeat step 2 for N times. The estimated p-value is the frequency of r̂2
B|Aτ

> r̂2
B|Ao, i.e.,

p̂− value =
#
{

τ
∣∣∣r̂2

B|Aτ
> r̂2

B|Ao

}
N

.

Similarly, we can compute an upper bound of the true p-value by

p̂− value bound = p̂− value + 0.427/
√

N,

to account for the error in using the Monte Carlo approach to computing the p-value.
Aside from the permutation tests for no effects, a confidence interval for the explained

variation can be constructed based on the asymptotic analysis of the proposed estimators.
Such asymptotic results based on the random matrix theory [23] are very complex to obtain.
Interested readers may check the results in Chen [17] for more details.

2.6. R Package: TEV

We developed an R package called the total explained variation (TEV) for carrying out
the computation of the proposed methods. The package includes two main functions for
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computing the proportion of the explained variations and produces confidence intervals for
the explained variation. The first function is named R2ee for computing r̂2 in (4), the second
is named R2eesd for computing r̂e

2 in (5) when supplemental covariate data are available.
Although r̂e

2 appears simply as replacing M and W in (2), respectively, by M̂ and Ŵ, this
replacement affects the inference on r2. As a result, a different function is used. A third
function is the least squares approach for the case n > p, named as R2eels. These functions
are modified to perform hypothesis tests based on permutation. The modifications for
the unconditional test have PMT attached to their names—for example, R2ee to R2eePMT.
The modifications for the performance conditional permutation test have PMTca attached
to their names—for example, R2eePMTca. In addition, two existing approaches are also
included in the R package for the convenience of comparison. The first is the EigenPrism
approach with the function name EigenPrismFull, which is an adaptation of the R function
EigenPrism by Jansen et al. [16]. The second is the GCTA approach [14] with the option
of bootstrap variance computation [24]. This function is named R2GCTA. The code for
TEV is available in the Github site: https://github.com/hychen-uic/TEV (accessed on
30 December 2021).

2.7. Simulation Study Design

We simulated exposure data in three different scenarios: independent, mildly cor-
related, and highly correlated. The distributions of the exposures are either normally
or non-normally distributed. The outcome data are simulated following a linear model
with random error following normal or non-normal distributions. The simulated data are
generated under a combination of parameters, including p, n, independent or correlated
exposures with different distributions. The detailed data generation algorithm is given
in Appendix A. The first set of simulated data are used to validate the correct size of the
permutation tests under the null hypothesis and the adequate power under the alternative
hypothesis. The permutation sample size of the Monte Carlo simulations for computing
the p-values is set to 10,000 except stated otherwise. In the second set of simulations, we
compute the confidence intervals and their coverages and lengths for the explained varia-
tions when the true values of r2 are not zero. Comparison with other existing approaches
as well as the variations of the proposed approach is carried out. All the simulation results
are based on 1000 replicates except stated otherwise.

2.8. Data Analysis Approach

We analyze a National Health and Nutrition Examination Survey (NHANES) dataset
to demonstrate the use of the proposed methods for data analysis. NHANES is a weighted
sample representative of the U.S. population. Persistent organic pollutants (POPs) were
measured in serum from a subgroup of the population in the period 1999–2004. The dataset
was downloaded from the NHANES website. The original data have 31,126 records. A total
of 75 POPs, including 11 brominated flame retardants, 34 polychlorinated biphenyl (PCB),
13 organochlorine pesticides, and 17 dioxins and furans, are treated as exposure variables in
the analysis. When interactions are also considered, an additional 2775 covariate items are
included in the analysis, for a total of 2862 covariate items. Analytes with measurements
below the limit of detection (LOD) are imputed at the LOD/

√
2. Since these chemicals

are lipophilic, the chemical measurements are all adjusted for serum lipid levels (Phillips
et al. 1989). As the POPs were measured only on a subset of the subjects by design, we
excluded subjects who were not measured by design. For subjects who were selected for
measurement by design, those with missing POPs and confounders were included and
missing values were imputed using the R package MICE [25] before the analysis. The final
sample used for the illustration has 3261 subjects.

The outcomes we analyze are systolic and diastolic blood pressures. Average systolic
and diastolic blood pressures (SBP and DBP, respectively) reported to participants were
used for analysis. Blood pressure measures have been adjusted for hypertensive medication
use to account for the size of potential treatment effect. For participants currently taking

https://github.com/hychen-uic/TEV
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anti-hypertensive medications, we added 10 and 5 mmHg to observed systolic and diastolic
blood pressures, respectively [26,27]. Possible confounders, including age, body mass
index (kg/m2), sex, race/ethnicity (non-Hispanic white, non-Hispanic black, Mexican
American, other Hispanic, other race), family poverty income level (<1.3, 1.4–3.4, >3.5),
education (less than high school, high school, more than high school), alcohol drinks per
year, smoking status (never, former, current), drugs taken last month including hormones
modifying drugs (yes, no), adrenal cortical steroids (yes, no), antidiabetic drugs (yes, no),
and immunosuppressant drugs (yes, no), are adjusted in the analysis.

The distributional summary of the exposures and the outcomes will be examined first.
The proportions of explained variation by all the covariates, including confounders and
exposure variables, with/without interactions between the exposures are then estimated
and inferred. The proportions of the explained variation by the exposures with/without
interactions after adjusting for the confounders are estimated and inferred next. The
inference included confidence intervals for the proportion of explained variation and
p-values for the permutation tests.

3. Results
3.1. Simulations

Table 1 lists the type I errors of the permutation test for the hypothesis H0 : r2 = 0 with
α = 0.05 under varying data generation mechanisms. It can be seen from the table that the
type I errors are mostly close to the nominal level. There is a slight inflation of type I error for
the test based on the estimating equations assuming independent covariates. For other tests,
the type I errors are well under control. Figures 1 and 2 display the power of the permutation
tests for the hypothesis H0 : r2 = 0 at the significance level α = 0.05 with a range of r2 values,
respectively, for independent covariates and highly correlated covariates. It can be clearly seen
that the test that assumes independent covariates has the highest power. The permutation test
that uses the supplementary data is a little more powerful than the test that does not use the
supplementary data when n > p. The power difference between the test assuming covariate
independence and tests without the assumption is large when the ratio of the sample size to
the number of covariates is small. For the case with independent covariates (Figure 1), the
power of the different tests is similar. In contrast, the power can be substantially different with
highly correlated covariates, especially when n < p.

Table 1. Estimated type I errors for testing hypothesis H0: r2 = 0 by permutation tests with α = 0.05.

(n,p) Tests N,I N,M N,H C,I C,M C,H

(400, 200) R2ee 0.044 0.053 0.068 0.063 0.059 0.050
R2eesd 0.046 0.059 0.040 0.056 0.049 0.055
R2eels 0.046 0.052 0.044 0.061 0.050 0.057

(400, 800) R2ee 0.075 0.050 0.082 0.041 0.057 0.054
R2eesd 0.054 0.048 0.048 0.047 0.051 0.051

R2eesd-tf 0.046 0.046 0.045 0.048 0.057 0.059

N(C), I(M,H): normal (or χ2
1) distributed exposures and random error, exposures are independent (or mildly

correlated or highly correlated). R2eesd-tf is R2ee with covariates transformed by decorrelation using the estimated
covariance with supplementary covariate data.

Table 2 lists the estimated proportion of the explained variation by different methods
when the proportion is non-zero. From the table, it can be seen that the EigenPrism approach
yields reasonably good estimates in terms of bias and variance, and the confidence intervals
have good coverage except in the non-normal case with highly correlated covariates. In
the latter case, the EigenPrism estimates are subject to large bias and the coverage rates
of the confidence intervals are very low. The GCTA approach yields good estimates and
confidence intervals when the normality assumption on the random error holds. The
GCTA confidence intervals have a low coverage rate when the normality does not hold.
Because of the high computation cost in using the bootstrap method for estimating the
variance, the GCTA estimator was not computed in the comparison for p > n. Some
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limited simulation results not shown here suggest the performance is similar to the case
of n > p. The confidence intervals of the proposed estimators maintain good coverage
for all the simulated cases. The estimating equation approach (R2ee) assuming covariate
independence has the shortest length of the confidence intervals. The supplementary data
approach (R2eesd) has comparable or wider confidence intervals. This is because the
latter approach pays a cost for accounting for the dependence similar to the least squares
approach (R2eels) when n > p. It avoids potential bias that may occur in using the R2ee
approach for correlated covariates.
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Table 2. Comparison of estimators for the proportion of the explained variation for simulations.

(n,p) Covariates Model
(True r2) Method ^

r
2
−r2

Empirical
Variance

Averaged
95% CI

95% CI
Coverage

95%CI
Length

(400, 200) Independ. Normal EigenPrism 0.000 0.0031 (0.263, 0.503) 97.4% 0.240
(0.401) GCTA 0.005 0.0030 (0.272, 0.510) 96.5% 0.238

R2ee 0.000 0.0029 (0.300, 0.501) 94.1% 0.202
R2eels 0.003 0.0031 (0.285, 0.522) 91.7% 0.237
R2eesd 0.001 0.0029 (0.298, 0.507) 94.5% 0.209

χ2
1 EigenPrism −0.004 0.0050 (0.284, 0.517) 89.3% 0.233

(0.421) GCTA −0.003 0.0050 (0.293, 0.528) 89.9% 0.235
R2ee −0.003 0.0047 (0.248, 0.589) 97.6% 0.342

R2eels −0.001 0.0050 (0.241, 0.608) 94.0% 0.367
R2eesd −0.001 0.0048 (0.253, 0.589) 97.1% 0.336

Correlated Normal EigenPrism −0.002 0.0027 (0.328, 0.547) 95.7% 0.219
(0.455) GCTA −0.017 0.0024 (0.313, 0.547) 97.6% 0.234

R2ee −0.020 0.0016 (0.367, 0.506) 89.3% 0.139
R2eels −0.002 0.0026 (0.348, 0.560) 92.3% 0.212
R2eesd −0.003 0.0026 (0.356, 0.551) 93.8% 0.195

χ2
1 EigenPrism 0.017 0.0052 (0.300, 0.527) 86.3% 0.228

(0.413) GCTA −0.003 0.0049 (0.285, 0.520) 90.5% 0.236
R2ee −0.002 0.0035 (0.231, 0.593) 97.8% 0.362

R2eels 0.020 0.0052 (0.255, 0.617) 89.7% 0.362
R2eesd 0.019 0.0051 (0.267, 0.597) 93.8% 0.331
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Table 2. Cont.

(n,p) Covariates Model
(True r2) Method ^

r
2
−r2

Empirical
Variance

Averaged
95% CI

95% CI
Coverage

95%CI
Length

(400, 800) Independ. Normal EigenPrism −0.001 0.0103 (0.160, 0.646) 98.5% 0.485
(0.403) R2ee −0.006 0.0097 (0.207, 0.589) 94.9% 0.382

R2eesd 0.021 0.0217 (0.146, 0.726) 95.5% 0.580
χ2

1 EigenPrism 0.001 0.0129 (0.183, 0.668) 97.0% 0.485
(0.423) R2ee −0.005 0.0129 (0.182, 0.661) 96.2% 0.479

R2eesd 0.013 0.0251 (0.135, 0.770) 96.0% 0.635
Correlated Normal EigenPrism −0.361 0.0036 (0.000, 0.313) 13.4% 0.313

(0.410) R2ee 0.034 0.0029 (0.349, 0.538) 82.0% 0.189
R2eesd 0.020 0.0217 (0.151, 0.730) 94.8% 0.579

χ2
1 EigenPrism −0.335 0.0034 (0.000, 0.306) 18.8% 0.306

(0.380) R2ee 0.048 0.0050 (0.214,0.645) 94.9% 0.431
R2eesd 0.033 0.0251 (0.117,0.748) 95.8% 0.631

Table 3 lists the type I errors of the conditional permutation test for the hypothesis
H0 : r2

B|A = 0 with α = 0.05. This type of test can be used for confounder adjustment,
subset exposures, and interactions. Because the simulation is much more time-consuming,
the simulation results are obtained with 1000 permutations and 200 replicates. In this set of
simulations, XA is set to half of the X variables and r2

A is set to either 0 or non-zero. Note in
particular that XA is also of high dimension. The estimated type I errors for the proposed
test are all under control and close to the nominal level except in some cases of using the
R2ee approach.

Table 3. Estimated type I errors for testing hypothesis H0 : r2
B|A = 0 by permutation tests in

simulations with α = 0.05 for (n, p) = (400, 200).

Tests N,I N,I C,I C,I N,H N,H C,H C,H

r2
A 0 0.198 0 0.195 0 0.212 0 0.322

R2ee 0.015 0.065 0.055 0.050 0.105 0.005 0.075 0.005
R2eesd 0.030 0.045 0.065 0.055 0.045 0.015 0.070 0.045
R2eels 0.035 0.025 0.060 0.060 0.055 0.006 0.040 0.040

N(C), I(H): Normal (or χ2
1) distributed exposures and random error, exposures are independent (or highly

correlated).

3.2. Data Analysis

Table 4 lists the summary statistics for the demographic variables and confounders to
be adjusted in the analysis. The ranges of the continuous variables appear to be reasonable.
The other race categories in the data are small. The percentages of medication use among the
subjects are low. Figure 3 shows the box plots of 75 chemical exposures and the distribution
of the pairwise correlation coefficients. From the figure, we see that the distributions of
the POPs have longer tails than the normal distributions would display. However, the
deviations are in general not extreme. The correlation can be high; however, most of the
correlation coefficients are approximately 0. Overall, the deviation appears to be not far
from independent normal.
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Table 4. Summary statistics for confounders in the adjustment of the NHANES dataset.

Continuous
Variable Range Mean Standard

Deviation

Age (in years) Min = 20, Max = 85 51.82 18.59

BMI Min = 16.07, Max = 62.99 28.43 5.98

Alcohol drinks/year Min = 0, Max = 365 48.13 90.36

Categorical variable Categories Counts Frequencies

Gender
Male 1667 0.51

Female 1595 0.49

Race

Mexican American 733 0.22
Other Hispanic 132 0.04

Non-Hispanic White 1722 0.53
Non-Hispanic Black 573 0.18

Other race 102 0.03

Education
Less than high school 1060 0.32
High school diploma 766 0.23

More than high school 1436 0.44

Poverty/income
ratio

Less than 1.3 886 0.27
Between 1.3 and 3.5 1321 0.40

More than 3.5 1055 0.32

Smoke status
Never 1637 0.5

Former 975 0.3
Current 650 0.2

Taken hormones modifying
drugs last month

Yes 584 0.18

No 2678 0.82

Taken adrenal cortical steroids
drugs last month

Yes 74 0.02

No 3188 0.98

Taken antidiabetic drugs last
month

Yes 304 0.09

No 2958 0.91

Taken immunosuppressant
drugs last month

Yes 16 0.005

No 3246 0.995
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Table 5 lists the results of the estimation and inference on the proportions of explained
variations. The analysis was performed for the SBP and the DBP, respectively, with/without
confounder adjustment and with/without interactions. For the unadjusted analysis without
interactions, the proportion of the SBP variation (approximately 35%) explained by the
chemical exposures is much higher than that of the DBP (6~7%). Both are significantly
different from 0 as the 95% confidence intervals suggest. After the adjustment for the
confounders, the proportions of the variation of both the SBP and DBP explained by the
POPs is close to 3%, with the DBP slightly less, but significantly different from 0 as the
permutation results suggest. Different methods yield very similar results in these cases.

Table 5. Proportion of blood pressure variations explained by 75 persistent organic pollutants
measured in the NHANES dataset.

Outcome Interaction Method Unadjusted 95% CI Adjusted * p-Value

SBP No EigenPrism 0.348 (0.314,
0.379)

GCTA 0.348 (0.276,
0.417)

R2ee 0.351 (0.319,
0.382) 0.036 0.0044

R2eels 0.348 (0.313,
0.383) 0.033 0.0044

Yes EigenPrism 0.479 (0.398,
0.544)

GCTA 0.349 (0.297,
0.403)

R2ee 0.349 (0.306,
0.392) 0.000 ** 0.090

R2eels 0.480 (0.413,
0.548) 0.132 ** <0.031

DBP No EigenPrism 0.060 (0.012,
0.105)

GCTA 0.073 (0.046,
0.105)

R2ee 0.073 (0.021,
0.126) 0.034 0.0045

R2eels 0.061 (0.013,
0.108) 0.023 0.0044

Yes EigenPrism 0.275 (0.158,
0.369)

GCTA 0.121 (0.072,
0.173)

R2ee 0.121 (0.054,
0.189) 0.048 ** <0.031

R2eels 0.277 (0.179,
0.375) 0.216 ** <0.031

* Adjusted for age, BMI, sex, race/ethnicity, alcohol use, smoking, poverty income level, education, and medication
use (see Table 4). ** Permutation tests for no interaction effects adjusted for both confounders and main exposures.

For the model with interactions, the unadjusted estimates from the estimating equation
approach assuming independent covariates (R2ee) and the GCTA method are markedly different
from the EigenPrism and the least squares approaches. When compared with the estimates with-
out interaction, the R2ee and GCTA approaches do not yield any evidence against no interaction
assumptions among the chemical exposures for either the SBP or the DBP. However, both the
R2eesd and R2eels approaches yield strong evidence (p-value < 0.031) against no interaction
assumptions for both SBP and DBP. The least squares type of estimates are considered more
reliable because they account for the possible correlations among covariates while the former
methods do not. The conditional permutation tests suggest the interactions explain an additional
proportion of variation for both the SBP (estimate = 13.2%) and the DBP (estimate = 21.6%).
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4. Discussion

The proposed methods allow us to infer the proportion of the variation of an outcome
explained by a set of exposures collectively with possible adjustment for confounders.
One prominent feature of the approaches is that they do not need to first estimate the
effects of individual exposures for estimating the overall effects. This feature is useful
because it can be hard to estimate the individual effects in high-dimensional exposures.
The proposed methods can be applied to situations where either or both the exposures and
the confounders are of high dimension where traditional regression approaches do not
yield a good estimate of the effects.

There are a number of subtle points which need some attention in applying the
proposed methods. Strictly speaking, the proposed methods are applicable for situations
with independent covariates before or after a decorrelation transformation. There is a subtle
difference between the independence of covariates and the uncorrelated covariates. Theory
guarantees for the former but not necessarily the latter. When n ≤ p and no supplementary
covariate data are available, we may impose structures on the covariance matrix so that the
covariance matrix can still be reasonably estimated. One such an assumption is the sparsity
assumption on the off-diagonal elements for the precision matrix ∑−1 [28]. However,
current theory does not directly support application to cases with an estimated structured
covariance matrix. Confounder adjustment in low-dimensional cases can be carried out
by regressing on both the outcome and the exposures. In the high-dimensional cases, this
adjustment can be impractical. The proposed methods are not subject to the problem.

Data analysis is presented as an illustrative example for applying the proposed meth-
ods, rather than an in-depth analysis of the specific dataset. A number of limitations exist
with respect to interpreting the results as a substantive analysis of the dataset. First, the
missing values are imputed. We performed the analysis only on a single imputed dataset
and did not account for the variation in the imputed values. In addition, the imputation
model may also be subject to questions and bias may occur for using inappropriate models.
Second, the confounder adjustment does not exhaust all possible available information.
Additional variables may need to be included, such as use of anti-lipid medications that
may impact blood pressure and lipophilic chemical exposures. Furthermore, there may
be residual confounding due to additional chemical exposures that may affect blood pres-
sure, such as heavy metals. However, we excluded the heavy metals from the analysis
because of a sampling design issue in which some metals and POPs were measured in
non-overlapping subsamples. Third, we did not account for the survey sampling design
and weights in the analysis.

The proposed approach is currently limited to the continuous outcome under the
linear model formulation. For categorical outcomes, the generalized linear model is often
used instead, and adaptation of TEV to the more general outcomes is not currently devel-
oped. The detailed theory for supporting the use of the proposed methods in this article
is not presented in this paper. However, such theory has been developed by the leading
author and his collaborators. Interested readers may find it in the reference. One remain-
ing theoretical gap is the lack of a variance formula for the conditional effects estimator
for constructing confidence intervals for the proportion of the explained variation after
adjustment for covariates. As a result, inference on the total effects relies on the conditional
permutation tests only.

We have developed the R code for performing the analysis presented in this paper.
We are currently packaging the code into an R package. The package will be posted online
for free access. The computations are mostly fast for the proposed methods except for the
conditional permutation tests which can be slow when the dimension of the covariates is
very high and an accurate p-value is to be computed by the simulation.

5. Conclusions

The main achievement of the proposed methods is to provide a tool for inferring the
overall effects of a large number of exposures on an outcome, with possible adjustment
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for a large number of confounders, without the need to estimate individual effects of the
exposures. Unlike many ad hoc approaches for estimating the overall effects, the proposed
approaches have a solid theoretical foundation to guarantee their performance under the
condition that covariates can be linearly transformed into independent variables. R code is
also available for other researchers to use the proposed methods.
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Appendix A

To generate the simulated data, a correlation matrix is first generated as follows. A p× p
matrix with independent normal N(a, 1) entries and a p× p matrix with independent uniform
U[−0.5, 0.5] entries are generated. Denote them, respectively, by A and B. Let D = (AB)tAB.
A correlation matrix C is extracted from the covariance matrix D using the singular value
decomposition approach. The level of correlation can be adjusted by changing the values
of a. In the simulation, independence corresponds to D = I and mild high correlations
corresponding, respectively, to a = 0 and a = 2. Covariates at different levels of correlation
are then generated in the following way. Standard normal random numbers are generated
first. Power transformation is then applied to generate deviation from the correlated normal,
where power transformation maps a random variable u into u1 through

u1 = sign(u)|u|γ (A1)

where γ > 0. In the case of χ2
1 covariates, the transformation drops sign(u). The covariates

are rescaled to a standard deviation of 1 before being transformed by C1/2 . The covariate
effects are set to a fixed constant for half of the variables and 0 for the other half. The
constant is chosen along with the error variance so that the proportion of explained variation
is close to 0.2, 0.5, 0.8, respectively. Random errors are generated as mean 0 normal
random numbers with a possible power transformation to yield deviation from the normal
distributed random error. Supplementary covariates with sample sizes equal to the number
of covariates are simulated for each case.

https://github.com/niehs-prime
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