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Filamentous fungi are the most important microorganisms for the industrial production

of plant polysaccharide degrading enzymes due to their unique ability to secrete

these proteins efficiently. These carbohydrate active enzymes (CAZymes) are utilized

industrially for the hydrolysis of plant biomass for the subsequent production of

biofuels and high-value biochemicals. The expression of the genes encoding plant

biomass degrading enzymes is tightly controlled. Naturally, large amounts of CAZymes

are produced and secreted only in the presence of the plant polysaccharide they

specifically act on. The signal to produce is conveyed via so-called inducer molecules

which are di- or mono-saccharides (or derivatives thereof) released from the specific

plant polysaccharides. The presence of the inducer results in the activation of a

substrate-specific transcription factor (TF), which is required not only for the controlled

expression of the genes encoding the CAZymes, but often also for the regulation

of the expression of the genes encoding sugar transporters and catabolic pathway

enzymes needed to utilize the released monosaccharide. Over the years, several

substrate-specific TFs involved in the degradation of cellulose, hemicellulose, pectin,

starch and inulin have been identified in several fungal species and systems biology

approaches have made it possible to uncover the enzyme networks controlled by

these TFs. The requirement for specific inducers for TF activation and subsequently

the expression of particular enzyme networks determines the choice of feedstock to

produce enzyme cocktails for industrial use. It also results in batch-to-batch variation

in the composition and amounts of enzymes due to variations in sugar composition

and polysaccharide decorations of the feedstock which hampers the use of cheap

feedstocks for constant quality of enzyme cocktails. It is therefore of industrial interest

to produce specific enzyme cocktails constitutively and independently of inducers. In

this review, we focus on the methods to modulate TF activities for inducer-independent

production of CAZymes and highlight various approaches that are used to construct

strains displaying constitutive expression of plant biomass degrading enzyme
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networks. These approaches and combinations thereof are also used to construct

strains displaying increased expression of CAZymes under inducing conditions, and

make it possible to design strains in which different enzyme mixtures are simultaneously

produced independently of the carbon source.

Keywords: CAZyme, plant biomass degradation, strain design, industrial fungi, transcriptional regulation,

overexpression of transcription factors, constitutively active transcription factors, inducer accumulation

INTRODUCTION

Plant biomass is the most abundant renewable carbon source
in the world and represents the major natural substrate for
fungi (Kowalczyk et al., 2014). Plant biomass mainly consists
of plant cell wall material, which contains the polysaccharides,
i.e., cellulose, hemicellulose and pectin, lignin, and structural
proteins (Loqué et al., 2015). Cellulose, the most abundant
plant cell wall polysaccharide, is a linear chain of glucose
(Kolpak and Blackwell, 1976). Hemicelluloses are complex
heteropolysaccharides with xylan- (linear chain of xylose),
glucan- (linear chain of glucose), glucomannan- (linear chain of
glucose and mannose), or mannan- (linear chain of mannose)
backbones, with several different types of monomers attached to
the backbone to give e.g., arabinoxylan or xyloglucan (Scheller
and Ulvskov, 2010). Pectins are other complex polysaccharides
containing D-galacturonic acid (GA) as the main sugar acid
in their backbones. Polygalacturonic acid (PGA) is a linear
chain of GA and the most abundant pectin substructure. Other
pectin substructures are rhamnogalacturonan I (linear chain of
alternating GA and rhamnose residues), rhamnogalacturonan
II and xylogalacturonan, and contain several different types of
monomers or polymers attached to their backbones (Caffall
and Mohnen, 2009). Plant biomass also contains the plant cell
storage polysaccharides starch, a linear (amylose) or branched
(amylopectin) polymer of glucose, and inulin, a polymer of
fructose residues with a terminal glucose residue (Gidley, 2001;
Ritsema and Smeekens, 2003).

Polysaccharides present in plant biomass are the target of
the degrading enzymes secreted abundantly by filamentous
fungi. Fungal carbohydrate active enzymes (CAZymes) are also
utilized industrially for the hydrolysis of plant biomass for
the subsequent production of mainly bioethanol, and high-
value biochemicals (Kowalczyk et al., 2014; Gupta et al., 2016;
Benocci et al., 2017). Plant biomass degrading enzymes are
classified into families based on their sequence, such as glycoside
hydrolases, polysaccharide lyases and carbohydrate esterases,
abbreviated as GH, PL and CE, respectively (Carbohydrate
Active Enzymes database, http://www.cazy.org/) (Lombard et al.,
2014). Filamentous fungi secrete large amounts of CAZymes
only in the presence of the plant polysaccharide they specifically
act on. For a review on the substrate specificity of CAZymes
we refer to Kowalczyk et al. (2014) and de Vries et al.
(2017). The signal for tailor-made production of CAZymes

Abbreviations: CAZyme, carbohydrate active enzyme; GA, D-galacturonic acid;

PGA, polygalacturonic acid; TF, transcription factor; CCR, carbon catabolite

repression.

is conveyed via so-called inducer molecules which are di- or
mono-saccharides (or derivatives thereof) released from the
specific plant polysaccharides. The presence of the inducer
results in the activation of a substrate-specific transcription factor
(TF), which is required for the controlled expression of the
genes encoding not only the CAZymes, but usually also the
transporters and catabolic pathway enzymes needed to utilize the
released monosaccharide (Culleton et al., 2013; Benocci et al.,
2017).

Several substrate-specific TFs involved in plant biomass
degradation have been identified in filamentous fungal species.
For a review on the TFs involved in plant biomass degradation
we refer to Huberman et al. (2016) and Benocci et al. (2017).
For example, it has been shown that induction of expression of
the genes encoding cellulases when cellulose is present requires
the presence of the transcriptional activators Clr-1 and Clr-2 in
Neurospora crassa, ClrB in Aspergillus nidulans and Penicillium
oxalicum, ManR in A. oryzae and Xyr1 in Trichoderma reesei
(Stricker et al., 2006; Coradetti et al., 2012; Ogawa et al., 2013;
Li et al., 2015). Clr-2, ClrB and ManR are orthologs (Kunitake
and Kobayashi, 2017), while Xyr1 shows significant sequence
similarity to the TFs involved in xylan degradation, XlnR in
A. niger and Xlr-1 in N. crassa (Rauscher et al., 2006). The
enzyme families controlled by orthologous transcription factors
can vary. Although Xyr1 in T. reesei is essential for the expression
of cellulases and xylanases, Xyr1 orthologs (named XlnR or
Xlr-1 in other species) are essential only for the expression of
xylanases in filamentous fungal species, such as A. oryzae (on
xylose), A. niger (on xylan), A. nidulans (on xylan), Talaromyces
cellulolyticus (on xylan), P. oxalicum (on cellulose), N. crassa
(on xylan), Fusarium oxysporum (on xylan or wheat cell walls),
and Myceliophthora thermophila (van Peij et al., 1998; Marui
et al., 2002b; Stricker et al., 2006; Brunner et al., 2007; Tamayo
et al., 2008; Sun et al., 2012; Fujii et al., 2014; Li et al., 2015;
Wang et al., 2015). In A. oryzae, A. niger, T. cellulolyticus, and
P. oxalicum, contribution of XlnR to the expression of cellulases
during growth on cellulose and/or xylose/xylan has also been
reported (Gielkens et al., 1999; Marui et al., 2002; Li et al., 2015;
Okuda et al., 2016). Arabinan, present in the side chains of some
form of hemicellulose, such as arabinogalactan, or some pectins,
is degraded via CAZymes that are transcriptionally regulated
by AraR in A. niger (Battaglia et al., 2011; Kowalczyk et al.,
2017). Arabinan degradation in T. reesei is partially regulated
via Xyr1 (Akel et al., 2009) and via Ara1 (Benocci et al., 2018).
The TF GaaR, required for the expression of CAZymes degrading
pectin, especially PGA, has been identified in both Botrytis
cinerea and A. niger (Alazi et al., 2016; Zhang et al., 2016).
Recently, Pdr-1 inN. crassa was described as a TF required for the
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expression of the genes encoding CAZymes that degrade several
pectin substructures including PGA and rhamnogalacturonan
I (Thieme et al., 2017). Transcriptional control of the genes
involved in starch degradation is conducted by AmyR in A. niger
and A. nidulans (Tani et al., 2001; vanKuyk et al., 2012).

The transcriptional activators involved in plant biomass
degradation mentioned above were identified either via classical
approaches, such as mutant complementation (xlnR in A. niger)
and gene cloning (xlnR and amyR in A. nidulans and amyR
A. niger), or via post-genomic approaches, such as yeast one-
hybrid screening (gaaR in B. cinerea), screening TF deletion
mutant collections (pdr-1 and clr-2 in N. crassa, manR in A.
oryzae, and clrB and xlnR in P. oxalicum), and also based on
sequence similarity (clrB in A. nidulans, araR and gaaR in A.
niger, xyr1 in T. reesei and M. thermophila, and xlnR in F.
oxysporum, T. cellulolyticus and A. oryzae) or their expression
levels in the transcriptomics data (xlr-1 in N. crassa) (van Peij
et al., 1998; Tani et al., 2001; Marui et al., 2002b; Rauscher
et al., 2006; Brunner et al., 2007; Battaglia et al., 2011; Coradetti
et al., 2012; Ogawa et al., 2012; Sun et al., 2012; vanKuyk et al.,
2012; Fujii et al., 2014; Li et al., 2015; Wang et al., 2015; Alazi
et al., 2016; Zhang et al., 2016; Thieme et al., 2017). Positively
acting TFs involved in controlling expression of plant cell wall
degrading enzymes belong to the Zn2Cys6 type family of TFs.
TFs belonging to this family are found specifically in fungi
(both yeasts and filamentous fungi) and contain a DNA-binding
domain with six cysteine residues bound to two zinc atoms,
usually close to their NH2-terminal end. Most of the Zn2Cys6
type TFs also contain a fungal-specific TF domain, known as the
middle homology region, with a proposed role in regulating the
activity of the TF (MacPherson et al., 2006). Apart from activators
several repressor proteins involved in plant biomass degradation
have been identified including wide domain repressors, such as
the carbon catabolite repressor protein CreA/Cre1, or substrate
specific repressors which are discussed in paragraphs 1.2 and 2.3,
respectively.

Diversity in the Control of Transcription
Factor Activities
The mechanisms by which the activity of TFs is regulated
in response to stimuli can be diverse. Firstly, the protein
level of the TFs might be controlled. This can be realized
by regulation at the level of transcription, mRNA stability or
protein stability resulting in low protein levels under non-
inducing conditions and higher levels under inducing conditions.
Secondly, the subcellular localization (nuclear import/export),
DNA binding activity, and/or transcriptional activity of the
TFs might be regulated by post-transcriptional modifications,
such as phosphorylation, and/or via protein-protein or protein-
metabolite interactions (MacPherson et al., 2006; Chang and
Ehrlich, 2013; Tani et al., 2014). Finally, DNA site occupancy
of TFs might depend on their cooperation or competition with
other proteins and the chromatin accessibility (Granek and
Clarke, 2005; Biggin, 2011).

Our knowledge about regulation of the activity of the
TFs involved in biomass degradation is limited, yet growing.

The amount of Clr-2 in N. crassa is regulated at the level
of transcription by Clr-1, which gets activated and positively
regulates clr-2 expression only under inducing conditions
(on insoluble crystalline cellulose Avicel or cellobiose). The
expression of the clr-2 ortholog in A. nidulans, clrB, on the other
hand, is not drastically induced under inducing conditions (on
Avicel) and the Clr-1 ortholog ClrA is not essential but only
contributes to cellulase gene expression (Coradetti et al., 2012).
This comparison indicates that activation mechanisms of even
orthologous transcription factors differ between fungal species.

The expression of xyr1 in T. reesei is subject to Cre1-
dependent carbon catabolite repression (CCR) (see below) and
induced on carbon sources inducing cellulase expression (e.g.,
lactose, sophorose, or cellulose), but not on carbon sources
inducing xylanase expression (e.g., xylose) (Mach-Aigner et al.,
2008; Portnoy et al., 2011a; Lichius et al., 2014). Xyr1 was shown
to accumulate in the nucleus during growth on an inducing
carbon source (i.e., sophorose or low concentration of xylose),
whereas it is degraded in the nucleus during growth on a
repressing carbon source (i.e., glucose or a high concentration
of xylose). The increased amount of nuclear Xyr1 correlates
with the increased expression level of cellulase gene cbh1 on
sophorose, and that of xylanase gene xyn2 on a low concentration
of xylose (Lichius et al., 2014). Similar to T. reesei xyr1, the
expression of xlnR in A. nidulans and P. oxalicum is also
subject to CreA-dependent CCR (see below), whereas xlnR
in A. niger is not regulated at the level of transcription, but
constitutively transcribed at low levels (Tamayo et al., 2008;
Mach-Aigner et al., 2012; Li et al., 2015). Moreover, XlnR was
found to be localized in the nucleus regardless of the presence
of inducer in A. niger (Hasper, 2004). In F. oxysporum, xlnR
is transcriptionally regulated by both CCR and induction on
xylose/xylan (Calero-Nieto et al., 2007). XlnR in A. oryzae is
reversibly phosphorylated in response to xylose, which does not
affect its protein stability and correlates with the expression of
XlnR target genes (Noguchi et al., 2011). Recently, Kunitake
and Kobayashi proposed that a conserved sequence in XlnR is
involved in the xylose-mediated phosphorylation of XlnR in A.
oryzae, implying a conservedmechanism regulating XlnR activity
among Ascomycete fungi. Moreover, the observation that XlnR
in A. oryzae is not phosphorylated in response to cellobiose,
but required for cellulase expression, indicates that its activity is
regulated by a different mechanism on cellobiose (Noguchi et al.,
2011; Kunitake and Kobayashi, 2017).

The activity of the GA-responsive transcriptional activator
GaaR in A. niger is regulated by a different mechanism. It
is suggested to be inhibited by the repressor protein GaaX
via protein-protein interaction under non-inducing conditions.
Under inducing conditions (in the presence of GA), the inducer
is proposed to bind to GaaX, resulting in a free and active form of
GaaR (Niu et al., 2017). The amount of GaaR is not significantly
regulated at the level of transcription (Alazi et al., 2016, 2018).
In addition, GaaR-eGFP was shown to be constitutively localized
in the nucleus (Alazi et al., 2018). Transcription of pdr-1 in N.
crassa is induced under inducing conditions (on rhamnose) and
repressed under repressing conditions. Moreover, the activity of
Pdr-1 is suggested to be post-transcriptionally regulated, as its
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nuclear accumulation and transcriptional activity requires the
presence of rhamnose in a strain overexpressing pdr-1 (Thieme
et al., 2017).

The transcription of amyR is upregulated on inducing carbon
sources (e.g., starch or maltose) and is subject to CreA-dependent
CCR (see below) in A. nidulans (Tani et al., 2001). Further,
AmyR was shown to localize in the nucleus in an inducer (i.e.,
isomaltose)-dependent manner and activate the expression of its
target genes (Makita et al., 2009).

The Role of the Carbon Catabolite
Repressor in the Production of Plant
Biomass Degrading Enzymes
Apart from being upregulated under inducing conditions, the
expression of CAZymes might also be controlled via CCR when
a more energetically favorable carbon source, such as glucose,
compared to plant biomass polysaccharides is available for fungi.
The Cys2His2 type TF CreA/Cre1/Cre-1 (in Aspergillus species,
T. reesei, and N. crassa, respectively) is the main transcriptional
repressor contributing to CCR. Regulation of CreA activity has
not been fully understood, but several studies have indicated
that post-transcriptional modifications, such as ubiquitination
and phosphorylation, affect CreA protein stability, subcellular
localization and/or DNA binding activity (Cziferszky et al., 2002;
Ries et al., 2016; see Adnan et al., 2017 for a recent review). CreA
not only represses the expression of genes encoding CAZymes,
but it might also repress the expression of some transcriptional
activators, such as clrB and xlnR in P. oxalicum, xyr1/xlnR
in T. reesei, A. nidulans and F. oxysporum, and amyR in A.
nidulans, that are required for the expression of CAZymes
(Tani et al., 2001; Calero-Nieto et al., 2007; Mach-Aigner et al.,
2008; Tamayo et al., 2008; Li et al., 2015). Furthermore, CreA
might repress the expression of CAZymes under high xylose
concentrations, too, as was shown to be the case for XlnR
and its target genes in A. nidulans, and for XlnR itself in A.
oryzae (Tamayo et al., 2008; Ichinose et al., 2017). Elimination
of CCR due to a lack of function of CreA and/or CreB, a
ubiquitin-specific protease involved in CCR, or their orthologs
has been reported to result in an increased expression of
CAZymes degrading cellulose, hemicellulose, pectin or starch,
under inducing and/or non-inducing conditions in filamentous
fungi (Prathumpai et al., 2004; Mach-Aigner et al., 2008; Nakari-
Setälä et al., 2009; Denton and Kelly, 2011; Sun and Glass, 2011;
Fujii et al., 2013; Ichinose et al., 2014, 2017; Niu et al., 2015;
Yang et al., 2015). However, even when CreA-dependent CCR
is circumvented, the expression of CAZymes might require the
presence of active transcriptional activators, which is normally
achieved in the presence of inducing metabolites. For example,
in a Cre1-negative T. reesei strain (Rut-C30), the full expression
of Xyr1 target genes requires the presence of the inducer (i.e.,
xylose) (Mach-Aigner et al., 2008). Another study revealed that
deletion of cre1 in T. reesei results in elevated production of
cellulases and xylanases under inducing (on lactose) and, to
a lesser extent, under non-inducing conditions (on glucose)
(Nakari-Setälä et al., 2009). Genome-wide studies in T. reesei
have also indicated that only a few of the cellulolytic genes

were upregulated in a 1cre1 strain during growth on glucose
(Portnoy et al., 2011b; Antoniêto et al., 2014). This indicates that
the majority of these cellulolytic genes are not induced simply
by derepression, but require additional inducing condition for
expression. Similarly, although the expression of pectinases is
subject to CreA-dependent CCR in A. niger, deletion of creA is
not sufficient for an increased production of polygalacturonases
under non-inducing conditions. Polygalacturonases are only
produced in the presence of the inducer (i.e., GA) or when gaaX
is deleted, showing that GA-responsive gene expression requires
the presence of active GaaR relieved from GaaX inhibition even
in a 1creA strain (Niu et al., 2015, 2017).

APPROACHES FOR INCREASED OR
CONSTITUTIVE EXPRESSION OF PLANT
BIOMASS DEGRADING ENZYMES BY
MODULATING THEIR TRANSCRIPTIONAL
REGULATION

Plant biomass with varying sugar composition present in
waste streams from agriculture, forestry and food industries
represent a cheap, sustainable and renewable feedstock for
the production of the CAZymes, and subsequently, valuable
chemicals (Sweeney and Xu, 2012; Meyer et al., 2015). However,
the composition of the enzyme cocktail will vary because
of variation in the composition of the plant biomass. It
is therefore of industrial interest to produce specific fungal
enzyme cocktails constitutively, independently of inducers and
the substrate used. Fungal production strains, such as A.
niger CBS513.88, T. reesei Rut-C30, and P. oxalicum JU-A10-
T, have been for a long time improved via multiple rounds
of classical mutagenesis and screening approaches that can be
time-consuming (Montenecourt and Eveleigh, 1979; Pel et al.,
2007; Fang et al., 2010; van Hanh et al., 2010; Ho and Ho,
2015; Yao et al., 2015). However, emergence of the -omics era
(genomics, transcriptomics etc.) and advances in recombinant
technologies allow nowadays efficient strain improvement via
genetic engineering approaches with minimal alterations in the
genome (Meyer et al., 2010; Liu et al., 2013). In the remaining
part of this review, we discuss the approaches to modulate
transcriptional regulation in order to rationally design fungal
strains with increased or constitutive production of plant biomass
degrading enzymes, examples of which are given in Table 1. As
will become clear in the following sections, the success of the
approach used highly depends on the mechanism regulating the
activity of the targeted TF.

Overexpression of TFs
Increasing the amount of a TF at the level of transcription
can be achieved by expressing multiple copies of the TF via its
endogenous promoter, or (multiple copies of) the TF via a strong
inducible/constitutive promoter. Overexpression of several TFs
in Saccharomyces cerevisiae has been shown to result in an
increased expression of the TF target genes, even under non-
inducing conditions (Chua et al., 2006).
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TABLE 1 | Examples of rational design of industrial fungal strains with increased or constitutive production of CAZymes.

Approach CAZyme Carbon source tested

(Inducing/non-inducing)

References

Ace1-T. reesei Deletion of ace1 Cellulases, Xylanases Inducing Aro et al., 2003

AmyR-A. nidulans Constitutive activation in

AmyR1−514

Amylases Inducing and non-inducing Makita et al., 2009

AmyR-A. niger Overexpression of amyR Cellulases, hemicellulases,

amylases

Inducing vanKuyk et al., 2012

Clr-2-N. crassa Overexpression of clr-2 Cellulases Inducing and non-inducing Coradetti et al., 2013

ClrB-A. nidulans Overexpression of clrB Cellulases Inducing Coradetti et al., 2013

ClrB (and CreA) (and

β-glucosidase)-P. oxalicum

Overexpression of clrB (and

deletion/a lack of function of

creA) (and deletion of bgl2)

Cellulases (and hemicellulases) Inducing (and non-inducing) Chen et al., 2013; Li et al., 2015;

Yao et al., 2015

CreA/CreB or their orthologs-

see the text

Elimination of CCR by deletion/a

lack of function of creA/creB

Cellulases, hemicellulases,

pectinases, amylases

Inducing and/or non-inducing See the text

GA catabolic pathway-A. niger Deletion of gaaC Pectinases Inducing Alazi et al., 2018

GaaR (and CreA)-A. niger Overexpression of gaaR (and

deletion/a lack of function of

creA)

Pectinases Inducing and non-inducing Alazi et al., 2017

Constitutive activation in

GaaRW361R
Pectinases non-inducing Alazi et al., in press

GaaX-A. niger Deletion of gaaX Pectinases Non-inducing Niu et al., 2017

GCN5-related

N-acetyltransferase -T. reesei

Overexpression of gene 123668 Cellulases Inducing Häkkinen et al., 2014

Hcr-1-N. crassa Deletion of hcr-1 Xylanases Inducing Li et al., 2014

Lae1-T. reesei Overexpression of lae1 Cellulases Inducing Seiboth et al., 2012b

ManR-A. oryzae Overexpression of manR Cellulases, Mannanases Inducing Ogawa et al., 2012, 2013

Mhr1-M. thermophila Gene silencing of mhr1 Cellulases, Xylanases Inducing Wang et al., 2018

Pdr-1-N. crassa Overexpression of pdr-1 Pectinases Inducing Thieme et al., 2017

Rce1-T. reesei Deletion of rce1 Cellulases Inducing Cao et al., 2017

Synthetic TF-P. oxalicum Overexpression of cxc-s Cellulases, Xylanases Inducing and non-inducing Gao et al., 2017a

Synthetic TF-T. reesei Overexpression of xyr1-cre1b Cellulases, Xylanases Non-inducing Zhang et al., 2017

SxlR-T. reesei Deletion of sxlR Xylanases Inducing Liu et al., 2017

XlnR-A. nidulans Overexpression of xlnR Xylanases Inducing Tamayo et al., 2008

XlnR-A. niger Overexpression of xlnR Cellulases, Xylanases Inducing Gielkens et al., 1999

Constitutive activation in

XlnRV756F/XlnRL668Stop
Xylanases Inducing and non-inducing Hasper, 2004; Hasper et al.,

2004

XlnR-A. oryzae Overexpression of xlnR Cellulases, Xylanases Inducing Marui et al., 2002; Noguchi et al.,

2009

XlnR-F. oxysporum Overexpression of xlnR Xylanases Inducing Calero-Nieto et al., 2007

XlnR-P. oxalicum Constitutive activation in

XlnRA871V
Cellulases, hemicellulases Inducing Gao et al., 2017a

XlnR-T. cellulolyticus Overexpression of xlnR Cellulases Inducing Okuda et al., 2016

Xlr-1-N. crassa Constitutive activation in

Xlr-1A828V
Xylanases Inducing and non-inducing Craig et al., 2015

Xpp1-T. reesei Deletion of xpp1 Xylanases Inducing Derntl et al., 2015

Xylose/arabinose catabolic

pathway-T. reesei

Deletion of xylose/arabinose

catabolic pathway genes

Xylanases Inducing Herold et al., 2013

Xyr1-M. thermophila Overexpression of xyr1 Xylanases Inducing and non-inducing Wang et al., 2015

Xyr1-T. reesei Overexpression of xyr1 (and

gene silencing of ace1 in

RUT-C30)

Cellulases (and xylanases) Inducing and non-inducing Wang et al., 2013; Lv et al., 2015

Constitutive activation in

Xyr1A824V
Cellulases, Xylanases Inducing and non-inducing Derntl et al., 2013

β-glucosidases-N. crassa Deletion of gh1-1, gh3-3 and

gh3-4 (and deletion/a lack of

function of cre-1)

Cellulases Inducing Znameroski et al., 2012
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Inducer-independent production of cellulases in N. crassa
was achieved by constitutively overexpressing clr-2 via the ccg-1
promoter (Coradetti et al., 2013). While deletion of clr-2 resulted
in a drastic decrease in the expression of most of the genes
encoding cellulases under inducing conditions [i.e., on insoluble
crystalline cellulose (Avicel)], overexpression of clr-2 resulted in
an increased expression of cellulases under inducing conditions
and constitutive expression under non-inducing conditions.
Expression of the genes encoding cellulases was higher under
starvation (no carbon) conditions than on sucrose highlighting
the effect of CCR on cellulase encoding genes under repressing
conditions (i.e., on sucrose) even when clr-2 was overexpressed
(Coradetti et al., 2013).

Unlike overexpression of clr-2 in N. crassa, overexpression of
the clr-2 ortholog clrB in A. nidulans or in P. oxalicum, both
via the constitutive A. nidulans gpdA promoter, did not result
in an increased expression of CAZymes encoding genes under
non-inducing conditions, but only under inducing conditions
(on Avicel or cellulose, respectively) (Coradetti et al., 2013; Li
et al., 2015). It was shown that deletion of creA in combination
with clrB overexpression allows increased expression of cellulases
under non-inducing conditions in P. oxalicum, indicating
that the strong CreA-dependent repression on cellulase genes
overrules ClrB-dependent induction (Li et al., 2015).

ManR in A. oryzae is the N. crassa clr-2 ortholog, regulating
the expression of genes encoding cellulose and hemicellulose
(including mannan, but not xylan) degrading enzymes in A.
oryzae (Ogawa et al., 2012, 2013). Overexpression of ManR via
the tef1 promoter resulted in an increased expression of cellulases
and hemicellulases involved in mannan degradation under
inducing conditions (i.e., on Avicel and mannan, respectively)
(Ogawa et al., 2012, 2013). The effect of overexpression of ManR
under non-inducing conditions has not been reported.

As mentioned before, in T. reesei, Xyr1 controls the
transcriptional regulation of both cellulase encoding and
xylanase encoding genes. Expression of xyr1 is subject to
CCR and xyr1 expression is upregulated on carbon sources
inducing cellulase production. Overexpression of xyr1 via the
tcu1 promoter resulted in an inducer-independent production
of cellulases, even under repressing conditions (i.e., on glucose)
(Lv et al., 2015). All reported T. reesei Xyr1 orthologs
in other filamentous fungal species regulate mainly the
transcription of hemicellulase encoding genes and contribute
less to the transcriptional regulation of cellulase encoding genes.
Overexpression of xlnR via gpdA promoter in T. cellulolyticus
resulted in an increased production of cellulases on cellulose, but
not that of xylanases (Okuda et al., 2016). In A. niger, increased
expression of cellulases and xylanases on xylose was observed
in a strain carrying multiple copies of xlnR (Gielkens et al.,
1999). Similarly, an A. oryzae strain overexpressing xlnR via the
tef1 promoter showed an increased production of both cellulases
and xylanases when grown on carbon sources known to induce
cellulase (i.e., Avicel or cellobiose) or xylanases (i.e., xylose or
xylan) production (Marui et al., 2002; Noguchi et al., 2009).

The studies mentioned above reported on the increased
expression of xylanases in fungal strains overexpressing xlnR
or its orthologs under inducing conditions. Only a few studies

have reported the effect of overexpression of xlnR on the
expression of xylanases under non-inducing conditions. For
instance, xlnR overexpression via the constitutive gpdA promoter
in A. nidulans or in F. oxysporum yields to increased production
of xylanases encoding genes only in the presence of inducing
carbon sources (e.g., xylose or xylan) (Calero-Nieto et al., 2007;
Tamayo et al., 2008). It was also reported that when GFP-
XlnR is overproduced in A. oryzae, it localizes constitutively
in the nucleus, but its target genes are expressed only in
the presence of xylose (Noguchi et al., 2011). These results
indicate that XlnR in these organisms gets activated by an
inducer-mediated post-transcriptional mechanism and that XlnR
activation under non-inducing conditions cannot simply be
achieved by overexpression. InM. thermophila, overexpression of
xyr1 via the pdc promoter resulted in an increased expression of
xylanases under both inducing (i.e., corncob) and non-inducing
conditions (i.e., glucose) (Wang et al., 2015). This indicates that
the mechanism of Xyr1 activation in M. thermophila differ from
other filamentous fungi.

Another example of inducer-independent production of
CAZymes by overexpression of TFs was given by a recent
study in A. niger. Here it was shown that overexpression of
gaaR in A. niger via the A. nidulans gpdA promoter leads
to constitutive expression of the genes encoding pectinases, as
well as GA transporters and GA catabolic pathway enzymes
(Alazi et al., 2018). Deletion of creA further enhanced pectinase
production under mildly repressing conditions (i.e., on fructose)
indicating competing roles of GaaR and CreA to control the
expression of GA-induced genes (Alazi et al., 2018). The effect of
overexpression of gaaR on the expression of its target genes under
non-inducing conditions is likely caused by its specific activation
mechanism. Regulation of the activity of GaaR includes a specific
repressor protein (GaaX) (Niu et al., 2017). It has been proposed
that under non-inducing conditions the activity of GaaR is
controlled through direct interaction by GaaX which prevents
GaaR to be active (Niu et al., 2017). Modulating the amount of
GaaR by overexpression affects the balance of GaaR-GaaX and
results in the presence of uncomplexed active GaaR even under
non-inducing conditions (Alazi et al., 2018).

The regulation of GA-induced gene expression shows some
striking similarities with the regulation of genes involved in
quinic acid catabolism. Quinic acid is present as an aromatic
compound in the plant cell and can be released from tannins,
which are water-soluble polyphenols, by the action of tannases
known to be secreted by filamentous fungi (Wagh, 2010).
Similar to regulation of GA utilization in A. niger, regulation of
quinic acid utilization in A. nidulans involves a Zn2Cys6 type
transcriptional activator (QutA) and a repressor (QutR), and
strains expressing multiple copies of qutA displayed constitutive
expression of the genes encoding quinic acid catabolic pathway
enzymes (Lamb et al., 1996). The QutR and GaaX repressor
proteins are both multidomain proteins with sequence similarity
to the three C-terminal domains of AROM, indicating that these
repressors share a common evolutionary origin (Niu et al., 2017).

On the other hand, overexpression of pdr-1, the pectin
degradation regulator in N. crassa, via the gpd promoter of M.
thermophila resulted in elevated expression of its target genes
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only under inducing conditions (on rhamnose). Therefore, it was
proposed that Pdr-1 activity is regulated post-transcriptionally in
a manner depending on the presence of the inducer but not on
the amount of Pdr-1 (Thieme et al., 2017).

An A. niger strain carrying multiple copies of amyR displayed
increased expression of AmyR target genes, such as CAZymes
acting on starch as well as on cellulose and hemicellulose,
under inducing conditions (i.e., on maltose, starch, and low
concentration of glucose), but not under non-inducing condition
(vanKuyk et al., 2012). This result is in line with the observation
that in A. nidulans, nuclear localization of AmyR and thereby
activation of its target genes is inducer-dependent (Makita et al.,
2009).

In conclusion, we have seen that overexpression of TFs
involved in plant biomass degradation can result in increased
expression of their target genes under inducing conditions.
However, in most cases overexpression of TFs, such as XlnR, Pdr-
1 and AmyR, does not result in inducer-independent expression
of their target genes. In these cases it is likely that an inducer
molecule is required to activate the TF. The exact activation
mechanism of XlnR, Pdr-1, and AmyR are currently unknown,
and could involve direct interaction of the TF with its inducer,
or could be related to post-translational modifications connected
to the presence of inducers. Overexpression of TFs like GaaR
andQutA results in inducer-independent expression of GaaR and
QutA target genesmost likely by titrating away the corresponding
repressor proteins (GaaX and QutR, respectively). This illustrates
that different mechanisms controlling TF activities result in
different outcomes of overexpression of TFs under non-inducing
conditions.

Constitutive Activation of TFs
The activity of a TF can be controlled in different ways, including
post-transcriptional modifications affecting its localization, DNA
binding or interaction with repressor protein(s). Over the past
15 years, mutations resulting in changes in amino acid sequences
and thereby in constitutively active TFs have been identified
via classical mutagenesis and screening approaches, or via pre-
designed amino acid substitutions, domain removal or protein
truncation analyses.

The first reported constitutively active form of XlnR
(XlnRV756F) was identified in A. niger via a forward genetic
screen. Expression of xlnRV756F resulted in a constitutive
expression of xylanases even under repressing conditions (i.e., on
fructose or glucose; Hasper, 2004; Hasper et al., 2004). Later, in T.
reesei, a point mutation in Xyr1 (Xyr1A824V) introduced via UV
mutagenesis was found to result in a constitutively active Xyr1
and constitutive expression of cellulases and xylanases even in
the presence of a repressing carbon source (Derntl et al., 2013).
In addition, overexpression of xyr1A824V in T. reesei was shown
to be more effective in increasing cellulase production than
overexpression of xyr1 under inducing conditions (e.g., Avicel)
(Jiang et al., 2016). Both amino acids changes (V756F in XlnR
and A824V in Xyr1) are located within the same predicted α-
helix in the fungal-specific TF domain of XlnR/Xyr1 (Derntl et al.,
2013). Although overexpression of xlr-1 in N. crassa via the ccg-1
promoter did not yield to constitutive expression of xylanases,

overexpression of xlr-1A828V , which carries the homologous
mutation as in xyr1A824V , resulted in a constitutive and increased
production of xylanases under both inducing (on xylan) and non-
inducing conditions (Craig et al., 2015). Similarly, overexpression
of xlnR carrying the homologous point mutation (xlnRA871V )
using the PDE_02864 promoter in a P. oxalicum strain that
lacks creA and overexpresses clrB (see above), enabled even more
increased production of cellulases and xylanases under inducing
conditions (on wheat bran) (Gao et al., 2017a).

Recently, via a forward genetic screen, several different
point mutations throughout AraR were found to give rise to a
constitutively active AraR and constitutive expression of AraR
target genes (abfA, abfB, and abfC). Unlike the mutations in
XlnR that gave rise to inducer-independent and constitutive
expression of its target genes, the mutations in AraR lead to
constitutive expression of AraR target genes only under de-
repressed conditions. Deletion of creA improved the production
of CAZymes that degrade arabinan to a large extent, indicating
the strong CCR on the genes encoding these CAZymes under
repressing conditions on fructose (Reijngoud et al., manuscript
in preparation).

We recently conducted a large forward genetic screen for
mutants with constitutive expression of pectinases (Niu et al.,
2017). Apart from identifying GaaX as a repressor for GA-
induced genes expression, it also brought about the identification
of a constitutive allele of GaaR (GaaRW361R) resulting in
constitutive expression of pectinases under even repressing
conditions (on glucose or fructose). Within GaaR, W361 is
situated in the fungal-specific TF domain and is highly conserved
among Aspergillus species (Alazi et al., in press).

Deletion of the C-terminal regions of several TFs involved in
plant biomass degradation was shown to result in constitutive
activation of the TFs indicating that these C-terminal parts
contain an inhibitory domain. For example, in A. niger,
truncation of XlnR from L668 resulted in a constitutive
expression of xylanases (Hasper et al., 2004), and truncation of
AraR from P646 was reported to cause constitutive activation
of AraR (Jiang et al., 2016). Expression of the C-terminally
truncated AmyR1−514 and AmyR1−511 resulted in constitutive
localization of AmyR in the nucleus both in A. nidulans and
A. oryzae, respectively. However, while constitutive amylase
production was observed in A. nidulans (Makita et al., 2009),
loss of expression was observed in A. oryzae (Suzuki et al.,
2015), indicating that the effect of the truncation can also be
species-specific.

Deletion or Down-Regulation of Specific
Repressors
It has been shown that besides the general CCR, specific
repressors might play a role in the transcriptional regulation of
the genes encoding CAZymes. For instance, the Cys2His2 type TF
Ace1 represses the expression of both cellulase and hemicellulase
(i.e., xylanase) encoding genes, as well as the expression of xyr1
in T. reesei (Aro et al., 2003; Wang et al., 2013). Furthermore,
Ace1 was shown to compete with Xyr1 to bind to the same
sequence in the promoter of the xylanase gene xyn1 (Rauscher
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et al., 2006). Deletion of ace1 in the wild type background resulted
in an increased expression of the genes encoding cellulases and
xylanases only under inducing conditions (on cellulose), and
gene silencing of ace1 led to an increase in constitutive expression
of these genes when combined with the overexpression of xyr1
via the pdc promoter in a Cre1-negative background (Rut-C30)
(Aro et al., 2003; Wang et al., 2013). Recently, another repressor,
the Zn2Cys6 type TF Rce1, was identified in T. reesei that is
involved in the repression of the genes encoding cellulases, but
not xylanases. It was shown that Rce1 is constitutively localized
in the nucleus and competes with Xyr1 to bind to the same
sequence in the promoter of the cellulase gene cbh1 (Cao et al.,
2017). Deletion of rce1 resulted in an increased production of
cellulases under inducing conditions (on cellulose) (Cao et al.,
2017). Deletion of a basic helix-loop-helix TF xpp1, xylanase
promoter-binding protein 1, in T. reesei resulted in an increased
expression of hemicellulase (i.e., xylanase) encoding genes, but
not cellulase encoding genes, at late stages of cultivation under
inducing conditions (on xylan) (Derntl et al., 2015). However,
Xpp1 was later described as a general regulator of both primary
and secondary metabolism and therefore not a factor specifically
controlling xylanases expression (Derntl et al., 2017). In addition,
the Zn2Cys6 type transcriptional repressor SxlR was found to
bind to the promoters of specific (GH11 family) xylanase genes,
and deletion of sxlR resulted in an increased expression of these
xylanase genes under inducing conditions (on Avicel, xylan or
lactose) (Liu et al., 2017).

Similarly, the Cys2His2 type TF Hcr-1 in N. crassa was shown
to repress the expression of the genes encoding xylanases, but
not the ones encoding cellulases. A 1hcr-1 strain exhibited an
increased xylanase production under inducing conditions (on
xylan or Avicel) (Li et al., 2014).

Recently a new TF, MhR1, was identified in M. thermophila
as the regulator of cellulase and xylanase genes. Gene silencing
of mhr1 resulted in an increased production of cellulases and
xylanases, as well as increased expression of xyr1 and the genes
encoding cellulases under inducing conditions (on wheat straw)
(Wang et al., 2018).

As mentioned before, the activity of GaaR in A. niger is
inhibited by the repressor protein GaaX, the amount of which
is regulated at the level of transcription by induction on GA.
GaaX was proposed to bind to- and inhibit GaaR under non-
inducing conditions, and bind to the inducer molecule and
release GaaR under inducing conditions. Deletion of gaaX
resulted in a constitutive expression of pectinases, providing
additional evidence for the proposed model of regulation of
GA-responsive gene expression in A. niger (Niu et al., 2017).
Similarly, deletion of QutR, the repressor protein involved in
controlling the expression of quinic acid-responsive genes, also
results in constitutive expression of at least eight genes involved
in quinic acid uptake and metabolism (Levett et al., 2000).

Accumulation of Inducers
The intracellular accumulation of inducers is another effective
method to boost the production of CAZymes by fungi. Cellulase
production by N. crassa is greatly induced on insoluble,
crystalline cellulose (Avicel). However, cellulase production is

not observed on cellobiose, which is the soluble degradation
product of cellulose, possibly due to rapid action of β-
glucosidases converting cellobiose to glucose and subsequent
glucose-mediated CCR. As first shown in N. crassa, deletion
of three genes encoding the major β-glucosidases (intracellular
enzyme Gh1-1, and extracellular enzymes Gh3-3 and Gh3-4)
disrupted the hydrolysis of the inducer, cellobiose, and resulted in
higher levels of expression of cellulases on cellobiose compared to
the wild type strain grown on cellobiose, and similar to the wild
type strain grown on Avicel. Moreover, deletion of cre-1 further
increased cellulase production on cellobiose (Znameroski et al.,
2012). Similarly, deletion of the major intracellular β-glucosidase
bgl2 in a carbon catabolite de-repressed (1creA) P. oxalicum
strain that overexpresses clrB using the A. nidulans gpdA
promoter, gave rise to higher levels of cellulase and hemicellulase
(i.e., xylanase) production on cellulose compared to the wild type
strain. These were similar to the levels of the industrial strain JU-
A10-T grown on wheat bran (Yao et al., 2015). A similar effect
of deleting bgl2 on cellulase and hemicellulase production was
observed in P. oxalicum grown on cellulose (Chen et al., 2013).

Expression of hemicellulases, specifically xylanases, in T. reesei
is induced both on xylose and arabinose. Although the catabolic
pathways assimilating xylose and arabinose are interconnected,
the physiological inducers triggering hemicellulase production
appear to be different and were suggested to be xylose
and L-arabitol, respectively. Expression of xylanases increased
dramatically in single or double xylose/arabinose catabolic
pathway enzyme deletion mutants, indicating the effect of
accumulation of physiological inducers in these mutants (Seiboth
et al., 2012a; Herold et al., 2013).

One of the GA catabolic pathway intermediates, 2-keto-3-
deoxy-L-galactonate, was recently shown to be the physiological
inducer of the genes encoding pectinases in A. niger. It was
demonstrated that deletion of gaaC, the gene encoding 2-keto-3-
deoxy-L-galactonate aldolase, results in accumulation of 2-keto-
3-deoxy-L-galactonate and thereby elevated expression levels of
pectinase encoding genes (Alazi et al., 2018). Inducer molecules
that are responsible to the activation of TFs represent therefore
another interesting target to enhance expression of CAZymes
by constructing strains in which the inducer accumulates either
due to prevention of rapid hydrolysis of the inducer or due to
inactivation of the metabolic genes that function downstream of
the enzyme that forms the inducer.

FUTURE PERSPECTIVES AND
CONCLUDING REMARKS

Increased expression of plant cell wall degrading enzymes can
be achieved by overexpression of specific transcription factors
or by identifying mutations in TFs leading to constitutive
activation, and combinations thereof. It is also well established
that CreA-dependent CCR has in many cases a negative
effect on the production of enzymes and therefore CreA
is an important target for improving enzyme production
under both inducing and non-inducing conditions. Apart from
the approaches described above in the previous paragraphs,
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modulating chromatin accessibility is yet an under-utilized
approach to increase the expression of CAZyme encoding
genes in filamentous fungi. Chromatin remodeling of the
promoters of CAZyme encoding genes through the actions
of the histone acetyltransferase Gcn5, the CCAAT-binding
complex, and possibly the putative protein methyltransferase
Lae1 is required for the full expression of these CAZymes in
T. reesei (Zeilinger et al., 1998; Xin et al., 2013; Aghcheh and
Kubicek, 2015; Li et al., 2016). Overexpression of a putative
GCN5-related N-acetyltransferase (gene ID 123668) via the A.
nidulans gpdA promoter or lae1 via the tef1 promoter resulted
in an increased expression of cellulase encoding genes under
inducing conditions (on lactose) (Seiboth et al., 2012b; Häkkinen
et al., 2014). More recently, Cre1 was shown to be involved in
chromatin accessibility of xyr1 promoter (Mello-de-Sousa et al.,
2016).

As our knowledge about regulation of TF activities
accumulates, various possibilities for rational design of
industrial fungal strains emerge, such as combinations of
different approaches as already mentioned above, or the use
of synthetic TFs. Recently, inducer-independent production of
CAZymes by filamentous fungi was achieved via synthetic TFs.
For instance, overexpression via pdc1 promoter of a synthetic
TF (xyr1-cre1b) consisting of Xyr1 DNA-binding and effector
domains, and Cre1 DNA-binding domain, resulted in inducer-
independent production of cellulases and hemicellulases (i.e.,
xylanases) in the Cre1-negative T. reesei strain Rut-C30 (Zhang
et al., 2017). Another example of synthetic TFs (CXC-S) was
shown in P. oxalicum, where the DNA-binding domain of the
constitutively active XlnRA871V was replaced with that of ClrB.

This synthetic TF was overexpressed using the A. nidulans gpdA
promoter, yielding to inducer-independent, but still glucose-
repressed, expression of cellulases and xylanases (Gao et al.,
2017a,b).

To conclude, fungal strains with increased or constitutive
production of plant biomass degrading enzymes can be rationally
designed by tuning the transcriptional regulatory systems.
Mutations that lead to constitutive expression of enzymes are
difficult to predict and so far only identified via genetic screens.
Once identified, these mutations can be successfully transferred
to industrial strains or related species. In this review, we also
highlighted that regulation of activities of orthologues TFs, or
the set of genes regulated by orthologues TFs might be species-
specific. It is therefore important that detailed studies on how TFs
are activated are performed not only in a single species, which
is subsequently used as a blue print to predict the activation
mechanism in other fungal species, but performed in several
representative fungal species across the filamentous fungi.
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