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Abstract

Background: Comparative genomic analysis has revealed that in each genome a large number of open reading frames have
no homologues in other species. Such singleton genes have attracted the attention of biochemists and structural biologists
as a potential untapped source of new folds. Cthe_2751 is a 15.8 kDa singleton from an anaerobic, hyperthermophile
Clostridium thermocellum. To gain insights into the architecture of the protein and obtain clues about its function, we
decided to solve the structure of Cthe_2751.

Results: The protein crystallized in 4 different space groups that diffracted X-rays to 2.37 A (P3,21), 2.17 A (P2,2,2,), 3.01 A
(P4,22), and 2.03 A (C222,) resolution, respectively. Crystal packing analysis revealed that the 3-D packing of Cthe_2751
dimers in P4,22 and C222, is similar with only a rotational difference of 2.69° around the C axes. A new method developed
to quantify the differences in packing of dimers in crystals from different space groups corroborated the findings of crystal
packing analysis. Cthe_2751 is an all o-helical protein with a central hydrophobic core providing thermal stability via
m:cation and m: m interactions. A ProFunc analysis retrieved a very low match with a splicing endonuclease, suggesting a role
for the protein in the processing of nucleic acids.

Conclusions: Non-Pfam singleton Cthe_2751 folds into a known all a-helical fold. The structure has increased sequence
coverage of non-Pfam proteins such that more protein sequences can be amenable to modelling. Our work on crystal
packing analysis provides a new method to analyze dimers of the protein crystallized in different space groups. The utility of
such an analysis can be expanded to oligomeric structures of other proteins, especially receptors and signaling molecules,

many of which are known to function as oligomers.
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Introduction

One of the perplexing outcomes of sequencing of a number of
genomes 1is the discovery of a large set of open reading frames
(ORFs) in each genome that have no homologues in other
species. Such ORFs, referred to as singletons or ORFans, have a
codon usage pattern similar to those seen for other proteins,
suggesting that these ORFs encode and express proteins [1].
Recently, singletons have attracted the attention of evolutionary
biologists, biochemists and structural biologists regarding their
origin, functional significance and the possibility that they may
carry a relatively untapped source of new folds. Several
hypotheses have been put forward to explain the lack of sequence
identity and the origin of singletons; the most common
explanation being that singletons are fast-evolving genes that
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have accumulated substitutions to such an extent that the
sequence is no longer identical to the parent or any other known
sequence [2]. Theoretical analysis of lineage specific genes
involved in adaptation of a species to a particular environment
seem to suggest that these genes are fast evolving since they have
a “‘substrate’ to act on and therefore a number of lineage-specific
singletons have been postulated to play a role and confer an
adaptive advantage on a particular species [3]. In contrast to this
hypothesis, studies on the Drosophila genome show that singletons
in Drosophila have similar rates of evolution as non-singletons and
therefore accumulation of mutations may not be the only method
for the origin of Drosophila singletons. Instead the singletons seem
to have largely originated by de novo synthesis from non-coding
regions like intergenic sequences [4]. In addition, insertion of
transposon elements has resulted in completely new coding
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Figure 1. Characterization of Cthe_2751 (A) Sequence alignment of Cthe_2751 homologues. Only the top 11 matches with Cthe_2751
amino acids 1-134 are shown. Conservation is colored according to ClustalW convention. (B) Size exclusion profile of Cthe_2751 run on Hi Load 10/
300 Superdex G75 gel filtration column equilibrated with 20 mM Tris-HCl, 100 mM NaCl, pH 8.0, reveals that the protein exists as a dimer in solution.
SDS-PAGE picture (inset) showing the purity of Cthe_2751 before crystallization. (C) Sedimentation velocity experiments performed using an
analytical ultracentrifuge suggested that Cthe_2751 forms a dimer in solution. The curve was generated using Sedfit software.
doi:10.1371/journal.pone.0031673.9001
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Figure 2. Structure of singleton Cthe_2751. (A) Topology diagram of the structure. (B) Cartoon representation of Cthe_2751 with helices shown
as cylinders in (C) to depict the contour, pairing and stacking. (D) Cartoon representation of a dimer of Cthe_2751.

doi:10.1371/journal.pone.0031673.g002

sequences. Such retro genes of viral origin have also been found
to encode new proteins in primates [1], humans [5] and microbes
[6]. The origin of singletons in mouse is partially attributed to
frameshift mutations resulting in novel open reading frames [7].
Similarly, in Saccharomyces, ORFan domains are found at the C-
termini of proteins and seem to have originated from frameshift
mutations [8]. However, a majority of Saccharomyces ORFan
domains are a result of de novo synthesis from non-coding DNA
[8]. Thus, it seems that although different species might prefer
one mechanism over another for the generation of singletons,
they might still be using all of these methods — a faster rate of
mutation, de novo synthesis from non-coding DNA, lateral gene
transfers via transposons and frameshift mutations — to produce
singletons. One question that arises then is — are singletons
merely aberrations of biological processes or do they play a role
in the survival and propagation of organisms? Attempts have
been made to address this question and there is strong evidence
now that singletons express protein. For instance, in a genome-
wide study on Halobacterium, the authors could detect mRINA for
30 out of 39 paralogous singletons representing 13 out of 14
families identified in Halobacterium [9]. Similarly, singleton genes
involved in immune response, oxygen stress, flight and circadian
rhythm could be detected in the cDNA of Drosophila yakuba
suggesting singletons are expressed as legitimate proteins. A
mutation in the singleton fIn gene that encodes protein for a thick
filament in flight muscle results in a viable but flightless fly [10]; a
mutation in the circadian rhythm % gene produces a rhythm
defective fly [11]. Interestingly, all these functions of singletons
are expected to play a role in the fly’s response to specific
ecological or environmental challenges. Although these examples
underscore the fact that singletons are expressed as proteins and
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A

Figure 3. Two dimensional projection (along C axis direction)
of 2-fold symmetry related molecules for space group P4,22
and C222,. The transformation between space groups P4,22 and
€222, is illustrated. (A) The projection of Cthe_2751 monomer (dark
blue) and 7 symmetry related molecules along C axis. The homodimer
of Cthe_2751 (dark and light blue molecules) is related by crystallo-
graphic 2-fold 2(x 0 0). Please note that 4, screw symmetry related
molecules are not shown for the sake of only displaying the
transformation between P4,22 and C222; space groups; (B) In order
to illustrate the transformation between P4,22 and C222, space groups,
Figure 3A is rotated 45 degrees clockwise around 4, axis; (C) The
projection of Cthe_2751 dimer along C axis. The 4 Cthe_2751 dimers in
€222, space group have almost the same orientation as that of the 8
Cthe_2751 monomers (or 4 dimers) in the 45° rotated P4,22 unit cell.
doi:10.1371/journal.pone.0031673.9003

February 2012 | Volume 7 | Issue 2 | 31673



play a functional role, a vast majority of singletons yet have
unknown functions.

One way to gain functional insights is to solve the 3-dimensional
structure of the protein and compare it with structures with known
function deposited in PDB [12]. This method is more sensitive
than the primary sequence match because structure is more
conserved than sequence. For example, the protein MJ0882 (GI
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#1499712) from M. jannaschii was annotated as a hypothetical
protein with unknown function [13]. The primary sequence
provided no clues about the function. When the crystal structure of
the protein was solved, it revealed a methyl-transferase fold. The
protein was subsequently assayed for methyl-transferase activity
and assigned a function. In many instances, clues about the
function have been gained from ligands bound to the protein.
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Figure 4. The transformation between space groups P4,22 and C222,. (A) The projection of symmetry elements in space group P4,22 along
4, axis; (B) Degeneration of P4,22: 4, axis are transformed into 2, axis, while the 2 fold axis, generated by 4, axis, disappear too. The cell is rotated
clockwise by 45° around 4, axis; (C) The cell parameter a’ and b’ in C222, space group take the diagonal direction along a+b and a—b of space
group P4,22, respectively, and forms new unit cell; (D) In order to follow the international conversion of space group C222;, the origin is translated 3/

8 cell length along c axis.
doi:10.1371/journal.pone.0031673.g004
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Table 1. Statistics of inter-dimer distance between 2
neighboring dimers in the 3 space groups.

Rmsd (A)/cort®  P2,2,2, P4,22 Cc222,
P2,2:2; - 17.28/0.40 17.10/0.40
P4,22 17.28/0.40 - 0.69/0.99
C222, 17.10/0.40 0.69/0.99 -

*: RMSD is calculated based on the following equation:RMSD(x,y) =
IS ey
i=1

0
& pearson correlationﬂcoefﬁcier)’t is carlzlculated based on the following equation:

Ny Xiyi— 3o Xi ) Vi
i=1 i=1 Q=1

responding inter-dimer distances, n is the number of atomic pairs.
doi:10.1371/journal.pone.0031673.t001

Yxy= Where x and y are the cor-

These ligands can originate from the expression system or
crystallization conditions [14]. Metal ions bound to proteins and
the environment around the metal ion can often shed light on the
function of the protein, which can then be validated experimen-
tally. For example, a conserved zinc binding site for a protein
YP_164873.1 from Silicibacter that was missed in primary sequence
analysis due to low sequence identity to proteins with known
function was revealed in the 3-D crystal structure. Comparison of
the secondary structural elements and the Zn-binding residues
with 3-keto- 5-aminohexamoate cleavage protein helped assign a
function to the protein [14]. Similarly, fortuitous binding of
phosphate, ADP, ATP, NADP, NAD, SAM, fatty acids, DNA, etc
coupled with information about the fold, has helped decipher
functions for proteins previously annotated with unknown function

[15].
Cthe_2751_1s a 15.8 kDa singleton from an anaerobic,
hyperthermophile  Clostridium  thermocellum, with an unknown

function. The primary sequence of Cthe_2751 displays no identity
to any protein with known function and does not provide any clue
to its functions. Therefore, we decided to solve the crystal structure
of the protein to gain insights into the architecture of the protein
and obtain clues about its function. The structure solved to 2.17 A
resolution by Se-SAD reveals an all o-helix topology. A crystal
packing analysis of the different crystal forms of Cthe_2751 was
performed to investigate the molecular packing preferences of the
different space groups. Potential functions of the protein based on
motifs observed in the structure are discussed.

Table 2. Inter monomer hydrogen bonds identified by PISA
analysis of the Cthe_2751 dimer.

No. Chain A Distance (A) Chain B
1 Tyr880H 254 Leu840

2 Tyr91N 3.63 Cys225G

3 Lys94NZ 3.58 Asp500D1
4 Cys225G 3.74 Tyr91N

5 Asp500D1 374 Lys94NZ
6 Leu840 261 Tyr880H

doi:10.1371/journal.pone.0031673.t002

@ PLoS ONE | www.plosone.org
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Figure 5. Dimer interface. (A) The side chain of Tyr88 of chain A
protrudes into a concave cavity formed by Leu52, Pro53, Leu84 and
Tyr88 of chain B. (B) Chain A shown in surface representation, while
chain B is depicted as a cartoon. (C) Representative 2Fo-Fc electron
density for some of the residues at the dimer interface contoured at
10 o.

doi:10.1371/journal.pone.0031673.g005

Results

Primary sequence analysis

A PSI-BLAST [16] search of the non-redundant protein
sequences deposited in GenBank [17] failed to retrieve any similar
sequence with known function (Figure 1). A Pfam search using the
primary amino acid sequence of Cthe_2751 revealed that the
sequence could not be assigned to any of the known protein
families. Interestingly, Cthe_2751 is produced only by Clostridium
thermocellum. The closest homologue from Clostridium difficile shares
less than 45% sequence identity with Cthe_2751. Homologous
sequences from other species share 31% or less identity.
Therefore, based on primary sequence analysis, Cthe_2751 is a
non-Pfam singleton with an unknown function.

Overall structure

Cthe_2751 could be purified to homogeneity using Ni-affinity
and gel filtration chromatographies (Figure 1B and 1C). The
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structure was solved by the Se-SAD method. The 2.17 A crystal
structure of Cthe_2751 in space group P2,2,2, consists of o-
helices and loops with no B-strands (Figure 2A, 2B and 2C). Each
monomer is made up of 8 a-helices arranged in a spiral pattern
around a vertical axis that runs through the centre of the protein.
The turns in the spiral are facilitated by 4 f and 1 y turn motifs.
The helices are arranged in anti-parallel pairs. The al/02 pair of
helices is seen stacked above the a3/04 pair and forming a
module. Similarly, the a5/ a6 pair is seen stacked above the a7/08
pair and forming the second module. This module is rotated by
approximately 30° along the vertical axis of the spiral with respect
to the first module (Figure 2B and 2C). The modules are held
together via numerous hydrophobic interactions involving aro-
matic residues.

Crystallographic packing analysis

Pure Cthe_2751 eluted as a dimer when subjected to size
exclusion chromatography. Further, sedimentation velocity exper-
iments using an analytical ultracentrifuge [1]suggested that pure
Cthe_2751 was homogenous and dimeric. Therefore, Cthe_2751
probably exists as a dimer in solution (Figure 1B and 1C). To find
out whether the protein crystallized as a dimer and obtain
information on the nature of the interface, we performed crystal
packing analysis. The wild-type Cthe_2751 crystallized into 3
different crystal forms belonging to space groups P4,22, €222,
and P2,2,2,, respectively. The selenium labelled protein crystal-
lized into P3,21 space group which has 1 molecule of Cthe_2751
plus a small fragmented helix in the asymmetric unit. The extra
helix seems to have originated by proteolysis during the
crystallization incubation process. In the three space groups of
wild-type protein, the minimum crystal packing unit is a dimer of
Cthe_2751 (Figure 2D). In crystal forms C222; and P2,2,2, there
is one dimer per asymmetric unit. Although the crystal form P4,22
has only one molecule in the asymmetric unit, a careful inspection
of the asymmetric unit revealed the presence of an identical dimer
of Cthel1904 as seen in other 2 space groups, with the monomers
within the dimer related by a crystallographic 2-fold symmetry
axis. A detailed analysis of the crystallographic packing of different

Structure of a Non Pfam Singleton

crystal forms showed that there is very subtle difference between
the crystal packing of space groups P4,22 and C222,. The unit cell
parameters of these two space groups are: a=b=37.51 A,
c=169.75 A (P4,22); a=52.04 A, b=55.95 c=170.83 A
(C222;). Theoretically, when the space group P4,22 transforms
to a lower symmetry €222, space group, the 4, screw axis
degenerates to a 2, screw axis with a concomitant disappearance
of the 2-fold axes in a and b directions. The a’ and b’ in C222,;
space group takes the diagonal direction along a+b and a-b in
P4,22 unit cell, respectively, as shown in Figures 3 and 4. The
diagonal length | a+b | =53.05 A in P4,22 unit cell agrees well
with the average length of a’ and b’ (53.99 A) of space group
C222,. In the transformation from P4,22 to C222,, the
Cithe_2751 dimers rotate only 2.69° around the C axes.

As for the crystal form P2,2,2;, the packing arrangement of the
dimers clearly deviates from those found in space groups €222,
and P4,22. There is a 60.9° orientation difference between the
corresponding dimer in P2,2,2; and that in other two space
groups (G222, and P4,22). To find out if there is a difference in
the packing arrangement of the dimers in the 3 crystal forms and
to quantify it, a computer program was compiled and a calculation
was performed to analyze the inter-dimer distances of 2
neighbouring dimers for all 3 space groups. Specifically, the
inter-dimer distance between the Ca atoms of each residue with
that of the residues in the closest neighbouring dimer was
computed. Theoretically, if the dimers share similar packing
arrangements 3-dimensionally in different space groups, the
corresponding inter-molecular distances between neighbouring
dimers should show small r.m.s. deviations and good correlations.
The computed results are listed in Table 1. As expected, the inter-
dimer distance between 2 closest dimers in space groups (G222,
and P4,22 is relatively similar when compared to that of the
distance between dimers of space groups P2,2,2; and C222; or
P2,2,2, and P4,22, where there 1s almost no recognizable co-
relationship. This result further supports the inferences of crystal
packing analysis where we saw that the dimers rotate less than 3°
along the C axes during the transformation from P4,22 to C222,
resulting in only a minor change in crystal packing.

@ PLoS ONE | www.plosone.org

Table 3. Details of models built by different 3D structure prediction programs.
Number®
of Lowest Longest aligned Average Average aligned

Program Method Solutions RMSD' length RMSD length Reference
BHAGEERATH Energy Based Structure Prediction Server 5 2.55 57 3.72 46 [35]
I-TASSER threading methods 5 2.83 108 3.09 99 [36]
|-TASSER-ab Ab initio structure prediction 10 2.34 20 3.26 69
LOOPP Multiple methods 5 240 81 3.00 63
MUSTER profile-profile alignment 9 2.52 85 3.18 73 [37]
PHYRE the protein homology/analogy recognition 1 3.52 83 3.52 83 [38]

engine
Pcons Model Quality Assessment Program 10 2.25 90 3.05 66 [39]
(PS)2-v2 automatic homology modeling server 1 2.83 70 2.83 70 [40]
Robetta Rosetta homology modeling and ab initio 5 2.74 77 3.14 68 [41]

fragment assembly with Ginzu domain

prediction
SAM_T08 HMM-based Protein Structure Prediction 2 3.77 106 3.80 100 [42]
_ Root mean square deviations in A for corresponding Co atoms of the best solution that were aligned with those of the crystal structure of Cthe_2751.
& Number of Solutions is the number of models predicted by the software.
doi:10.1371/journal.pone.0031673.t003
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Dimer interface

Cthe_2751 crystallized as a dimer in 3 different crystal forms.
Superimposition of the dimers crystallized in different space groups
revealed no obvious differences in the position of the Col atoms
suggesting an identical mode of dimerization in all the 3 crystal
forms. We performed Protein Interfaces Surfaces and Assemblies
(PISA) [18] analysis to identify the dimer interface. The analysis
revealed that dimerization occurs via a large area that spans
904 A? (12.8%) of the surface area per monomer. Formation of the
interface results in a gain of 8.6 kcal/mol of free energy of
solvation (A'G). This interface scored 1.000 in Complexation
(complex formation) Significance Score (CSS). CSS ranges from 0
to 1 as the relevance of the interface to complex formation

A
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increases. Further, PISA identified 6 intermolecular hydrogen
bonds holding the monomers together within a dimer (Table 2).
Interestingly, the aromatic ring of Tyr88 from one monomer
protrudes into a concave cavity formed by Leu52, Pro53, Leu84
and Tyr88 of another monomer, zipping the monomers together
(Figure 5). The aromatic rings of the tyrosines stack against one
another holding the monomers together within the dimer. In
addition, numerous inter-molecular hydrogen bonds mediated by
water molecules are observed stabilizing the dimer interface.

Modeling studies
Singletons can serve as perfect probes for bench marking
available protein structure prediction softwares. We modelled the
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Figure 6. Modelling of Cthe_2751. (A) Cartoon of the model predicted by I-TASSER (B) Superposition of the Ca. atoms of the predicted structure
(magenta) over the experimental crystal structure (blue). (C) Average distance tree for Cthe_2751 constructed by the Jalview 2.6.1 Java alignment

editor using BLOSUM62.
doi:10.1371/journal.pone.0031673.g006
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structure of Cthe_2751 using 10 different web-based prediction
programs that use a variety of methods like ab wnitio structure
prediction, homology modeling, energy based structure prediction,
threading, profile-profile alignment and HMM-based protein
structure prediction (Table 3). The models predicted by these
programs were compared with the experimental crystal structure
of Cthe_2751. Parameters such as similarities in topology, lowest
rm.s.d., longest residue alignment length, average r.m.s.d. and
average residue alignment length were chosen for the comparison.
The best model closest to the experimental structure was predicted
by I-TASSER (Table 3). Since Cthe_2751 has no homologous
structure deposited in PDB, a modeling program like I-TASSER,
which builds models by threading, was expected to give the best
model. Although the r.m.s.d. of the superimposition of the Co
atoms on the experimental structure was 2.8 A over a length of
108 out of 130 residues, visual inspection of the topology of the
model revealed a remarkable similarity with the experimental
structure (Figure 6 A and 6B). This exercise raises interesting
possibilities of fairly accurate modeling of unique protein
sequences having no homologues in PDB and with no Pfam
assignments.

Discussion

There is a general consensus that although the number of
new ORI is poised to grow further with sequencing of DNA
from diverse sources, there may not be a concomitant large
scale increase in the number of new protein folds. This is
because, 2 proteins with low sequence identity can still share
similar folds; implying fold is more conserved than sequence.
What this means is that although the fold space could be
limited, one would have to go through a large number of ORF's
to cover this space. One strategy for hunting new folds is sifting
through the largely untapped source of unique ORFs found in
genomes of taxonomically distant organisms. Cthe_2751 is a
singleton from a Gram positive, anaerobic, thermophilic
bacterium found in soil. A phylogenetic tree of Cthe_2751
constructed from protein sequences obtained via a PSI-BLAST
search [16] and alignment with ClustalW [19], clearly shows
that Cthe_2751 is phylogenetically distant from other proteins
(Figure 6C). Interestingly, proteins similar to Cthe_2751 are
predominantly found in prokaryotes, with Phaeosphaeria and
Ajellomyces being the exceptions. Cthe_2751 is more similar to
hypothetical proteins from Gram positive bacteria like Lusteria,
Paemibacillus, Lysinibacillus, and Solibacillus. In general, Cthe_2751
homologues from Gram positive rod shaped bacteria cluster
together. While a majority of homologues are from rod shaped
bacteria, there are two notable exceptions — hypothetical
proteins from Nisseria and Kingella, both of which are Gram
negative cocci. Inspite of being phylogenetically distant, the
structure of Cthe_2751 reveals that the sequence folds into a
known all a-helical fold confirming the fact that unique
sequences may not always give rise to new folds and that
structure is more conserved than sequence [20].

A web based server called ProFunc predicts function for a
protein from its 3-D structure. We carried out a ProFunc analysis
of the structure of Cthe_2751 to obtain clues about the function.
Although no matching sequence motifs were found, a low
sequence (25% identity) and E value (9.7) match with a splicing
endonuclease from Pyrobaculum (PBD code 2ZYZ) was retrieved.
A 3D functional template search module of ProFunc came up
with a possible match with a RNA binding protein from Mus
musculus (PDB code 1KEY). These clues suggested that the
function of Cthe_2751 involved participation of nucleic acids.
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Next, we retrieved and analyzed the topology of protein
structures known to bind nucleic acids and compared them
with Cthe_2751. The CID domain of Pcfl1 shows remarkable
similarity in topology to Cthe_2751. The CID domain interacts
with the C'TD domain of RNA polymerase during processing of
RNA [21]. Similarly, the C-terminal of Pyrococcus woeser
transcription factor B (pwTFBc), which binds nucleic acids,
has an all helical topology like Cthe_2751 [22]. In addition to
the similarity in topology with proteins binding nucleic acids,
inspection of the structure of Cthe_2751 reveals potential motifs
for nucleic acid binding. For example, Cthe_2751 has a cluster
of aromatic and charged residues similar to those seen around
the RNA in the structure of Archaeglobus fulgidus splicing
endonuclease [23]. Since Cthe_2751 has aromatic amino acids,
lysines and arginines in a cluster on the surface, we decided to
test if the protein could bind nucleic acids (Figure 7).
Preliminary experiments reveal that Cthe_2751 could not bind
double stranded DNA in an EMSA assay (Figure 7B) suggesting
that either the binding specificities might be stringent or the
function of Cthe_2751 may not have anything to do with
nucleic acid binding. Further biochemical studies are warranted
to unravel the function of Cthe_2751, which are currently
underway.

Conclusions

We have solved the 3-D structure of the non-Pfam singleton
Cthe_2751 to 2.17 A resolution by Se-SAD. The structure reveals an
all o-helical topology similar to those observed for nucleic acid
processing proteins. A mathematical calculation performed on the
dimers of Cthe_2751 crystallized in different space groups corrob-
orated the findings of the crystal packing analysis of molecules packed
in different space groups. Such a method of analysis of packing of
dimers can be extrapolated to the study of dimerization of proteins
known to function as dimers under physiological conditions.

A »

Figure 7. Functional analysis of Cthe_2751. (A) Cluster of aromatic
and charged residues of Cthe_2751. N and C terminals are marked;
Cthe_2751 is depicted as a cartoon, amino acids as sticks. (B) Nucleic
acid binding ability of Cthe 2751 was tested in an EMSA assay.
Cthe_2751 could not bind double stranded nucleic acids similar to
bovine serum albumin (BSA) under the assay conditions. Lambda
repressor protein was used as a positive control.
doi:10.1371/journal.pone.0031673.g007
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Methods

Cloning, expression and purification

The Cthe_2751 gene containing 405 bases was sub-cloned into
vector pMCSG7 to give an expression plasmid - pMCSG7-
Cthe_2751 [24]. A number of single colonies were selected for
small scale soluble protein expression screening. Interestingly,
only 1 clone produced soluble protein. Sequencing results
revealed a frameshift mutation in the clone expressing soluble
protein. As a result, the C-terminal '**SLHFTIPDKHN'**
region was changed to "**YLAFYY'* with a fortuitous stop
codon ending the translation of the protein after Tyrl30.
Although amino acids Leul25 and Phel27 retain their
positions, the overall effect of the base insertion is a 5 amino
acid C-terminal truncation and mutagenesis of last 4 amino
acids. Since the mutated amino acids are located at the C-
terminal end, the effect on the structure due to the change in
amino acids is likely to be minimal. Since this was the only clone
that gave soluble protein, it was used for protein production.
pMCSG7-Cthe_2751 was transformed into E. coli BL21 for
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protein production. Cells were grown at 37°C until the optical
density of the culture reached ODggg nm 0.8. The culture was
induced by IPTG with a final concentration of 0.2 mM at 16°C
for 20 h. Cells were harvested by centrifugation at 4000 rpm for
30 min, and lysed by sonication. After centrifugation at
30,670 g for 30 min, the supernatant was subjected to Ni-
affinity chromatography. His-tagged protein was eluted using
1x PBS buffer containing 500 mM imidazole. After buffer
exchange, the protein was subjected to a TEV treatment to
remove the His-tag. Uncut protein and TEV were removed by a
second round of Ni-affinity chromatography and the tag-less
protein was loaded onto a Superdex G75 gel filtration column
previously equilibrated with 20 mM Tris-HCI (pH8.0), 200 mM
NaCl. The protein eluted as a single peak during size exclusion
and was concentrated to 15 mg/ml, before setting up crystal-
lization drops. Selenomethionine-labeled Cthe_2751 protein
was produced from E. Coli B854 by growing the cells in M9
medium supplemented with 0.5% glucose and 100 pg/ml
selenomethionine at 37°C until ODgog reach 0.6. Labelled
protein production was initiated by adding 0.2 mM IPTG and
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Table 4. Data collection and refinement statistics.
Data collection Se Derivative Native 1 Native 2 Native 3
X ray source 19-ID, APS MicroMax-007IP, IBP 17A, PF 17A, PF
PDB accession code 3UT8 3UT7 3UT4
Crystal to detector distance (mm) 362.87 180.42 308.73 299.58
Number of images 320 360 360 360
Oscillation width (°) 0.5 1 0.5 0.5
Wavelength(A) 0.9796 1.5418 0.9800 0.9800
Space group P3;21 P2,2,2, P4,22 C222,
ab,c (A) 80.80, 80.80, 53.97 50.10, 63.88, 96.90 37.51, 37.51, 169.76 52.04, 55.95, 170.83
o,B,y (°) 90.00, 90.00, 120.00 90.00, 90.00, 90.00 90.00, 90.00, 90.00 90.00, 90.00, 90.00
molecules 1 2 1 2
Resolution range(A) 50.00-2.37 50.00-2.17 50.00-3.00 50.00-2.03
(2.45-2.37) (2.25-2.17) (3.11-3.00) (2.10-2.03)
Rsym (%) 10.0 (47.0) 3.6(11.2) 4.8 (13.1) 8.1 (36.7)
Mean /ol (1) 26.52 (4.16) 90.50 (30.98) 52.45 (15.04) 33.76 (5.51)
Completeness (%) 99.3 (94.8) 97.9 (92.4) 96.1(98.6) 99.7 (97.2)
Redundancy 7.6 (5.6) 13.1 (9.3) 10.5 (9.9) 6.6 (6.5)
Refinement
Resolution (A) 50.00-2.37 27.15-2.17 42.44-3.01 50.00-2.03
No. reflections 8055 16720 2562 15606
Rwork/Rfree (%) 19.23/23.43 22.28/22.66 21.19/23.75 22.65/27.05
No. atoms 1204 2298 1041 2245
Protein 141 256 127 256
Water 40 126 3 81
Mean B value (A?) 35.40 35.87 41.80 25.15
R.m.s deviations
Bond lengths (A) 0.017 0.008 0.011 0.012
Bond angles (°) 1.258 1.058 1.553 1.093
Ramachandran analysis
Favoured region (%) 99.26 99.60 95.16 98.02
Allowed region (%) 0.74 0.00 4.03 1.98
Outliers (%) 0.00 0.40 0.81 0.00
doi:10.1371/journal.pone.0031673.t004
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the cells were allowed to grow for further 30 h. The protein was
purified as described earlier for the native protein.

Crystallization

Crystallization experiments were performed by hanging drop
vapor diffusion method by hand at 16°C. A total of 500 different
conditions from commercially available sparse matrix screens were
used for screening. Crystallization drops contained 1 pl protein
solution mixed with 1 pl reservoir solution, and were equilibrated
over 300 pl reservoir solution.

After 5 days of incubation, the protein crystallized. Crystals of
selenomethionine labelled protein belonging to space group P3,21
grew in 0.2 M ammonium sulfate, 0.1 M Bis-Tris, pH 5.5, while
crystals of native protein belonging to space groups, C222,, P4,22
and P2,2,2; grew in 1.6 M magnesium sulfate, 0.1 M MES,
pH 6.5, 30% PEG 8000, 0.2 M ammonium sulfate and 20% PEG
3350, 0.2 M magnesium nitrate, pH 5.8, respectively.

Data collection, phasing, structure solution, and
refinement

As expected, a WuBlast search of the PDB revealed that there
were no structural homologues of Cthe_2751. Therefore, we
prepared a selenomethionine derivative of the protein to obtain
the phase information. Mass spectroscopy of the labelled protein
suggested that all 4 methionines had been successfully replaced
by selenomethionine (data not shown). Crystals were briefly
soaked in a cryo solution containing the mother liquor
supplemented with 10% glycerol before freezing them in liquid
nitrogen prior to diffraction testing and data collection. The
selenium labelled protein crystal diffraction data were collected
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at peak wavelength for selenium’s anomalous scattering
(0.9793 A) at beamline 19-ID of Advanced Photon Source
(APS), Argonne National Laboratory. Data for the other 3
crystal forms of wild-type protein were collected at either home
lab or beam 17A at Photon Factory of KEK, Japan as shown in
Table 4. All the diffraction raw images were indexed and scaled
using HKL2000 [25]. The structure was solved by Se-SAD
using program SHELX [26] and Phaser [27], in CGCP4 Suite
[28]. The model was automatically built with program Arp/
Warp [29] in CCP4 Suite [28]. Except for the N-terminal
methionine, anomalous signal of selenium for Met63, Met76
and Met85 could be detected. The experimental electron
density map was of very good quality and other than Metl,
which is disordered, most of the residues could be fitted
unambiguously. The nearly complete model was used as a
molecular replacement template in the subsequent structure
determination of the three wild-type crystal structures using
program Phaser [27,30]. The models in different space groups
were completed with several cycles of refinement including the
use of TLS refinement method (Refmac [31] and Phenix_Re-
finement [32]) and manual fitting with Coot [33]. Details of
data collection and refinement statistics are listed in Table 4.
The quality of the final model was validated with MOLPROB-
ITY [34].
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