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Abstract

Many neurons have epochs in which they fire action potentials in an approximately periodic fashion. To see what effects
noise of relatively small amplitude has on such repetitive activity we recently examined the response of the Hodgkin-Huxley
(HH) space-clamped system to such noise as the mean and variance of the applied current vary, near the bifurcation to
periodic firing. This article is concerned with a more realistic neuron model which includes spatial extent. Employing the
Hodgkin-Huxley partial differential equation system, the deterministic component of the input current is restricted to a
small segment whereas the stochastic component extends over a region which may or may not overlap the deterministic
component. For mean values below, near and above the critical values for repetitive spiking, the effects of weak noise of
increasing strength is ascertained by simulation. As in the point model, small amplitude noise near the critical value
dampens the spiking activity and leads to a minimum as noise level increases. This was the case for both additive noise and
conductance-based noise. Uniform noise along the whole neuron is only marginally more effective in silencing the cell than
noise which occurs near the region of excitation. In fact it is found that if signal and noise overlap in spatial extent, then
weak noise may inhibit spiking. If, however, signal and noise are applied on disjoint intervals, then the noise has no effect on
the spiking activity, no matter how large its region of application, though the trajectories are naturally altered slightly by
noise. Such effects could not be discerned in a point model and are important for real neuron behavior. Interference with
the spike train does nevertheless occur when the noise amplitude is larger, even when noise and signal do not overlap,
being due to the instigation of secondary noise-induced wave phenomena rather than switching the system from one
attractor (firing regularly) to another (a stable point).
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Introduction

Rhythmic or almost regular periodic neuronal spiking is found in

many parts of the central nervous system, including, for example,

thalamic relay cells [1–3], dopaminergic neurons [4], respiratory

neurons [5,6], locus coeruleus neurons [7] and dorsal raphe

serotonergic neurons [7,8]. Periodic behavior is also found in the

activity of neuronal populations [9,10]. Since stochasticity is a

prominent component of neuronal activity at all levels [11,12], it is

of interest to see what effects noise may have on the repetitive

activity of neurons. There are many kinds of neuronal model which

could be used, an immediate dichotomy being provided by

Hodgkin’s defining classes of type 1 and type 2 neurons [13,14].

We have chosen to first examine the behavior of the classic type 2

neural model in its full spatial version [15] which has been employed

in recent studies of reliability [16]. The methods we use can be easily

extended to more complicated models such as in [1–3,5,17].

The deterministic spatial Hodgkin-Huxley system, consisting of

the cable partial differential equation for membrane voltage and

three auxiliary differential equations describing the sodium and

potassium conductances is one of the most successful mathematical

models in physiology [18]. The corresponding system of ordinary

differential equations (ODEs) has been the subject of a very large

number of studies and analyses, as for example in references [19–

28]. Most neuronal modeling studies, aside from some that use

software packages, ignore spatial extent altogether and many of

those that include spatial extent do not include a soma and hardly

ever an axon, because the inclusion of all three major neuronal

components, soma, axon and dendrites, makes for a complicated

system of equations and boundary conditions. A recent study of

spike propagation in myelinated fibres used a multi-compartmen-

tal stochastic Hodgkin-Huxley model and demonstrated the

facilatory effect of noise and that there were optimal channel

densities at nodes for the most efficient signal transmission [29]. In

reality, if solutions and statistical properties are found by

simulation, stochastic cable models, including the nonlinear model

of Hodgkin and Huxley, are not much more complicated than the

corresponding point models, although more computing time is

required. On the other hand, an apparent disadvantage of spatial

models is that more parameters must be specified, many of which

can at best only be approximately estimated.

The original HH-system for action potential formation and

propagation in squid axon contained only sodium ions, potassium

ions and leak currents and the distribution of the corresponding

ion channels was assumed to be uniform. That is, the ionic current

was

Iion~INazIKzIleak, ð1Þ
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and the various channel densities did not vary with distance.

However, there are two reasons why this basic model has been

modified in the modeling of more complex cells. Firstly, ion

channel densities do depend on position, and secondly, neurons,

especially those in the mammalian central nervous system, often

receive many thousands of synaptic inputs from many different

sources and each source has a different spatial distribution pattern

on the soma-dendritic surface [30–32]. Thus, spatial models of

motoneurons [33] and cortical pyramidal cells [34,35] have also

used the same components for the ionic current as in the HH-

system, but with channel densities that vary over the soma-

dendritic and axonal surface.

Most central neurons have many dendritic trunks and an axon,

each of which branches many times. In this article we focus on a

cable model with one space dimension, which is most accurate for

a nerve cylinder, usually of uniform diameter. Thus in the first

instance our approach is useful to investigate the properties of

single axonal or dendritic segments. This simple geometry can

nevertheless be used to gain some insight into the properties of

neurons with complex anatomy by appealing to such methods as

[36] mapping from the neuronal branching structure to a cylinder

thus reducing the multi-segment problem to solving a cable

equation in one space dimension. Thus single-segment cable

models can have relevance for neurons with branching dendritic

or axonal trees.

Recent studies of the HH-system of ordinary differential

equations (ODEs) with stochastic input have revealed new and

interesting phenomena [37,38] which have a character opposite to

that of stochastic resonance [39]. In the latter, there is a noise level

at which some response variable achieves a maximum. In

particular, in the space-clamped HH system, at mean input

current densities near the critical value (about 6.4 mA=cm2) for

repetitive firing, it was found that a small amount of noise could

strongly inhibit spiking. Furthermore, there occurred, for given

mean current densities, a minimum in the firing rate as the noise

level increased from zero [37,38]. Such properties are related to

noise-induced delays in firing as found in single HH neurons with

periodic input current [40] or networks of such neurons [41,42]. It

is of interest to see if these kinds of phenomena extend to the

spatial HH-system where in addition many possibilities for the

spatial distribution of the mean input and of the noise. We will

demonstrate that the spatial HH system exhibits quite similar but

more complex behavior than the ODE system.

Methods

The spatial Hodgkin-Huxley model
Based on experimental observations on ionic currents in squid

axon, the following system of differential equations was proposed

[18] to describe the evolution in time tw0 and space 0vxvL of

the depolarization V (x,t)~Vm(x,t){VR, where Vm(x,t) is the

actual membrane potential and VR is the (assumed constant)

resting potential,

Cm

LV

Lt
~

a

2Ri

L2V

Lx2
zgK n4(VK{V )

zgNam3h(VNa{V )zgl(Vl{V )zI(x,t)

ð2Þ

Lm

Lt
~am(V )(1{m){bm(V )m ð3Þ

Ln

Lt
~an(V )(1{n){bn(V )n ð4Þ

Lh

Lt
~ah(V )(1{h){bh(V )h: ð5Þ

Initial and boundary conditions must of course be specified. The

quantities Cm, gK , gNa, gl , and I(x,t) are respectively the

membrane capacitance, maximal potassium conductance, maxi-

mal sodium conductance, leak conductance and applied current

density for unit area (1sq cm). Ri is the intracellular resistivity and

a is the fiber radius. The units for these various quantities are as

follows: all times are in ms, all voltages are in mV, all conductances

per unit area are in mS/cm2, Ri is in ohm-cm, Cm is in mF/cm2,

distances are in cm, and current density is in microamperes/

square cm. n(x,t), m(x,t) and h(x,t) are the dimensionless

potassium activation, sodium activation and sodium inactivation

variables. Their evolution is determined by the voltage-dependent

coefficients

an Vð Þ~ 10{V

100 e 10{Vð Þ=10{1½ � , bn Vð Þ~ 1

8
e{V=80

am Vð Þ~ 25{V

10 e 25{Vð Þ=10{1½ � , bm Vð Þ~4e{V=18

ah Vð Þ~ 7

100
e{V=20, bh Vð Þ~ 1

e 30{Vð Þ=10z1
:

The following standard parameter values are used throughout:

a~0:0238, Ri~34:5, gK~36, Cm~1, gK~36, gNa~120,

gl~0:3, VK~{12, VNa~115 and Vl~10. For the initial values,

V (x,0)~0, the resting level, and for the auxiliary variables the

equilibrium resting values are used, for example

Author Summary

Many neurons, especially those found in subcortical nuclei,
often exhibit repetitive approximately periodic firing of
action potentials. We have previously demonstrated how
weak noise may inhibit repetitive activity in the Hodgkin-
Huxley point model and in pairs of coupled type 1 model
neurons. Here we investigated the effects of weak noise in
the full Hodgkin-Huxley model which includes a spatial
dimension. Our first simulations with noise throughout the
whole length of the neuron revealed inhibition of
repetitive activity with a minimum as the noise level
increased, as in the point model. However, when we
reduced the region of application of noise, very surprising
results were obtained. Noise right alongside the region of
excitation had no effect on the spiking activity. The
amount of overlap in space of signal and noise was found
to be the key variable in determining whether weak noise
would inhibit the firing. If the signal and noise were on
disjoint intervals, there was no diminution of activity, no
matter how large the spatial extent of the noise. Thus,
weak noise that occurred within the signal region could
powerfully inhibit spike generation, but such noise
immediately outside that region had little effect on the
propagation of spikes.
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n(x,0)~
an(0)

an(0)zbn(0)
:

The boundary conditions were chosen to be zero-derivative at

both end points.

Integration technique
The numerical integration of the stochastic HH system of

partial differential equations (PDEs) is performed by discretization

using an explicit method whose accuracy has been verified by

comparison with analytical results in similar systems [43]. For the

simulation of stochastic partial differential equations of the type

ut~Duxxzf (u)zsw(x,t), ð6Þ

where subscripts denote partial differentiation, f is a given non-

random function and w(x,t) is two-parameter white noise, the

following explicit method works well. Suppose the space interval is

0ƒxƒL and the time interval is 0ƒtƒT . Then put Dx~L=m

and Dt~T=n and let xi~(i{1)Dx for i~0,1,:::,m, and let

tj~(j{1)Dt for j~0,1,:::,n. Approximating u at the grid point

(xi,tj) by ui,j the simulation proceeds by the following Euler

scheme:

ui,j~ui,j{1zc½uiz1,j{1{2ui,j{1zui{1,j{1�

zDtf (ui,j{1)zs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt=Dx

p
Ni,j ,

where

c~
DDt

(Dx)2

and where the Ni,j ’s are a collection of independent standard (zero

mean, unit variance) normal random variables. The method

generally works well if cv0:5 and particularly well if c&0:2. In

the present calculations a time step of Dt~0:04 and a space step of

Dx~0:01 were employed.

Results

Deterministic solutions
We firstly consider the HH-system with a deterministic input

I(x,t)~m(x,t)

where (see also Figure 3)

m(x,t)~
mw0, 0vxvx1,tw0,

0, otherwise:

�
ð7Þ

That is, a constant current is applied indefinitely over a (small)

region near the origin. The end-region was chosen for excitation

to heuristically represent a soma-dendritic region which is attached

to an axon which extends from x~x1 to x~L. The length was set

at L~6.

Figure 1. Computed solutions V in mV versus distance x in cm at t~~~~~~~~~~~~~~~~160 ms of the Hodgkin-Huxley PDE for various current densities
m without noise. For remaining parameters, see text.
doi:10.1371/journal.pcbi.1000794.g001
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Examples of the responses are shown in Figure 1. Here, with the

stimulus extending to x1~0:2 the result for m~4 is a solitary spike

as seen in the top record of the figure. With m~6, a doublet of

spikes propagates along the nerve cylinder as shown in the middle

record of the same Figure. Beyond some critical value of m there

ensues a train of regularly spaced spikes, as seen with m~7:5 in the

bottom record. This response corresponds to repetitive and

periodic firing in the HH-system of ODEs. In order to quantify

the spiking activity, the maximum number N of spikes on (0,6) is

found.

Figure 2 shows the dependence of N on the (deterministic) input

current density, m, for two values of x1, viz 0.1 and 0.2. For mƒ2
no spikes occurred for both values of x1. A solitary spike emerged

in both cases for 3ƒmƒ5 and when m reached 6 in the case of

x1~0:2 and 6.5 in the case of x1~0:1, a doublet spike arose and

propagated along the cylinder. For slightly greater values of m, an

abrupt increase occurred in the number of spikes, indicating that a

bifurcation had occurred, paralleling the appearance of a limit

cycle solution in the ODE system. Subsequently, at greater values

of m, the number of spikes reached a plateau and when m reached

9, the largest value considered here, the number of spikes was 11

for both values of x1. In consideration of the behavior of the HH

system of ODEs with noise, it was then of interest to examine the

effects of noise on the spike counts near the apparent bifurcation

points for the PDE case.

Excitation with white noise
The HH-system of PDEs was therefore considered with applied

currents (consisting of ‘‘signal’’ plus noise) of the following form

I(x,t)~m(x,t)zs(x,t)w(x,t)

on subsets of a cylindrical nerve cell extending from x~0 to x~L.

Here fw(x,t),x[½0,L�,t§0g is a two-parameter white noise with

covariance function

Cov½w(x,s),w(y,t)�~d(x{y)d(t{s):

The functions m(x,t) and s(x,t) are deterministic and specify the

spatial (and temporal) distributions of the mean and variance of

the noisy input. The geometrical set-up is illustrated in Figure 3,

with m as defined above, so there is mean excitation from the

origin to the point x1. For the random component

s(x,t)~
sw0, 0vx2vxvx3ƒL,tw0,

0, otherwise:

�
ð8Þ

In order to quantify the spiking activity with noise, we let N be

the (random) number of spikes on (0,L) at t~160 ms, with

corresponding mean E½N�. This definition of N is made because

the speed of action potentials with the chosen parameters is such

that the first spike generated almost reaches x~L~6 at t~160 as

shown in the bottom record of Figure 1. Figure 2 shows values of

N without noise.

Noise throughout the cable length
Here the noise component is sw(x,t) on the whole interval

(0,L). In Figure 4 is shown an example of the effects of noise with

the following parameters: m~6:7, x1~0:1, x2~0, and x3~L~3.

The records show the membrane potential as a function of x[½0,3�
and t[½0,80�. In the top record there is no noise and there are 5

spikes. In the lower record, with a noise level of s~0:1 there is a

Figure 2. The number of spikes N on (0,L) at t~160 is plotted against the level of excitation m in the absence of noise. The dashed
curve is for the smaller region of excitation to x1~0:1 whereas the solid curve is for x1~0:2. Notice the abrupt increases in spike rates at values close
to the birfurcation to repetitive firing, being about m~6:1 for x1~0:2 and m~6:5 for x1~0:1.
doi:10.1371/journal.pcbi.1000794.g002
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significant diminution of the spiking activity, with only 1 spike.

With the noise turned up to s~0:3 (not shown) the number of

spikes is usually greater, but still less than in the noise-free case.

Mean spike counts were obtained with x1~0:1, at various s for

m~5,6:7 and 7. The first of these values is less than the critical

value for repetitive firing (see Figure 2) and the other two values

are close to and just above the critical value. Relatively small

numbers of trials were performed as integration of the PDEs

naturally takes much longer than for the ODEs. Hence the

number of trials for each point in the following is 50, which is

sufficient to show the main effects.

Figure 5 shows plots of the mean spike counts, E½N�, as explained

above, versus noise level, along with 95% confidence limits. This

figure may be compared with Figure 5 in [38]. For m~5, E½N�
increases monotonically as s increases from 0 to 0.3. When m~6:7,

which is very close to the critical value for repetitive firing, a small

amount of noise causes a substantial decrease in firing (cf Figure 4)

with the appearance of a pronounced minimum near s~0:075. For

m~7, where indefinite repetitive firing occurs without noise, a

similar reduction in firing activity occurs for small values of s, with a

minimum near s~0:15, after which spiking activity increases

monotonically for values of s up to the largest value employed,

s~0:3. The occurrence of minima with increasing noise level has

been referred to as inverse stochastic resonance [37].

In some trials, secondary phenomena were observed [44] as were

also found in the Fitzhugh-Nagumo spatial system, [43]. An

example is shown in Figure 6. Here with x1~0:1, the mean

excitation level m~5 is below the threshold for repetitive firing and

noise of amplitude s~0:3 is applied along the whole cable. A

single spike emerges from the left hand end as seen at t~16. By

t~32 a pair of spikes is seen to emerge at x&5, one traveling

towards the emerging spike and one to the right. Not long after

t~80 the left-going secondary spike collides with the emerging

right-going spike and these spikes annihilate each other. Thus, the

spike count on (0,L) ends up at 0 at t~160 due to inteference

between the left-going noise-generated spike and the right-going

spike elicited by the excitation applied on (0,x1).

With a larger region of excitation, so that x1~0:2, mean spike

counts were similarly obtained with various noise amplitudes for

Figure 3. Illustrating the geometry of the set up for stimulation of part or all of a nerve cylinder with white noise. The signal is applied
on (0,x1) and the noise on (x2,x3).
doi:10.1371/journal.pcbi.1000794.g003

Figure 4. Showing the effects of noise on spiking for mean
current densities near the birfurcation to repetitive spiking.
Parameters are m~6:7, x1~0:1, x2~0, and x3~L~3. In the top record
with no noise there is repetitive firing which, as shown in the bottom
record, is strongly inhibited by a relatively small noise of amplitude
s~0:1.
doi:10.1371/journal.pcbi.1000794.g004
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values of m~5,6:2 and 6:5. Again, the first of these values is less than

the critical value for repetitive firing (see Figure 2) and the other two

close to or just above the critical value. Inspection of Figure 7 shows

that the behavior is similar to that for x1~0:1. These findings

parallel those found for the HH system of ODEs and although there

is no standard bifurcation analysis for the PDE system, it is probable

that most of the arguments which apply to the system of ODEs

apply in some sense to the PDEs (see Section 5).

In order to explore the mode of spike failure, we examined the

early behavior of the voltage near the source of action potentials.

This was done with x1~0:1, m~6:7, s~0:075, x2~0 and

x3~L~3. With these parameters there is a high failure rate as

can be seen in Figure 5. Consider then the trajectories shown in

Figure 8. The upper sets are the potential versus time at x~0:05
and the lower sets are for x~0:10, at the edge of the signal region.

In all subplots are shown in red (dots) spike trains with no failed

spikes despite the noise. In the left panels, the blue (dash-dot) curves

are for a trial in which only one spike emerged. In the right panels,

the blue (dash-dot) curves are for a trajectory with only two spikes.

(The choice of markings is to enable almost coincident spikes to be

distinguished.) It can be seen that voltage paths in cases of failure are

close to those for the repetitive spike train until just before the 2nd or

3rd etc spike is about to form, whereupon the trajectory wanders on

a path away from threshold. Consequently, the spike train

terminates prematurely as the system thereafter stays at low levels

of depolarization, destroying the possibility of further spikes.

Evidently, there is a very small probability of a noise-driven passage

to the spiking regime after the trajectory is driven off it for these

relatively small values of s, though of course if s were much larger,

noise-induced spiking would occur within a short time. It is

noteworthy that (a), there were never trajectories with zero spikes,

which was also the case in the ODE case; and (b), there was not, in

50 cases examined, a single instance in which there was a spike at

x~0:05 and not at x~0:10; that is, failure, if it occurred, did so at

smaller values of x within the signal region. The reason for this last

observation will need further investigation of the effects of spatially

distributed sources.

Noise on small intervals
In the model we are considering, the relatively small region

0ƒxƒx1 where m=0 is akin to the input (somatic) region of the

neuron and the segment (x1,L) corresponds to the axon. In the

previous subsection noise was present throughout the whole

interval (0,L). It is of interest to see how varying the extent of the

noise around the somatic region affects the propagation of action

potentials. Thus the noise was limited to (0,x3) with x3 taking

values from near zero to x1 and somewhat greater. The same two

values of x1~0:1,0:2 as above were employed, so there was partial

or complete overlap of the region with noise and the region with

excitatory input. For both values of x1, the value of m was chosen

to be just at the critical values for repetitive spiking, being 6.7 for

x1~0:1 and 6.2 for x1~0:2. The results for the mean spike counts

(50 trials) are shown in Figure 9 along with 95% confidence limits.

For x1~0:1, as shown in the left part of Figure 9, noise over

even the very small region to x3~0:05 reduces the mean spike

count by 48% and when the extent of the noise is slightly greater

the mean spike count drops to about 40% of its value without

noise. On the same graph is given the result for noise on the whole

interval and it can be seen that there is no statistically significant

(P~0:05) reduction in spiking compared to x3[½0:05,0:2�. In the

right hand part of the same figure, similar results are shown for

x1~0:2. Generally the same remarks apply as for x1~0:1 but it

can be seen from the dashed line from the lower confidence limit

for x3~L that there is a possibly significant difference between the

spike counts for x3~0:1 and x3~L, but no difference for any

other pair of x3-values. Thus the apparent minimum in the mean

count for the case x1~0:2 is probably not statistically significant,

although this matter could profit from a further more detailed

Figure 5. Mean numbers of spikes as a function of noise level for various values of the mean level of excitation m on (0,0:1). The
bottom curve is for a value of m well below the critical value at which repetitive firing occurs. Parameter values x1~0:1,x2~0,x3~L~6.
doi:10.1371/journal.pcbi.1000794.g005
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analysis. The results of Figure 9 show that weak noise over even a

small region where the signal occurs may inhibit partially or

completely the emergence of spikes just as or almost as effectively

as weak noise along the whole extent of the neuron. This is not the

case for noise of sufficient strength to induce spiking outside the

signal region.

Contrasting overlap and non-overlap of noise and signal
It was at first surprising that, with x1~0:1, x2~0:1 and

x3~0:2, when there was weak noise just to the right of the

excitatory stimulus, no reduction in spike count occurred. Thus, it

seemed that weak noise at the source of the spiking could cause a

significant reduction in spike count, but noise with the same

magnitude and extent over a region disjoint from the region of

excitation, tended to have little or no effect on spike propagation.

To investigate this further, the excitatory signal was applied with

strength m~6:7 on (0,0:1) and noise of amplitudes s~0:1,0:2 and

0:3 was activated on the (disjoint) regions from (0:1,0:2), (0:1,0:3)
and (0:1,0:4), which are of successively increasing lengths. On no

occasion for any of these disjoint intervals or for any noise level,

was there a reduction in spiking activity, although as expected, the

timing of the spikes was slightly different in each case.

Furthermore, when the signal was applied on (0,0:1) and the

noise (at all three levels) was applied on (1,6), there was still no

reduction in spiking activity even though the spikes encountered

noise on about 84% of distance along the cable.

In a systematic investigation, with the mean excitation fixed at

m~6:2 for 0vxv0:2, noise of strength s~0:1 was applied for

x2vxvx3 where x3{x2 was fixed at 0.2 and x2 varied from 0,

corresponding to complete overlap, to 0.2, corresponding to zero

overlap. The results, which are shown in Figure 10, provide a clear

demonstration of the significance of the degree of overlap of (weak)

noise and signal. Histograms of spike counts on 50 trials enabled

the determination of the fraction of trials on which there was

interference of the spike train by noise. For example, with

complete overlap (x2~0, x3~0:2) there were 11 of 50 trials with a

full complement of 9 spikes as in the noise-free case, representing

interference, mainly in the form of inhibition, by noise in 78% of

trials. In contrast, with x2~0:12 and x3~0:32, giving 40%

overlap, there were 9 spikes in all 50 trials, indicating zero

interference. The probability of interference (as a %) versus degree

of overlap is plotted in the left panel of Figure 10. This probability

Figure 6. An anomalous case where the spike count on (0,L) decreases due to secondary waves resulting from large noise. Excitation
at the left-hand end gives rise to a solitary action potential seen at t~16. At t~32 a pair of noise-triggered spikes emerges. The left-going member of
the pair collides with the original spike not long after t~80 and this pair annihilate one another, leaving no spikes on (0,L) at t§96. Other
parameters x2~0,x3~L~6,m~5,s~0:3.
doi:10.1371/journal.pcbi.1000794.g006
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is seen to remain at zero until the overlap is 40% and then

increases monotonically to achieve the value near 80% when the

overlap is complete. In the right panel of Figure 10 are plotted the

mean spike counts versus amount of overlap along with 95%

confidence intervals. The mean spike count remains at 9 until the

overlap is greater than 40%. Note that if the mean spike count is

E½N� and there are No spikes without noise, then the left panel

plots 1{E½N�=No as a %.

The results of Figure 10 illustrate dramatically the importance

of overlap of signal and weak noise for the latter to have an

inhibitory effect on spiking. That is, a spike will generally pass

through a region of weak noise, but if the same noise is applied at

the source of the spike, there is a considerable chance of the non-

emergence of one or more spikes.

Finally, it was decided to see if having the location of excitation

near the end point x~0 was playing a role in the above effects. With

no noise, there were at t~80, 4 spikes on either side of the stimulus

(with m~6:1 there was only 1). For noise of amplitude s~0:1, with

the region of application of the noise overlapping exactly the

stimulus region, there was a reduction in spiking activity by over

30%, there being several instances with only 1 spike. On the other

hand, when the signal and noise regions were disjoint, the latter

being (3:0,3:2), there was no reduction in spiking activity.

The spatial HH system with conductance-based noise
The above results were obtained with additive noise, but in

neurons, noisy input that has synaptic origin is better approxi-

mated via random processes that describe more accurately the

properties of synaptic transmission [45,46]. In a simplified model

of synaptic input the current density I(x,t) in (2) is replaced by

Isyn(x,t)~gE(x,t)(VE{V )zgI (x,t)(VI{V ) ð9Þ

where gE and gI are the excitatory and inhibitory conductance

densities and VE and VI are the reversal potentials for excitatory

and inhibitory synaptic currents. Using diffusion approximations

for gE and gI we have the stochastic partial differential equations

LgE

Lt
~{

(gE{g�E)

tE

zsEwE(x,t) ð10Þ

LgI

Lt
~{

(gI{g�I )

tI

zsI wI (x,t) ð11Þ

where the t’s are time constants of decay, g�E and g�I are

equilibrium conductance values, wE and wI are independent

standard spatio-temporal white noises and sE and sI are noise

amplitudes.

An investigation of the many possible spatial configurations of

excitatory and inhibitory synaptic inputs is outside the scope of the

present article. However, in order to demonstrate that the

phenomenon of inhibition by weak noise extended to the spatial

Hodgkin-Huxley model with conductance-based noise, an excit-

atory synaptic input was employed whose spatial distribution

paralleled that in an additive noise case. Thus with L~6 and

g�Ew0 only for 0vxvx1~0:1, repetitive spiking was found to

occur without noise when g�E was greater than a threshold value a

little less than 0.112. Three values of g�E were then employed; a

just greater than threshold value of 0.112, a value well above

threshold at 0.13, and a value well below threshold at 0.08. For

these values of g�E , simulations were performed for various sEw0
on 0~x2vxvx3~0:1; that is, with noise and signal overlapping

completely on a small interval near the origin. The remaining

parameter values were tE~2 ms and VE~80 mV relative to

resting potential. As for the additive noise case, the (random)

number N of spikes was recorded on the whole cable length at

Figure 7. Mean numbers of spikes as a function of noise level for various values of the mean level of excitation m on (0,0:2). The
bottom curve is for a value of m well below the critical value at which repetitive firing occurs. Other parameters x2~0,x3~L~6.
doi:10.1371/journal.pcbi.1000794.g007
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time t~160 ms, by which time the first emitted spike has almost

reached the end x~L.

Results for the expected number, E½N� of spikes are plotted against

noise amplitude sE , along with 95% confidence intervals in Figure 11.

For the uppermost curve, above the critical value of g�E , there

are 10 spikes with no noise and very small noise. As the noise

increases the mean number of spikes drops to a minimum of about

7 when sE is near 0.002 and then increases back to about 10 when

sE~0:005. With the value of g�E~0:112 just above the critical

value (middle curve), E½N� decreases rapidly from 9 to about 3.5 as

the noise increases from zero, but the minimum is rather diffuse.

At the smallest (subthreshold) value of g�E , there is only a

monotonically increasing number of spikes from 1 about 7 to as

the noise amplitude increases from 0 to 0.005. Thus, the effects of

weak noise on repetitive spiking in the spatial HH system in the

conductance-based case parallel those for additive noise for the

spatial configuration considered. A more complete study will be

reserved for future work.

Discussion

As pointed out in the Introduction, the effects of noise in the

point-model (ODE) version of the Hodgkin-Huxley neuron have

been considered in many articles, but only a few have considered

the stochastic spatial version of this neural model. In the ODE

model, noise applied near the critical mean input current density

for repetitive firing led, at small amplitudes, to a substantial

reduction in spiking activity and an interesting minimum in the

firing rate as the noise level increased away from zero. The

inhibitory effect of noise on spiking has been experimentally

demonstrated in the squid axon [47]. Such an inhibitory effect has

been explained in transitions from one attractor, a limit cycle, to

another, being a stable rest point [28,38].

It was natural, therefore, to see if such effects induced by noise

in the ODE system also arose in the HH system of PDEs. In the

present article we have found that similar phenomena do in fact

occur in the HH PDE (cable) system, as can be seen particularly in

Figures 5 and 7. With (deterministic) excitation at the left-hand

end of the cable, when relatively weak additive uniform two-

parameter white noise is applied, there is indeed an inhibition of

the spiking activity and furthermore, a minimum occurs as the

noise strength increases for signal strengths near the critical value

for repetitive spiking. This was also the case for conductance-based

(synaptic) input. However, there are two new effects in the spatial

HH system that cannot arise in the ODE system and which clearly

demonstrates the utility of spatial models as providing more

Figure 8. Voltage trajectories illustrating weak noise induced failure of the emergence of a repetitive train of action potentials.
Upper plots show V as a function of time at x~0:05 and the lower plots show V at at x~0:10. In all 4 subplots are shown trials in red (dotted) in
which no failure occurred. In the left panels failure is manifest as the occurrence of only one action potential (blue dash-dot curves) whereas in the
right hand example there are two spikes preceding failure (blue dash-dot curves). Parameters are x1~0:1, m~6:7, s~0:075, x2~0 and x3~L~3.
doi:10.1371/journal.pcbi.1000794.g008
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Figure 9. Mean numbers of spikes with noise, at level s~0:1, restricted to small regions, from x2~0 to x3, that overlap partially or
completely the small interval (0,x1) at the left-hand end at which the neuron receives excitation with mean m. In the left graph, x1~0:1
and m~6:7 whereas in the right graph x1~0:2 and m~6:2. The point x3~L~6 is included in each case (not to scale).
doi:10.1371/journal.pcbi.1000794.g009

Figure 10. Interference of spike trains by noise. Left panel. The fraction of trials during which weak noise interfered with the spike train is
plotted against the % overlap of the regions where the signal mw0 and the noise amplitude sw0. Parameter values are x1~0:2,m~6:2,s~0:1. Right
panel. The corresponding expected number of spikes E½N� is plotted against % overlap of signal and noise. 95% confidence limits are shown based
on 50 trials.
doi:10.1371/journal.pcbi.1000794.g010
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realistic insights into the behavior of real neurons, which do of

course have considerable, and sometimes very large, spatial extent.

Firstly, the spatial distributions of the signal and the noise may

not be the same. Investigation of this aspect revealed unsuspected

properties. The main finding was that if the noise and signal

overlapped completely or partially, then weak noise could inhibit

the firing activity. However, if signal and noise were on disjoint

intervals, then weak noise had no effect. This was the case even

when the noise extended along the major part of the cable.

Heuristically, one could argue that weak noise can prevent the

generation of action potentials (at their source) but not their

propagation. It will be of much interest to explore the

mathematical reasons for this behavior in more detail.

Secondly, in spatial models (or real neurons), secondary effects

may be induced by noise if it is sufficiently strong. For example,

noise may itself lead to the generation of (usually pairs of) action

potentials at locations which are possibly remote from the regions

of application of a signal. This was seen in Figure 6 for the HH

system and previously in the Fitzhugh-Nagumo system [43]. Noise

induced action potentials can sometimes just be spurious or they

can annihilate previously generated spikes which they encounter.

The above results are intriguing and to us were unexpected.

They suggest that in the HH system the inhibition of spiking by

noise of small amplitudes (here for sv0:3) is only significant if the

region of signal generation and the region of occurrence of noise

overlap, possibly only to a minor degree. That noise and other

spurious stimuli have an effect on (neuronal) pacemakers is well

documented [47–50]. In central neurons the geometry and

neurophysiology are much more complex than that considered

in this article. If rhythmic spiking is instigated in a locally noisy

environment it is feasible that there may be noise-induced failure

to spike. However, rhythmic spikes which arise in dendritic regions

and then propagate to the soma through noisy regions will

probably not be inhibited by weak noise. Future work on these

complex phenomena involving noise is needed for the elucidation

of their role, not just in the relatively simple HH model, but in

more realistic models of central nervous system neurons such as

[1–6]. We anticipate that the kind of results we have obtained here

extend in essence to models which describe in detail the anatomy

of the soma, dendrites and axon.

Mathematical background
For getting mathematical insight into the phenomena just

described, we should distinguish two different regimes in

Equations (2)–(5). We have the small region 0vxvx1 where an

external current is applied and where consequently the spikes are

generated, and the large region x1vxvL where no such current

is applied and where the spike is propagated. The first region was

found to be much more sensitive to perturbations than the second.

The spatial Hodgkin-Huxley equations belong to the class of

reaction-diffusion systems, and some general theory can be

applied, see e.g. [51], [52]. The typical nonlinear effects are

generated by the interaction between the nonlinear reaction term

and the linear diffusion term. In the first regime, where the spike is

generated, the reaction dominates the behavior. Therefore, the

effects of perturbations are similar to those in the non-spatial

Hodgkin-Huxley equations which constitute a system of nonlinear

ordinary differential equations. In particular, noise when applied

at a particular part of the periodic trajectory that corresponds to

the regular spiking can destroy an incipient spike, see [38].

The second regime is modelled as a traveling wave solution of

the Hodgkin-Huxley equations, see [53]. Here, a traveling wave is

a solution of the above PDE system that depends only j~x{ht.

Figure 11. Mean numbers of spikes for the HH system with conductance-based input as a function of noise level for three values of
the mean level of excitation g�E on (0,0:1). The top, middle and bottom curves are for values of g�E well above, just above and well below the
critical value for repetitive firing. The indicated 95% confidence intervals are based on 50 trials at each data point. Parameter values
x1~0:1,x2~0,x3~L~6.
doi:10.1371/journal.pcbi.1000794.g011
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With W (j)~V (x,t) and 0 denoting a derivative with respect to j,

on introducing the auxiliary function Z~W ’, we obtain the first

order system W ’~Z and

a

2Ri

Z’~{(hCmZzgK n4(VK{W )

zgNam3h(VNa{W )zgl(Vl{W )):

The changes for the remaining equations are obvious. The

existence of traveling waves for such systems has been investigated

in [54]. The difference with the ordinary Hodgkin-Huxley

equation consists in the term hZ on the right hand side. According

to the analysis of [55], this has the consequence that the fast

reaction dynamics corresponding to the propagated spike

branches off from the vicinity of the equilibrium set

gK n4(VK{W )zgNam3h(VNa{W )zgl(Vl{W ))~0 at posi-

tions that are different from the original rest state V~0.

Therefore, the region at the incipient spike where the solution

slowly traverses a narrow region of its basin of attraction, as

analyzed in [28], is avoided. Consequently, the traveling wave is

much less sensitive to perturbations than the spike generation. This

yields a qualitative explanation of our numerical findings.
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