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On the physical mechanisms 
underlying single molecule 
dynamics in simple liquids
Russell G. Keanini1*, Jerry Dahlberg1,2 & Peter T. Tkacik1,2

Physical arguments and comparisons with published experimental data suggest that in simple 
liquids: (i) single-molecule-scale viscous forces are produced by temperature-dependent London 
dispersion forces, (ii) viscosity decay with increasing temperature reflects electron cloud compression 
and attendant suppression of electron screening, produced by increased nuclear agitation, and (iii) 
temperature-dependent self-diffusion is driven by a narrow band of phonon frequencies lying at 
the low-frequency end of the solid-state-like phonon spectrum. The results suggest that collision-
induced electron cloud distortion plays a decisive role in single molecule dynamics: (i) electron cloud 
compression produces short-lived repulsive states and single molecule, self-diffusive hops, while 
(ii) shear-induced distortion generates viscosity and single-molecule-scale viscous drag. The results 
provide new insight into nonequilibrium molecular dynamics in nonpolar, nonmetallic liquids.

Gaining a deeper understanding of single molecule dynamics in liquids bears on fundamental problems in chemi-
cal reaction kinetics1,2, sub-cellular water transport3,4 and biomass transfer5,6, detection of cosmic particles and 
radiation7, dark matter detection8–10, detection of collision products in high energy physics7, corrosion11, and 
weathering of terrestrial and extra-terrestrial surface rock12. The problem has attracted the attention of luminaries 
like Einstein13,14, Perrin15, Laundau16, Prigogine17, and Feynman18. Nevertheless, the physical mechanisms that 
determine single molecule motion in liquids remain poorly understood.

A variety of experimental and theoretical approaches have been developed for studying molecular dynamics in 
liquids. Experimental techniques include light and particle scattering19–23 which probes dynamic responses over 
single- to multiple-molecule length scales, and sub-collision and longer 

(

t ≥ O
(

10−14 s
))

 time scales. Photonic 
techniques24–28 are capable of exposing intramolecular dynamics on femtosecond time scales 

(

t = O
(

10−15 s
))

. 
Molecular dynamics simulations provide a computational approach for probing each of these scales29–31.

Theoretical modeling drives and allows interpretation of typically complicated experimental observations. 
Over multi-molecule length scales and multiple-collision time scales, molecular hydrodynamics20–22,31–34 suc-
cessfully connects observed spectral responses of dense fluids to the continuum Navier-Stokes (NS) equations. 
However, on single-molecule length scales and collision- and sub-collision time scales, mapping molecular-scale 
response into generalized NS models requires time- and space-dependent transport coefficients20,22,33–35, revealing 
our poor understanding of single-molecule liquid-state dynamics.

For atomic, and small polyatomic, nominally spherical, nonpolar liquids, Langevin (LE) models22,33,34 pro-
vide a powerful, particle-based framework for tackling molecular dynamics problems, both under classical 
conditions—where the dynamical processes of interest take place on time scales exceeding the ’dispersion time 
scale’, τd = O

(

10−16 s
)

, see below—and under conditions where quantum smearing of the dynamics becomes 
important33,36. Generally speaking, LE models are suitable for particle dynamics problems characterized by 
short-time scale random forcing and longer-time scale non-random dynamical dissipation, as well as by pos-
sible external forcing.

This paper presents three results, which together, provide new insight into the dynamics of single molecules 
in nonpolar, nonmetallic liquids:

(a) A simple physical model is proposed which suggests that: (i) liquid-state viscosity is produced by tempera-
ture-dependent London dispersion forces, and (ii) viscosity decay with increasing temperature reflects decreased 
electron screening of nuclear charge. Comparison of predicted and experimentally observed viscosities22,37 for 
liquid Ne, Ar, Kr, Xe, N2, O2, and CH4, support the proposed physical picture.

(b) A Langevin model of sub-collision time scale, single molecule dynamics, which explicitly accounts 
for solid-state-like phonon modes, leads to a physically consistent explanation for self- diffusion coefficients 
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measured in liquid Ar, Kr, and Xe38. The model suggests that on time scales ranging from the Frenkel scale, 
τF = O

(

10−14 s
)

, down to the fast dispersion scale, τd = O
(

10−16 s
)

, molecular dynamics in simple liquids is 
solid-like, and thus dominated by phonon modes, consistent with the equilibrium statistical mechanics picture 
presented by39,40. In addition, the model indicates that the random diffusional hopping of individual molecules 
is produced by a narrow band of phonon modes lying near the low-frequency end of the phonon spectrum, 
ωc ∼ ωF = 2π/τF .

[Note, for context, τF is approximately an order of magnitude shorter than the characteristic intermolecular 
collision time scale, τc = O

(

10−13 s
)

. In order to provide a physical feel for the important time scales in this 
problem, we will often use those associated with liquid Ar. In addition, the term ’molecular’ will refer to mona-
tomic as well as small, polyatomic liquids.]

(c) A set of time scale-dependent Langevin equations are proposed for describing single molecule dynam-
ics in simple, non-polar liquids. The equations apply over the poorly characterized sub-collision time scale, 
τd � t � τc , incorporate the above results, and represent best-guess extrapolations of well-established dynamics 
on longer time scales.

As a consequence of the modeling, experimental comparisons, and consistency checks that are presented, we 
arrive at a preliminary picture of the decisive role apparently played by collision-induced electron cloud distortion 
in single molecule dynamics. Specifically, arguments and evidence are presented suggesting that phonon-induced 
electron cloud compression forces colliding molecular pairs into short-lived repulsive states, producing, in turn, 
single molecule, self-diffusive hops. In addition, we propose that nonequilibrium, shear-induced, ’tangential’ 
electron cloud distortion generates viscosity and single molecule scale, resistive viscous forces. In order to support 
the hypothesis that viscosity arises on single molecule scales (SMS), the paper first derives SMS Navier–Stokes 
equations, describing the ensemble average, field-based dynamics of (Newtonian) SMS fluid systems. Given these, 
a scaling estimate of SMS viscosity, based on the Green-Kubo viscosity relation35, then leads to a parametrically 
correct solution for SMS viscosity, obtained in terms of the SMS shear stress (i.e., the ensemble average, SMS 
transverse current correlation22,34).

Results, methods and discussion
Dispersion forces and electron screening determine temperature‑dependent dynamic viscos-
ity.  As a measurable property determined by molecular-scale processes, viscosity provides a window into 
molecular dynamics. Here, we study temperature-dependent viscosities observed in liquid Ne, Ar, Kr, Xe, N2, 
O2, and CH4, at fixed pressures, over the temperature ranges on which each specie exists as a liquid22,37.

The corresponding states principle22,41,42 provides the basis for our argument. The simplest form of the princi-
ple postulates that viscosity is determined by a characteristic intermolecular potential energy, ǫ, a characteristic 
intermolecular length scale, σ , the molecular mass, M,  and a specie-dependent temperature-scale, ǫ/kB :

where, on dimensional grounds, M can be grouped with ǫ. Dimensional analysis allows restatement of (1) in 
nondimensional form:

where µ̃ = µ/
√
Mǫ/σ 2, T̃ = T/(ǫ/kB), kB is Boltzmann’s constant, and f̃  represents the experimentally deter-

mined correlation. The principle holds nominally well22,41 in nonpolar atomic and diatomic liquids that are 
well-modeled by the Lennard–Jones potential22,41. More comprehensive correlations incorporating quantum 
(low temperature and small mass) effects and information on the shape of the intermolecular potential have 
been proposed42.

In order to derive what turns out to be a simple physical model for predicting viscosity in nonpolar liquids, we 
proceed in three steps. First, a scaling argument is used to place the corresponding states principle on a physical 
basis, leading to an approximate relationship for µ :

Focusing on nonpolar liquids subject to London dispersion forces, we then follow41 and state the intermolecular 
energy, ǫ, in terms of specie polarizability, α, and the separation, rab, between colliding molecular pairs. Finally, 
collision-induced, and temperature-dependent polarization is stated in terms a mean, temperature-dependent 
electron cloud distortion, δσ (T). Importantly, in order to obtain a viscosity model consistent with available 
measurements22, we propose that electron cloud distortion, δσ (T), decreases linearly with temperature.

Confine attention to classical conditions, assume pair-wise intermolecular collisions—see Note (i) in the final 
section below, neglect non-spherical shape effects42 on the (pair-wise) intermolecular potential, and focus on 
simple, nonmetallic liquids, i.e., those composed of nonpolar molecules having nominally spherical, localized 
electron distributions43. Under these conditions, the attractive potential between colliding molecular pairs is 
wholly determined by London dispersion41,44.

On time scales longer than the dispersion time scale, τd = O
(

10−16 s
)

 - the scale on which electron distribu-
tions oscillate45 - but shorter than the intermolecular collision time scale, τc = O

(

10−13 s
)

, two-body interactions 
dominate three- and higher-order interactions; again, see Note i) in the final section. Due to high-frequency 
phonon modes, ω > 2πτ−1

F = O
(

1014 s−1
)

, we assume that viscosity emerges on an intermediate time scale, 
τv , where τd << τv << τc . As shown by46, a modified Stokes-Einstein relation,

(1)µ = f (T ,Mǫ, σ , kB)

(2)µ̃ = f̃
(

T̃
)

(3)µ ≈
√
ǫM

σ 2
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connects diffusion of small and medium sized molecules (in water and carbon tetrachloride46) to the viscosity 
of the solvent liquids. Here, D is the diffusion coefficient, µ is the dynamic viscosity, f ′ is a molecular-shape-
dependent factor, and n′ is a correction factor, ranging from approximately 2 to 6, and accounting for a mix of 
slip- and no-slip flow conditions on a molecule’s surface.

Importantly, (4) implies that single molecule dynamics can be modeled using the simple, memory free Lan-
gevin equation:

where σm = n′f ′σ/6 is the effective molecular diameter; see, e.g.,47. Here, v(t) is the instantaneous velocity 
of the molecule and FR(t) is the instantaneous random force on the molecule. Thus, on time scales of order 
τv = O

(

10−15 s
)

, and longer, we argue that the rate of work done on an individual molecule by the dispersion 
force is dissipated by viscous dissipation:

where spatial derivatives are approximated as 1/σ , the characteristic speed of the nucleus is given by 
unuc ≈

√
ǫ/M, the characteristic nuclear displacement over τv is represented as δrnuc , and the nominal surface 

area of the molecule is on the order of σ 2. Solving (6) for the viscosity then leads to (3).

Dispersion forces determine viscosity and increased nuclear agitation with temperature com-
press electron clouds, suppressing viscosity.  In simple liquids subject to London interactions, the 
energy scale, ǫ, is approximately determined by41,44

where hνo is the ground state energy of an isotropic quantum oscillator, α is the polarizability, and rab is again the 
separation between the molecular pair’s nuclei. This expression follows from assuming that pair-wise molecular 
collisions correspond to weak interactions between isotropic quantum oscillators41,44. As an initial consistency 
check, Supplement 4 compares estimated and experimental kinematic viscosities, ν = µ/ρ, for a set of simple 
liquids, where ν estimates use London’s rigorous second order quantum perturbation model41,44, ǫ = C/r6

AB
 in 

(3), and where C is the attractive constant.
Since (7) allows intuitive derivation and interpretation of the viscosity estimate presented here, as well as 

exposing the apparent central role of electron cloud distortion in viscosity generation, we use (7) to estimate ǫ. 
Polarizability is given approximately by41

where the sum is taken over the principle quantum energy levels of a given molecule, r2i  is the average squared 
displacement of the electrons in ith shell (induced by an external electric field), and ao is the Bohr radius. In detail, 
r2i , follows from introduction of Slater orbitals41,48:

where Z − Si is the effective nuclear charge of the ith shell, Z is the nuclear charge, Si is the associated screening 
constant, and n∗i  the effective principle quantum number.

Focusing on Ne, Ar, Kr, Xe, O2, and N2, we label the sum of mean squared electron displacements as

where

represents the average collision-induced distortion of all the electrons in a molecule, and where we assume that 
δσ (T) is temperature-dependent.

Over the narrow temperature ranges on which each of these species exist as a liquid, and based on the observa-
tion that liquid viscosities decrease with increasing temperature22, we introduce an ansatz that the mean electron 
distortion decreases linearly with temperature:

(4)D =
2kBT

n′πµσ f ′

(5)M
dv(t)

dt
= −3πσmµv + FR(t)

(6)
ǫ

σ
· δrnuc · τ−1

v ≈ µ
unuc

σ
· σ 2 · δrnuc · τ−1

v

(7)ǫd =
3

4
hνo

α2

r6ab

(8)α =
4

9ao

n
∑

i=1

(

r2i

)2

(9)r2i =
[

n∗i
2(Z − Si)

]2
(

2n∗i + 1
)(

2n∗i + 2
)

a2o

(10)
1

n

n
∑

i=1

(

r2i

)2
= δσ 4(T)

(11)δσ (T) =
[

n−1
n

∑

i=1

(

r2i

)2
]1/4
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where δσv = δσ (Tv), is the mean displacement at characteristic temperature, Tv = ǫ/kB, and ǫT = (Tv − T)/Tv .
Physically, and in light of (9) and the results below, this guess suggests that electron screening decreases with 

increasing temperature, consistent with behavior observed in deuterated metals49. Since kinetic energy of both 
nuclei and electrons increase with rising temperature, where the latter presumably enhances screening, the sup-
pression of screening apparently reflects increased nuclear agitation; intensifying agitation, under spatially packed 
conditions effectively thins surrounding electron clouds. A similar mechanism has recently been proposed in 
metallic glasses50, and may underlie atomization of vapor phase molecular clusters as T → Tv = ǫ/kB, where 
atomization reflects nuclear kinetic energy overtaking intermolecular dispersion forces.

Next ,  approximate δσ (T) = δσv(1− ǫT ) as  δσ (T) = δσv exp (−ǫT ) = δσve
1 exp (−T∗), where 

T∗ = T/Tv = T/(ǫ/kB), is the dimensionless temperature defined in the corresponding states correlation. Since 
the maximum magnitude of ǫT is on the order of 0.3 for the set of liquids considered, save oxygen, the maximum 
error introduced by replacing (1− ǫT ) with exp (−ǫT ) is on the order of 10 %.

Using ǫd in (7) for ǫ in (3), the definition in (11) for the mean electron distortion, and the exponential approxi-
mation above for the assumed linear temperature variation in δσ (T), leads to an approximate expression for the 
temperature-dependent viscosity for simple liquids:

where Co =
√

243hνoe8(δσv/σo)
8M/16/σ 2

o , and where ao is approximated as σo/2, and σo corresponds, e.g., to 
the molecular diameter at the specie melting point.

Comparison of theoretical and observed viscosities.  In order to allow comparison of theoretical, 
temperature-dependent viscosities, as given by (13), with experimentally measured viscosities, we define the 
dimensionless viscosity for liquid κ , µ∗

κ (T
∗) = µκ(T

∗)/µm,κ , yielding

where c∗κ = µ∗
κ

(

T∗
min,κ

)

exp
(

4T∗
min,κ

)

, and where µ∗
κ

(

T∗
min,κ

)

 is the measured dimensionless viscosity for fluid 
κ at the minimum dimensionless temperature, T∗

min,κ at which µ∗
κ is measured. Note, due to the approximations 

used to obtain the constant Co above, plotted viscosity estimates obtained using (13) exhibit the appropriate decay 
with temperature, but are displaced by a (nominally) fixed magnitude from measured viscosities.

Theoretical and experimental, temperature dependent dimensionless viscosities for the six simple liquids 
considered here are compared in Figs. 1 and 2. The comparisons lend significant support to our central argu-
ment: Decaying liquid viscosity in simple liquids reflects decreased electron screening of the positive nucleus. A 

(12)δσ (T) = δσv(1− ǫT ) = δσv

(

1−
Tv − T

Tv

)

(13)µ
(

T∗) ≈ Co exp
(

−4T∗)

(14)µ∗
α

(

T∗) = c∗κ exp
(

−4T∗)

Figure 1.   Temperature-dependent viscosity for noble liquids. The proposed model assumes: (i) dominant 
pairwise, dispersive, intermolecular interactions—see the scaling argument (i) in the final section, and (ii) that 

the average collision-induced distortion of the molecule’s electrons, δσ (T) =
[

∑n
i=1

(

r2i

)2
]1/4

, decays linearly 

with temperature. The second assumption suggests that electron screening decreases with increasing 
temperature—consistent with49,50—and, in turn, that thermally-driven nuclear motion dominates presumed 
enhanced electron shrouding of the nucleus. For an explanation of experimental conditions and definitions of 
dimensionless variables, see the caption to Fig. 2. Sources for the experimental viscosity data shown are as 
follows: Ne51; Ar52; Kr53; Xe54. For a discussion of estimated experimental uncertainties, please see the text.
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similar mechanism may underlie temperature-dependent decay in surface tension coefficients in simple liquids, 
and may also play a role in viscosity and surface tension variations in, e.g., polar and ionic liquids.

In closing this section, we cite the sources of the experimental viscosity data presented in Figs. 1 and 2, as 
well as estimated uncertainties, where available. Regarding the latter56, reviews and correlates the data avail-
able through 2004, for liquid Ar, N2, and O2. Using their temperature and pressure-dependent correlations 
for each specie, they define the average absolute deviation, AAD, of any given data set from the correlation, by 
the (schematic) relationship: AAD = |(Xdata − Xcalc)|/Xcalc. Thus, their estimated AAD’s provide reasonable 
estimates for the uncertainty in any given experiment. References and estimated uncertainties for the seven 
sets of viscosity data shown in Figs. 1 and 2 are as folows: Ne51; uncertainty not reported; Ar52, AAD = 0.92 
%; Kr53, uncertainty not reported; Xe54, uncertainty = 0.5 %; N2

55, AAD = 8.48 %; O2
55, AAD = 10.2 % ; CH4

57, 
uncertainty not reported.

Phonons and self‑diffusion
In pursuing our objective of developing a picture of single molecule dynamics, within the framework of Lan-
gevin’s equation (5), we confront two additional, connected questions: a) What is the physical origin of the ran-
dom force. FR(t) ? Typically, FR(t) is treated as a statistical entity, endowed with physically reasonable statistical 
properties35,36. In liquid-state dynamics problems, this mathematical approach reflects our poor physical under-
standing of FR(t). b) What is the origin of self-diffusion, i.e., the random, thermally-driven motion of individual 
molecules though a liquid? Since FR(t) drives self-diffusion, answering either question offers insight into both.

There are two significant experimental clues: a) A series of experiments, carried out in the 1970’s38, measured 
the self-diffusion coefficient, Ds = Ds(T , P), in liquid Ar, Kr, and Xe, over a range of temperatures and a series 
of fixed pressures, and lead to a (dimensionless) correlation of the following form:

where D∗
s = Ds/

√

ǫσ 2/M, T∗ = T/(ǫ/kB), and P∗ = P/
(

ǫ/σ 3
)

. b) More recently, Bolmatov, Brazhkin and 
Trachenko39,40 presented strong evidence that temperature-dependent specific heats, in a large family of liquids, 
reflect existence of dominant, solid-state-like, equilibrium phonon modes.

Consider the solid-like dynamics of N-molecule liquid-state systems, over time scales ranging from the 
Frenkel to the dispersion scales, τF = 2π/ωF = O

(

10−14 s
)

 to τd = 2π/ωd = O
(

10−16 s
)

. Using a normal mode 
analysis - as in solid-state systems - under the assumption that individual molecular oscillations remain small 
enough to approximate intermolecular potentials as quadratic in the oscillation amplitude, 3N independent, 
vibrational, i.e., phonon modes are determined. The principal limitation of this model centers on ignoring the 
random hops of individual molecules. However, based on two separate arguments and results presented below, 

(15)D∗
s

(

T∗, P∗
)

= 1.1 exp
(

0.16P∗
)

exp

[

−
2.39+ 0.23P∗

T∗

]

Figure 2.   Temperature-dependent liquid viscosities for liquid N2, O2, and CH4. Notes (a) Experimental 
viscosity for specie κ is nondimensionalized using the viscosity scale µscale,κ =

√
Mκǫmin,κσ

2
min,κ , where 

ǫmin,κ , is the minimum Lennard-Jones potential, σmin,κ , is the molecular separation at which the potential is 
minimized, and Mκ is the molecular mass. Likewise, nondimensional experimental temperatures are scaled 
using Tscale,κ = ǫmin,κ/kB, where kB is Boltzmann’s constant. (b) The minimum temperature, Tmin,κ , at which 
each specie viscosity was measured corresponds approximately to the melting temperature (at atmospheric 
pressure) for that specie. c) The maximum measurement temperature for each specie, Tmax,κ , in all six cases, 
exceeds the specie’s atmospheric boiling point. Thus, the viscosities shown exceed the range of temperatures over 
which each specie is in the liquid state. Sources for the experimental viscosity data shown are as follows: N2

55; O2
55. For a discussion of estimated experimental uncertainties, please see the text.
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it appears that molecular hopping, over the spectral range ωF < ω < ωd , is limited to a narrow, low-frequency 
band of frequencies near the solid state limit: ω ≈ ωF .

On time scales on the order of, and shorter than τF , and in the absence of single-molecule-scale external 
perturbations - like those produced by short wavelength neutron scattering beams - individual nuclei undergo 
small displacements, on the order of a small fraction of σ . Under these conditions, and in terms of the Langevin 
model—see Table 2—the friction force can be neglected and the dynamics of individual molecules modeled using:

This equation states that on these time scales, individual molecules are subject to the summed effect of all phonon 
modes extant over the spectrum, ωF � ω � ωd . Specifically, the phonon mode having frequency ωi , induces an 
instantaneous nuclear velocity ṽi(τ ,ωi), which, in turn, produces a nuclear displacement - over the small time 
interval [0, t] - of �xi(τ ,ωi) =

∫ t
0 ṽi(τ ,ωi)dτ . Since phonon modes are independent, the small displacements, 

�xi(τ ,ωi), are likewise. Thus, since Mω2
i �xi(t) corresponds to the ith instantaneous spring force on the molecule, 

the sum of the random phonon-induced forces corresponds to the right side of (16).

Derivation of the self‑diffusion coefficient, D
s
.  From Note f) in the final section, on the solid-state-

like time scale, τd � t � τF , the equation describing nuclear motion, driven by the jth phonon mode, is given by:

Solving this leads to

Thus, the instantaneous velocity of the nucleus corresponds to the superposition of phonon-induced velocity 
contributions:

so that the dot product, v(t) · v(0), is given by:

Due to the independence of phonon modes, and in light of (18),

where ṽ2j
(

0;ωj

)

= ṽj
(

0,ωj

)

· ṽj
(

0,ωj

)

.
The self-diffusion coefficient, Ds , is given by the integrated velocity autocorrelation function:

or

Integrating then gives:

In order to evaluate the equilibrium average: (i) recall that within a given volume, V,  the average number of 
phonons having frequency ω is given by58,59

(ii) at any location in V,  assume that the wave vector associated with each mode, over the ensemble, is isotropi-
cally oriented, and (iii) due to the nominally continuous distribution of modes, move to a continuum represen-
tation of the average in (24):

(16)M
dv

dt
= −M

∑

i=1

ω2
i

∫ t

0
ṽi(t, τ)dτ

(17)
dṽj

(

t;ωj

)

dt
= −ω2

j

∫ t

0
ṽj
(

t ′;ωj

)

dt′ ≈ −ω2
j ṽj

(

t;ωj

)

t

(18)ṽj
(

t;ωj

)

= ṽj
(

0;ωj

)

exp

[

−ω2
j t

2

2

]

(19)v(t) =
∑

j

ṽj
(

t,ωj

)

(20)v(t) · v(0) =
∑

j

ṽj
(

t,ωj

)

·
∑

i

ṽi(0,ωi)

(21)�v(t) · v(0)� = �
∑

j

ṽ2j
(

0;ωj

)

exp

[

−ω2
j t

2

2

]

�

(22)Ds =
∫ ∞

0
�v(t) · v(0)� dt

(23)Ds =
∫ ∞

0

〈

∑

j

ṽ2j
(

0;ωj

)

exp

[

−ω2
j t

2

2

]

〉

dt

(24)Ds =
√

π

2

〈

∑

j

1

ωj
ṽ2j
(

0;ωj

)

〉

(25)�nω� =
1

expβℏω − 1
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where g(ω) is the density of modes driving self-diffusion. Finally, in order to arrive at a theoretical Ds having the 
same generic structure as the empirical Ds in (15), we assume that the density of modes driving self-diffusion is 
clustered around a critical frequency, ωc :

As described below, this assumption leads to a detailed, physically consistent explanation of phonon-driven 
self-diffusion in simple, nonpolar, nonmetallic liquids.

Using (27) in (26), approximating expβℏω − 1 as expβℏω, and nondimensionalizing using 
D∗
s = Ds/

√

ǫσ 2/M, T∗ = T/(ǫ/kB), and P∗ = P/
(

ǫ/σ 3
)

, finally leads to:

where α denotes either Ar, Kr, or Xe, and where two undetermined, pressure-dependent parameters, �ṽ2(0,ωc)� 
and ωc,α , appear. The first,

is the phonon-induced, ensemble averaged, pressure-dependent, squared velocity of the molecule, evaluated at 
the critical phonon frequency,

where ωc is the frequency that induces significant, single-atom-scale, random jumps, i.e., self-diffusion. The 
physical meaning of these parameters is explored in the next section. Note, approximating expβℏω − 1 as 
expβℏω, - again, introduced in order to arrive at a theoretical Ds having the same form as (15) - is based on the 
fact that, in liquid Ar, Kr, and Xe, expβℏω = O(10).

Phonon‑induced hopping speeds and critical frequencies; comparisons with experimental 
self‑diffusion coefficients.  In order to determine �ṽ2c,α� and ωc,α , we use the experimental correlation38 
(15), leading to

and

Comparisons of temperature- and pressure-dependent self-diffusion coefficients, D∗
s (T

∗, P∗), predicted by the 
phonon-based model, (28), with experimental measurements38 in liquid Ar, Kr, and Xe, are shown in Figs. 3, 4, 
and 5. Pressure-dependent magnitudes of the critical phonon frequency, ωc,α , driving self-diffusion, and the root 
mean square atomic speed, 

√

�ṽ2c,α(P∗)�, induced by these critical phonons, are listed in Table 1. Note that the 
slight apparent offset between the theoretical correlations and measured self-diffusion coefficients, observed at 
P∗ = 0.86, in Figs. 4 and 5, reflects nondimenisonalization of P,  T,  and Ds , by the same set of experimental ǫ′s 
and σ ′s41 used to nondimensionalize temperatures and viscosities in Figs. 1 and 2. See38 for references to the 
sources of the ǫ′s and σ ′s used in their study, and note that ca. 1962, variations in experimentally observed 
magnitudes of these parameters was on the order of 3 %38.

In the next section, we present an alternative derivation of the self-diffusion coefficient which again assumes 
that phonons underlie self-diffusion, but which models the high frequency liquid state, ωF � ω � ωd , as a bond-
free Einstein solid in which all nuclei vibrate - in cages of surrounding molecules—at or near a fixed (Einstein) 
frequency, �o. This argument leads to a D∗

s , (40), having the same generic form as (28), but derived from a 
significantly different physical viewpoint.

As a preliminary consistency check on the general picture of phonon-driven self-diffusion, leading to the 
semi-empirical expressions for the characteristic hopping frequency, ωc,α , and speed of hopping molecules in 
�ṽ2c,α�, (31) and (32), respectively, we highlight the following points:

(a) For small to moderate reduced pressures, P∗ = O(1), (32) leads to the following approximate equality:

where Dso,α is the scale of the self-diffusion coefficient. By contrast, as a check on the steps leading from inser-
tion of the integrated single molecule dynamics equation, (16), to the expression for Ds , written in the form:

(26)Ds =
1

3

√

π

2

∫ ωd

ωF

g(ω)

expβℏω − 1

ṽ2(0;ω)
ω

dω

(27)g(ω) = δ(ω − ωc)

(28)D∗
s,α

(

T∗, P∗
)

=
�ṽ2c,α�

√
π/2

ωc,α

(

ǫασ 2
α

Mα

)1/2
exp

[

−
ℏωc,α/ǫα

T∗
α

]

(29)�ṽ2c,α� = �ṽ2
(

0,ωc; P∗
)

�

(30)ωc,α = ωc,α

(

P∗
)

(31)ωc,α

(

P∗
)

=
(

2.39+ 0.23P∗
)

ǫα/ℏ

(32)�ṽ2c,α
(

P∗
)

� = 1.1 · ωc,α

(

ǫασ
2
α

Mα

)1/2
√

2/π exp
(

0.16 · P∗
)

(33)
�ṽ2c,α�
ωc,α

≈
(

ǫασ
2
α

Mα

)1/2
(

= Dso,α

)
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the left side of (33) can be obtained by starting with the definition, Ds,α =
∫∞
0 �v

(

t ′
)

· v(0)�dt′, and replac-
ing the upper limit with the characteristic time scale for single-molecule hops, τhop,α = ω−1

c,α , where the lat-
ter captures the assumed delta-function density of hop-inducing phonons near ωc,α , (27). This leads to 
Ds,α = �v(0) · v(0)� · ω−1

c,α = �ṽ2c,α� · ω−1
c,α .

(b) For all three liquids, Ar, Kr and Xe, estimated critical phonon frequencies, ωc,α—which we interpret as 
the characteristic hopping frequency—lie well within the range of frequencies, ωd,α > ωc,α > ωF,α , where these 
liquids maintain solid-like properties40. Estimated ωc,α

′s are approximately six times higher than estimated 

(34)Ds =
∫ ∞

0

[

∫ ωD

ωc

g(ω)
(

expβℏω − 1
) f (ω)dω

]

dt

Figure 3.   Temperature-dependent self-diffusion coefficient of liquid argon. Over the spectrum of frequencies 
available to a liquid state system, 0 ≤ ω � ωd , the phonon self-diffusion model: (i) idealizes the band from the 
Frenkel frequency, ωF = O

(

1014 s−1
)

, to the dispersion frequency, ωd = O
(

1016 s−1
)

, as corresponding to 
solid-state-like dynamics, (ii) assumes that on ωF � ω � ωd , individual molecules undergo small amplitude, 
harmonic vibrations about fixed positions, and (iii) thus allows a normal mode analysis of the solid-like 
dynamics. In order to capture the observed temperature dependence of D∗

s
38, it is necessary to assume that the 

band of phonon frequencies driving self-diffusive, single molecule random hops is concentrated near the low 
end of the solid state spectrum, ω ≈ ωF , idealized as a delta function in (27). The nondimensional definition of 
D∗
s  is given following (15). The experimental self-diffusion data was reported in38; experimental uncertainty was 

estimated to be less than 5 %38,61.

Figure 4.   Temperature-dependent self-diffusion coefficient of liquid krypton. See the caption to Fig. 3 for 
a description of the phonon model of self-diffusion. The experimental self-diffusion data was reported in38; 
experimental uncertainty was estimated to be less than 5 %38,61.
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Frenkel frequencies39,40, ωc,α ≈ 6ωF,α = 12πG∞,α/µα , and approximately two orders of magnitude smaller 
than characteristic dispersion frequencies, ωd,α , where G∞,α and να are, respectively, the high-frequency shear 
modulus22,39,40 and dynamic viscosity of specie α, and where magnitudes of G∞,α are obtained from39, and mag-
nitudes of να are given in Supplement 4.

(c) Magnitudes of molecular hopping speeds, 
√

�ṽ2c,α�, exceed, by roughly a factor of two, both the longitudinal 
liquid-state sound speed60, aliq =

√
K/ρ, and the slightly faster longitudinal solid-state sound speed, 

asolid =
√

a2L + 4/3aS , where K is the bulk modulus and aS =
√
G∞/ρ  is the shear (transverse) wave speed. 

Thus, average atomic hopping speeds are well in excess of characteristic liquid- and solid-state sound speeds. 
Equivalently, from (31), the hop-inducing phonon energy, ℏωc,α(P

∗), is approximately twice the intermolecular 
energy scale, ǫα , and increases (linearly) with pressure.

A second picture of self‑diffusion: the high‑frequency liquid state corresponds to a bond‑free 
Einstein solid.  The argument in the two previous sections leads to semi-empirical expressions for a charac-
teristic hopping frequency, ωc,α , and the speed of hopping molecules in �ṽ2c,α�, (31) and (32). In order to reinforce 
and broaden this argument, we outline a second derivation of Ds that again assumes that self-diffusion is driven 
by liquid-state phonon modes. The second argument leads to an alternative, but not inconsistent picture of 
self-diffusion: (i) High frequency molecular dynamics in nonpolar liquids, over ωF � ω � ωd , can be modeled 
as those in a bond-free Einstein solid, in which each molecule vibrates as an independent oscillator, trapped in 
a cage of surrounding, nominally fixed molecules62. (ii) As described below, self-diffusive hops of individual, 
initially trapped molecules takes place when the molecule is pushed sufficiently far into a short-lived repulsive 
state with one of its neighbors.

Four observations provide the basis for this second picture. First, the velocity autocorrelation function (VACF) 
in Lennard-Jones liquids, e.g., noble liquids, is largely determined by the repulsive part of the LJ potential63. 

Figure 5.   Self-diffusion coefficient for liquid Xenon. See the caption to Fig. 3 for a description of the phonon 
model of self-diffusion. The experimental self-diffusion data was reported in38; experimental uncertainty was 
estimated to be less than 5 %38,61.

Table 1.   According to the proposed model of phonon-driven self-diffusion, over the portion of the 
frequency spectrum where liquid dynamics are solid-like, ωF � ω � ωd , the instantaneous velocity of any 
given nucleus is determined by superposition of 3N independent, phonon-induced velocity contributions: 
v(t) =

∑

j ṽj

(

t,ωj

)

. Based on this correspondence and the assumption, (27), that self-diffusive hops are 
produced by a narrow band of phonon modes centered near a critical frequency, ωc , we identify 

√

〈v2c 〉 as the 
hopping speed. NM = not measured.

Phonon Induced Hopping Speed and Critical Frequency

Reduced Pressure P*=0.18 P*=0.86 P*=2.4 P*=3.15

Specie
√

〈v2c 〉 ωc × 1013
√

〈v2c 〉 ωc × 1013
√

v2c ωc × 1013
√

v2c ωc × 1013

(m/s) s−1 (m/s) s−1 (m/s) s−1 (m/s) s−1

Ar 1340 3.70 1470 3.94 1780 4.48 1950 4.74

Kr 1660 6.06 1813 6.45 NM NM

Xe 1814 7.30 1980 7.77 NM NM
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Second, consistent with the fact that repulsive states are short-lived, the short time scale normalized VACF for 
liquid argon, 0 ≤ t � τc , is well-captured by a quadratic short-time expansion22,64:

where

is the liquid-state Einstein frequency, and where ψ(t) = �v(t) · v(0)�[�v(0) · v(0)�]−1. Third, over the liquid-state 
frequency spectrum, 0 ≤ ω � ωF , �o can be interpreted as the characteristic oscillation frequency of individual 
liquid state molecules, trapped in a cage of surrounding molecules, all held in their equilibrium positions34. 
Importantly, while characteristic �′

os have been calculated in Lennard-Jones liquids30, these assume Maxwell-
Boltzmann (MB) (kinetic) energy distributions, appropriate to the liquid state portion of the frequency spectrum. 
Apparently, similar calculations have not been reported over the solid state end of the spectrum, ωd � ω � ωF , 
where Bose-Einstein statistics apply. Significantly, as shown immediately below, use of the liquid-appropriate 
MB distribution in evaluating the averages in (36) leads to incorrect temperature scaling in Ds , whereas the 
solid-appropriate Bose-Einstein (BE) distribution provides the correct scaling. Fourth, assuming that wave 
speeds, vi = ωi/ki , i = 1, 2, . . . , 3N , of the 3N independent phonon modes are of the order of the longitudinal 
liquid-state or solid-state sound speed, aliq or asolid , respectively (where again, aliq ≈ asolid ), we find that over 
the spectrum of available solid-state-like phonon frequencies, ωF � ωi � ωd , phonon wavelengths, �i , are all 
shorter than approximately 2σ/3. Thus, in contrast to, e.g., crystalline solids, collective, multi-molecule oscil-
lations are nonexistent.

To begin the second derivation, truncate the expansion in (35) at the quadratic term, and approximate the 
quadratic as an exponential, 1− �2

opt
2

2! = exp
(

−�2
opt

2/2
)

, where �op denotes the Einstein frequency determined 
by use of the BE distribution in (36). In order to estimate the error in this approximation, first inspect approxi-
mate mean frequency-dependent phonon occupation numbers, �n(ω)� =

[

eℏω/kBT − 1
]−1 : Doing so, we find 

that at a characteristic temperature of order 102 K, �n(ωF)� ∼ 10−5, �n(10ωF)� ∼ 10−44, and 
�n(ωd)� ∼ �n

(

102ωF

)

� ∼ e−1000 → 0. Thus, consistent with the first argument leading to (28) above, where it is 
assumed that the portion of the phonon spectrum driving self-diffusion lies in the neighborhood of ωF , we 
assume that the solid state-like Einstein frequency, �op, is on the order of ωF . In turn, over phonon time scales, 
τd � t � τF , the relative error, 2�2

opt
2/4!, in replacing the quadratic in (35) with an exponential is, at most, on 

the order of 10 %.
Given the exponential approximation for the short-time VACF in (35), Ds can now be expressed as

Importantly, if we assume that liquid-state dynamics determines self-diffusion, then �v(0) · v(0)� = 3kbT/M, 
and, as noted in22 , �op ∝ T1/4; in this case, Ds ∝ T3/4, which is clearly inconsistent with the experimentally 
observed38 exponential dependence, Ds ∝ exp

(

−A2/T
)

, shown, for example, in (28) (where A2 is a positive 
real number). By contrast, as shown in the first argument leading to (28) above, solid-like phonon dynamics 
do provide the appropriate scaling. Thus, repeating the analysis from (17) to (21), and setting t = 0, we obtain

The fourth observation above, combined with the fact that βℏω is large over ωF � ω � ωd , suggests that the 
Einstein model of solid state phonons58,62 - which captures incoherent solid state atomic dynamics - is an appro-
priate model for liquid state phonons. Thus, in order to evaluate �v(0) · v(0)�, we repeat the integral in (26):

where now, the density of (short wavelength, non-collective) phonon states, g(ω), has the same mathematical 
definition, g(ω) = δ

(

ω −�op

)

, but a qualitatively distinct interpretation: Over the spectrum of exclusively short 
wavelength, non-collective phonon modes available to an N −molecule liquid state system, g(ω) captures an 
assumed, nominally fixed density of phonon modes driving self-diffusive hops of individual molecules. Assuming 
that the density of all phonon states - which encompasses the narrow band driving self-diffusion - is reasonably 
well modeled by the Debye model58, or more generally, by any other solid state phonon density model, then both 
interpretations of g(ω), here and above, are completely equivalent.

Again, since βℏω >> 1, we can drop the negative one in the denominator in (39), carry out the integral, insert 
the result in (37), highlight, based on the measurements in38, the temperature and pressure-dependence of Ds , 
and nondimenisionalize as in the first derivation, to obtain a second (dimensionless) version of Ds :

(35)ψ(t) = 1−
�2

ot
2

2!
+ O

(

t4
)

(36)�2
o =

�v̇(0) · v̇(0)�
�v(0) · v(0)�

(37)Ds = �v(0) · v(0)�
∫ ∞

0
exp

(

−�2
opt

2

2

)

dt =
√

π

2

1

�op
�v(0) · v(0)�

(38)�v(0) · v(0)� = �
∑

j

ṽ2j
(

0;ωj

)

�

(39)�v(0) · v(0)� =
∫ ωd

ωF

g(ω)

expβℏω − 1
ṽ2(0;ω) dω
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where the ’critical phonon frequency’, ωc , of phonon-driven molecular hopping, is now interpreted as the solid 
state (as opposed to liquid state) Einstein frequency, and where all other terms have the same definitions as before.

Importantly, using two physically distinct arguments, we have derived the same expression for the diffu-
sion coefficient, which, in both cases, has the appropriate exp

(

−A2/T
)

 temperature scaling, and which - as 
described above and below - provides a physically consistent picture of the molecular scale mechanisms driving 
self-diffusion.

Electron cloud compression, single molecule hopping, and shear‑induced viscosity 
generation
The argument leading to the theoretical expression for dynamic viscosity, (14), is built on the idea that, in non-
metallic, nonpolar liquids, polarizability - the susceptibility of a molecule’s electron cloud to distort under the 
action of an external electric field - plays a dominant role in determining the friction force acting on the molecule. 
Although not apparent in the arguments leading to theoretical self-diffusion coefficients in (28) and (40), the 
notion that electron cloud distortion also plays a dominant role here emerges from three observations. First, 
configuration-averaged instantaneous normal mode (INM) spectra in solid- and liquid-state systems show that, 
at any instant, a significant fraction of interacting molecular pairs in liquids are in a state of mutual repulsion; 
in corresponding solids, only a small fraction of pairs are in such states65. Second, as noted above, the VACF in 
Lennard-Jones, e.g., noble liquids, is largely determined by the repulsive part of the LJ potential63. Third, the argu-
ment leading to (40) exposes the notion that self-diffusive hops of single molecules are somehow connected to 
pre-hop vibration of the molecule, vibrating (at the solid-state Einstein frequency) within a cage of surrounding 
molecules. Together, these observations suggest that self-diffusive hops result from repulsion-inducing compres-
sion of both the trapped molecule’s electron cloud, as well as that of one or more of its neighbors. [Again, Note 
(i) in the final section indicates that pair-wise interactions are dominant.]

More generally, London dispersion forces comprise the only intermolecular force extant in non-metallic, 
nonpolar liquids, and these, in turn, are wholly determined by variations in polarizability41. Thus, building 
qualitative understanding of the essential connection between electron cloud distortion and single molecule 
viscous and self-diffusion forces represents an important task. Computational chemistry and biology66 offer 
a number of techniques for visualizing distortion and modification of electron distributions that accompany 
various intermolecular interactions67,68. Unfortunately, while dispersive interactions are ubiquitous and must 
be accommodated to accurately capture, e.g., solvation-induced changes in polyatomic molecular structure68, 
development of predictive dispersion interaction models remains an open problem68.

Visualization of electron cloud distortion accompanying self-diffusion and viscosity emergence in liquids, 
including that in nonmetallic, nonpolar liquids, apparently has not been undertaken. In order to build qualitative 
understanding of the essential connection between cloud distortion and these fundamental dynamical processes, 
we introduce two parameters, xdisp and xdiff , that respectively serve as rough indicators of the specie-dependent 
electron cloud distortions that accompany self-diffusion and emergence of viscosity.

Considering first electron cloud distortion associated with self-diffusion, we imagine a trapped molecule, 
vibrating at or near the solid-state Einstein frequency, �op(= ωc), in a cage of surrounding molecules. Again, 
as argued in the final section, Note i), on all time scales exceeding O(τd), pair-wise intermolecular colli-
sions dominate 3-body and higher-order collisions. Writing Shrodinger’s equation for the trapped molecule, 
iℏψ,t + ℏ

2∇2/(2M) = Vψ , estimating the scales of the two terms on the left side, where the time scale is deter-
mined by the Einstein (= the critical hopping) frequency, t ∼ �−1

op = ω−1
c , we find that the length scale on which 

quantum uncertainty effects are important, xQ = xDeBroglie ∼
√
ℏ/2Mω, is small relative to the molecular diam-

eter: σ : xQ/σ ∼ 10−2. Thus, at least in the vicinity of ω ∼ �op = ωc , nuclear motion is classical.
The apparent mechanism driving molecular hops is sketched in Fig. 6. Since nuclear motion on the τF time 

scale is classical, we can apply the classical version of conservation of energy to the interaction between a fixed 
target (cage) molecule, A , and a colliding (trapped, vibrating) molecule, B . On approach toward A , B is 
assumed to have sufficient (relative) kinetic energy and (relative) momentum to allow A and B to enter a repul-
sive state. Applying conservation of energy to B , from the instant when maximum electron cloud compression 
occurs - and the relative velocity of B is 0 - to the instant when the intermolecular separation, rAB , equals the 
LJ potential minimizing separation, σ̃ = 21/6σ , we obtain:

where the intermolecular potential is dominated by repulsion, and where the equation represents the ensemble 
average dynamics of A and B for a single collision. Using �v2i � = 0, as well as the relationship δσdiff ,1 = (σ̃ − rc)/2, 
then leads to an estimate for the fractional electron cloud compression, xdiff ,1, that produces single molecule hops:

Resolving the relative motion of A and B into normal and tangential directions, the minimum nuclear separa-
tion between A and B corresponds to rc , and δσdiff  represents the maximum inward displacement, in the normal 

(40)D∗
s,α

(

T∗, P∗
)

=
1

3

�ṽ2c,α�
√
π/2

�op,α

(

ǫασ 2
α

Mα

)1/2
exp

[

−
ℏ�op,α/ǫα

T∗
α

]

(41)
M

2

[

�v2c � − �v2i �
]

≈ −ǫ

∫ σ̃

rc

∂

∂r

(

σ̃

r

)12

dr

(42)xdiff ,1 =
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σ̃
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≈
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2
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2ǫ
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direction, of each colliding nucleus. See Fig. 6, D. Note, that while the LJ model is well-suited to noble liquids, 
other pair-wise potentials are available;69 highlights other possibilities, as well as limitations of the LJ model. 
Note too, in order to avoid over-estimates of 

√

〈v2c 〉 (by a factor of 
√
3), one-dimensional diffusion coefficients 

are used throughout. For simple isotropic liquids, these can be measured, for example, by measuring displace-
ments of isotopes in a given direction70.

Assuming the validity of the simple energy conservation argument leading to (42), a second estimate of δσdiff , 
representing a direct connection between self-diffusion and electron cloud compression, can be derived. First, 
as described above, evaluation of (34), leads to Ds,α = �v(0) · v(0)� · ω−1

c,α = �ṽ2c,α� · ω−1
c,α . Since again, Ds scales 

as 
√

ǫσ 2/M, , then �v2c � ∼
√

ǫσ 2/M,ωs . Using this approximation in (42), defining the characteristic frequency 
of collective, thermally-driven nuclear oscillations as ωth =

√

ǫ/
(

Mσ 2
)

, using the fact that, in liquid Ar, Kr, and 
Xe, ωth = O

(

1011s−1
)

, while ωc = O
(

1013 − 1014s−1
)

, and Taylor expanding the (·)−1/12 term in (42) for small 
ωth/ωc , we obtain a second estimate for, xdiff ,1, which we label as xdiff ,2 :

Estimated, pressure-dependent magnitudes of xdiff ,1 and xdiff ,2 for Liquid Ar, Kr and Xe, are plotted in Fig. 6. 
Both estimates assume fast, repulsion-driven, collisionless acceleration of a single hopping molecule, initially 
trapped and oscillating in a cage of surrounding molecules. However, while both estimates also connect 〈v2c 〉 to 
the characteristic Ds scale 

(

Ds ∼
√

ǫσ 2/M
)

, the second estimate alone incorporates the critical hopping fre-
quency, ωc . Thus, the consistency of both estimates lends support to the proposed picture of cloud-compression-
driven molecular hopping, as well as further support for the proposed general picture of phonon-driven self-
diffusion. Note that the approximate 10 % gap between compression estimates observed for Ar (for P∗ ≥ 0.86) 
apparently reflects use of differing magnitudes of ǫ, σ , and M,  in this article41 and in38. For example, depending 
on the technique used, empirical values of ǫ vary by approximately 7 %41 .

(43)xdiff ,2 ≈
1

2

[

1−
(

2ωth

ωc

)1/12

·
[

1+
1

12

(

2ωth

ωc

)]−1
]

Figure 6.   Two observations63,65 provide important clues concerning the mechanism driving self-diffusion in 
liquids: (i)65 shows that at any instant, a significant fraction of interacting molecular pairs in liquid Ar exist in a 
state of mutual repulsion, while in the corresponding solid, only a small fraction of pairs are in such states. (ii) 
The velocity autocorrelation function (VACF) in Lennard–Jones liquids, e.g., noble liquids, is largely determined 
by the repulsive part of the potential63. Viewed in terms of the proposed phonon models of self-diffusion, and 
given the dominance of pair-wise collisions, these observations suggest that the relatively large single-molecule 
kinetic energies required for hopping are supplied by collisional compression of adjacent electron clouds. 
Here, xdiff ,1,2 = δσdiff ,1,2/σ̃ , are estimated relative compressions of individual clouds, and σ̃ = 21/6σ is the 
intermolecular separation minimizing the LJ potential. See the text for derivations of xdiff ,1 and xdiff ,2, as well 
as a short discussion of the gap between compression estimates observed for Ar. In order to contrast liquid 
state phonon modes, whose wavelengths are all smaller than or approximately equal to 2σ/3, with collective, 
hydrodynamic modes that emerge on time scales exceeding τc = O

(

10−13 s
)

 [ where solid-like dynamics 
take place on τd = O

(

10−16 s
)

� t � τF = O
(

10−14 s
)

 ], (B) depicts a (short-wavelength, standing) sound 
wave (blue double arrow). Panel (C) depicts the jitter-like phonon oscillations that are superposed on slower 
hydrodynamic modes. Panel (D) depicts the electron cloud compression driving self-diffusion.
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Tangential electron cloud distortion and single‑ molecule‑scale viscosity emergence.  In liq-
uid state physics, the single-molecule-scale mechanisms that trigger emergence of viscosity and viscous/fric-
tional forces on individual molecules remains an open question. In this section and in the Supplement, focusing 
on nonpolar, nonmetallic liquids, we present evidence and arguments supporting the following hypotheses, each 
of which address this question. 

(a)	 Under the nonrestrictive condition where nonequilibrium microscale momentum currents are produced 
by continuum scale velocity gradients, viscosity emerges on single-molecule length scales.

(b)	 Under the same conditions, viscosity appears due to sustained tangential distortion of interacting electron 
clouds.

(c)	 Viscosity emerges on time scales intermediate between the dispersion time scale, τd = O
(

10−16s
)

, and the 
Frenkel scale, τF = O

(

10−14s
)

.

Considering hypothesis (a), we first show (Supplement 1) that the Navier–Stokes equations, describing the collec-
tive, ensemble average dynamics of N −molecule (Newtonian) fluid systems can be adapted to single-molecule-
scale (SMS) systems. This step provides the necessary theoretical framework for defining an SMS viscosity. Once 
this step is completed, we then show (Supplement 2)—here in preliminary fashion—that the Green–Kubo vis-
cosity relation22,33,35, applied to single-molecule-scale (ensemble average) variations in the transverse momentum 
current leads to a parametrically correct relationship between the transverse momentum current correlation 
function, 

〈

Pxy(0)Pxy(t)
〉

, and the dynamic viscosity:

where the meaning of all terms is given in Supplement 2. Together, these steps provide strong evidence that 
dynamic viscosity, at least in nonpolar liquids satisfying Newtonian constitutive relationships33,71, emerges, and 
can be defined on single molecule length scales.

The argument supporting hypothesis (b), proceeds as follows. Again, in nonpolar, non-metallic liquids, Lon-
don dispersion constitutes the only intermolecular force extant. While dispersion arises as a quantum mechanical 
perturbation to initially independent ground state wave functions41,44, as described above, London’s model can 
also be couched in terms of molecular polarizabilities, i.e., electron cloud distortions41,44. Importantly, this picture 
underlies the simple model used to derive theoretical viscosities, (14), above. Thus, in light of the estimates of 
electron cloud compression, xdiff ,1 and xdiff ,2 - which provide physically distinct, but self-consistent evidence of 
cloud-compression-induced self-diffusion—we hypothesize that tangential electron cloud distortion underlies 
the emergence of viscosity. A schematic representation of this hypothesis is shown in Fig. 7B–D.

As a rough quantitative test of this picture, we estimate relative electron cloud distortions, xdisp, induced 
by persistent nonequilibrium shear stress. Given that surrounding (bath) molecules exist in a state of near-
equilibrium, at temperature T and mean kinetic energy, 3kBT/2, we anticipate that relative tangential cloud 
distortions should be of the same order of magnitude as normal distortions, xdiff ,1 and xdiff ,2, estimated above. 
Thus, combining (8) and (11), we arrive at:

As shown in Fig. 7, estimated relative, shear-induced electron cloud distortion, for a number of noble and dia-
tomic liquids, are approximately of the same magnitude as xdiff ,1 and xdiff ,2. Dynamically, due to the cohesive 
nature of viscosity, shear-induced separation of interacting nuclear pairs, rAB , exceeds the potential-minimizing 
separation, 21/6σ . Finally, note that use of the definition of δσ , given by (11), means that we are approximating 
the set of level-dependent mean squared electron displacements, r2i , as r21 41; thus, plotted magnitudes of xdisp 
represent slight underestimates.

The argument supporting hypothesis c) is presented as Note b) in the final section. We note that derivation71 of 
the single-molecule-scale Stokes (viscous) drag force, D,  that appears in the modified Stoke’s–Einstein relation46, 
(4), requires use of the SMS Navier-Stokes equations derived in Supplement 1.

In closing this section, we remark that while computational techniques66,68,72,73 can be used to test the pro-
posed connections between normal and tangential electron cloud distortion and self-diffusion and viscosity 
emergence, we argue that simple, approximate models like those proposed here, are valuable in providing physical 
insight into the mechanisms that drive self-diffusion and viscosity emergence.

Time scale‑dependent models of single molecule dynamics
For nonpolar, spherical atomic liquids like Ar, Kr, and Xe, as well as nonspherical, nonpolar liquids like those 
examined in46, we propose that single molecule dynamics can be modeled on three distinct time scales: (a) 
over τd � t � τF , dynamics are solid-state-like and either dissipative or not—see below; (b) over τF � t � τc , 
dynamics are a mixture of solid- and fluid-like and again, either dissipative or not; and c) for t > τc , dynamics 
are dissipative and fluid-like. We denote these time scales, respectively, as the solid-like, transitional, and fluid-
like regimes.

For clarity, we tabulate in Table 2 the various forms that the single molecule dynamics equation can take. The 
following general points are highlighted:

(44)
∫ ∞

0

〈

Pxy(0)Pxy(t)
〉

dt ≈
µ2

δy2

〈

u21
(

δy, 0
)〉

∫ ∞

0
e−γ t′dt′ =

µ2

δy2
u20
γ

=
µ

3πσ 3
o c

2
oβ

(45)xdisp =
δσ

σ
≈

[

9

4

αao

n

]1/4

σ−1
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Figure 7.   Distortion of electron clouds appears to play a dominant role in both emergence of single-
molecule-scale viscosity and resistive viscous forces, as well as in repulsion-driven single molecule hopping. 
Intuitively, we anticipate that the magnitudes of cloud distortion associated with each process, δσdisp and δσdiff , 
respectively, should be roughly of the same magnitude. In order to test this idea, and as a consistency check 
on the proposed models of dispersion-induced viscosity generation and phonon-induced self-diffusion, we 
estimate viscosity-generating cloud distortion, δσdisp, using an expression equivalent to (8) for the polarization41: 
α = 4n�r21 �2/(9ao), where n is the number of electrons in the molecule, and 〈r21 〉/ is the mean squared collision-
induced displacement of any of the (indistinguishable) electrons occupying the first shell of the molecule. 
Labeling the quartic root of the latter as δσdisp, and identifying this as the characteristic tangential cloud 
distortion, we calculate the relative tangential distortion as: xdisp = δσdisp/σ . As shown in (A), outside of He 
and H2 - which, due to small masses, are apparently dominated by quantum collision dynamics - estimated 
tangential cloud distortions are approximately of the same magnitiude as those producing self-diffusion, 
Fig. 6. Thus, while cloud distortions are of comparable magnitude, the type of distortion, compressive versus 
shearing, engages repulsive versus attractive intermolecular forces. Plate (B) highlights the essential role of 
microscale (long-time-averaged) shear stresses in driving tangential cloud distortion and resulting viscosity 
generation. Plate (C) depicts liquid state molecules under local equilibrium conditions (sans phonon jitter). 
Nonequilibrium, shear-driven, tangential cloud distortion appears as small white areas at the edge of each 
molecule in Plate (D).

Table 2.   Situation- and time-scale-dependent force terms can be inserted into the generic Langevin equation, 
(46). Explanatory notes regarding each force term are given above as points (a) through (i).

Single molecule dynamics models

Time scale [Collective 
dynamics]

Dominant physics 
[Example] External force

Friction force 
(deterministic) Random force

τd � t � τF Phonons; low dissipation

[Elastic] [Continuum flow] N/A −3πσmµv(t) → 0 −M
∑

i=1 ω
2
i

∫

t

0
ṽi(t, τ)dτ

τd � t � τF Phonons; dissipation

[Viscoelastic] [Particle scattering] F(t) −
∫

t

0
κ
(

t − t
′)
v
(

t
′)
dt

′ −M
∑

i=1 ω
2
i

∫

t

0
ṽi(t, τ)dτ

τF � t � τc Phonons; low dissipation

[Transition] [Continuum flow] N/A −3πσmµv(t) → 0 See remark d)

τF � t � τc Phonons; dissipation

[Viscoelastic] [Particle scattering] F(t) −
∫

t

0
κ
(

t − t
′)
v
(

t
′)
dt

′ See remark d)

t � τc Brownian force; dissipation

[Fluid] [Continuum flow] N/A −3πσmµv(t) η̇(t)

t � τc Brownian force; dissipation

[Viscoelastic] [Particle scattering] F(t) −
∫

t

0
κ
(

t − t
′)
v
(

t
′)
dt

′ η̇(t)
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(a) Equation structure: The proposed equations are physically explicit versions of the memory-free and 
generalized Langevin equation22,33,35:

where the instantaneous molecular force is decomposed into a time-dependent external force, Fe(t), necessary 
for modeling, e.g., particle scattering problems, a deterministic friction force, Ff (t), either −

∫ t
0 κ

(

t − t ′
)

v
(

t ′
)

dt′ 
or −3πσmµv(t), and a random force, FR(t), either determined by the phonon field, M

∑

i=1 ω
2
i

∫ t
0 ṽi(t, τ)dτ , or 

by the thermal motion of surrounding molecules, η̇(t).
(b) Friction force: The set of equations contrasts the qualitatively distinct dynamics that exist under quiescent 

conditions, when the continuum-scale liquid flows or is stationary, versus the highly dynamic state extant when 
the target molecule interacts directly with, or lies near an externally introduced particle. In the first case, based 
on the observation that small molecules follow a slightly modified version of the Stokes-Einstein drag force 
law46, we assume that the friction force can be expressed as −3πσmµv(t), where again, σm is an effective, shape-
dependent molecular diameter. This assumption, in turn, assumes that the dynamic viscosity, µ, emerges on time 
scales that are long relative to the fast disperion time scale, τd , but short relative to the solid-liquid cross-over 
time scale, τF . Based on the observation that temperature-dependent viscosities are well-predicted by the above 
model incorporating fast-acting dispersion forces, this appears to be a reasonable assumption. Under conditions 
where, e.g., scattering particles interact with or near the target molecule, numerous experimental observations 
show that the friction force is history dependent20–22,33.

(c) Connecting the phonon-induced force to the Brownian force: Kubo’s analysis35 can be adapted to show 
explicitly how the phonon-induced force on τd � t � τF can be represented as a Brownian force on t � τc : i) 
Express the instantaneous phonon-induced force (in any of three orthogonal directions) as 
Fphonon(t) = M

∑n
i=1 ω

2
i �xi , where �xi(t) =

∫ t
0 ṽi(t, τ)dτ , is the nuclear displacement produced by phonon 

mode i,  and ωi the ith normal mode frequency; ii) recognize, by (normal mode) construction, that on τd � t � τF , 
all �x′is are zero-mean, independent random displacements; iii) define the sum of displacement variances as 
s2n =

∑n
i=1 σ

2
i , where σ 2

i = ��x2i � is the ith variance; iv) focusing on time scales on the order of τc and longer, 
define a random variable Yn(t) = Fphonon(t)/sn, where t = O(τc); v) allow n to become large, which corresponds 
to binning all of the random phonon-induced forces acting on τd � t � τF; vi) by the central limit theorem, the 
probability density for Yn(t) approaches a Gaussian density, p(Y(t)) → 1√

2π
exp −Y2

2 ; and vii) on t = O(τc), 
argue that phonon-induced force components (in each of three orthogonal directions) are delta-correlated, 
�Fphonon(t)Fphonon

(

t ′
)

� = F2oδ
(

t − t ′
)

, where F2o is the force intensity. In Table 2, this guassian, delta-correlated 
remnant of the phonon-induced force is labeled as η̇(t).

(d) The random force, FR(t) : For the solid-like regime, the arguments from the previous section provide, 
we believe, substantial support for expressing the random force as FR(t) = −M

∑

i=1 ω
2
i

∫ t
0 ṽi(t, τ)dτ . For the 

fluid-like regime, the fact that the modified Stokes-Einstein relation, (4) holds for a large family of molecules46, 
where again (4) is derivable from the memory-free Langevin equation (5)47, suggests that FR(t) = η̇(t). Proposing 
a reasonable form of FR(t) over the transition regime, τF � t � τc , remains problematic at this point, however. A 
mathematically simple assumption, which may not be physically valid, would model FR(t) as a linear superposi-
tion of −

∑

i=1 ω
2
i

∫ t
0 ṽi(t, τ)dτ and η̇(t). This is an open question, however.

(e) The external force: An external force term only appears for problems in which the spatial scale of the 
external agent, e.g., a scattering particle or a high-energy photon source (having wavelength on the order of σ or 
smaller), is on the order of the molecular diameter, σ . To account for such forces, a quantum mechanical model 
of the interaction is typically required; see, e.g.,20,21.

(f) Physical meaning of the phonon-induced force: Over the solid-state-like time scale, τd � t � τF , 
under conditions where molecule-scale external forcing is absent, the phonon field determines: (i) each 
molecule’s instantaneous velocity, v(t) =

∑

i ṽj
(

t,ωj

)

, as well as ii) the instantaneous random force, 
FR(t) = −M

∑

j ω
2
j �x̃j(t) = −M

∑

j ω
2
j

∫ t
0 ṽj

(

t ′,ωj

)

dt′. Thus, the dynamics of individual nuclei: i) can be 
decomposed into individual contributions produced by each phonon mode: M ˙̃

jv = −Mω2
j

∫ t
0 ṽj

(

t ′,ωj

)

dt′, or 
ii) taken as the resultant of these modes: Mv̇ = −M

∑

j ω
2
j

∫ t
0 ṽj

(

t ′,ωj

)

dt′, where time derivatives, denoted by 
dots, are taken with respect t,  on the solid state time scale.

(g) On the weak coupling between continuum scale flow and microscale dynamics: A scaling argument 
shows that only under extreme circumstances can continuum flow fields produce non-negligible microscale 
nonequilibrium mass, momentum and energy currents. Consider, for example, turbulent flow over a mirror-
smooth surface (having asperities on the order of, say, 10−9 m). Taking the ratio of the maximum continuum-
scale viscous shear stress, evaluated at the surface, τcont ≈ 0.02ρU2

∞Re
−1/4
δ

74, to the characteristic molecular-scale 
shear stress, τmolec ≈ 10µa/σ , leads to τcont/τmolec ∼ 0.002U∞Maσ , where Reδ = ρU∞δ/µ ∼ 1 is the Reynolds 
number associated with a turbulent boundary layer of thickness, δ, U∞ is the speed of the flow external to the 
boundary layer, and Ma = U∞/a, is the associated Mach number. Here, τmolec , which is determined by the trans-
verse momentum current22,35, is most easily estimated using the Stoke’s drag law, Fdrag ≈ 3πσµa71, where the 
molecular speed is approximated as the sound speed, a. Using the Mach number magnitude, Ma ∼ 0.3, separating 
nominally incompressible and compressible flow, leads to the condition: τcont ∼ τmolec when U∞σ/nu ∼ 103. 
Due the small magnitude of σ for small molecular species, it is found, for Ar, Kr, and Xe, that U∞ must be on the 
order of 106 m/s, or higher for continuum-scale dynamics to manifest itself in microscale dynamics.

(h) Development of short time scale collective dynamics models: Under the assumption that fast-acting 
dispersion forces mediate collective dynamics over the elastic, transition, and fluid-like regimes, sum rules20,22,33,35 
provide a powerful tool for developing hydrodynamic models appropriate to each time scale. Supplement 5 
illustrates using a simplified, i.e., non-viscoelastic Navier Stokes model of transition regime collective dynamics. 

(46)M
dv(t)

dt
= Fe(t)+ Ff (t)+ FR(t)
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The strategy consists of two steps: (1) propose a model of short-time scale (ensemble average) molecular hydro-
dynamics, and (2) constrain the model by satisfying sum rules.

(i) Dominance of pairwise interactions: In many single molecule dynamics problems, as well as in deriva-
tion of field-based continuum dynamics models31,33, it is important to have solid understanding of the relative 
importance of simultaneous multi-molecule collisions. At any instant, on any time scale exceeding τd , consider a 
target (nonpolar, liquid-state) molecule, A , surrounded by a set of neighboring molecules, B1,B2, . . . ,Bm. Since 
the weak dispersive potential, φ(ABi), that appears during collision of A and Bi , is small relative to the ground 
state energy, E(0)A + E

(0)
Bi

, of adjacent, but unperturbed A and Bi , the London collision model41,44 is linear and can 
be readily modified by superposition to account for n-body interactions in which A simultaneously experiences 
dispersive interactions with n neighboring molecules. Generalizing Hirschfelder41 by assuming a perturbed wave 
function that is the product of the n unperturbed, isolated wave functions for n colliding molecules, it is readily 
shown that the approximate, second-order, dispersive potential has the form,

where EI , an empirical constant, is on the order of the ionization energy, α is the polarizability, rAi is the inter-
nuclear distance between molecules A and Bi , and m = n− 1.

A ’simultaneous n-body collision’ takes place when the internuclear distances between A and n− 1 immedi-
ately adjacent molecules are all approximately equal to the minimum of these distances, rA1 ≈ rA2 ≈ ... ≈ rAimin . 
Writing rAj = rAimin +�rAj, forming the ratio rAj/rAimin , and Taylor expanding rAj, we see that for an n-body 
collision to occur - corresponding to n non-negligible contributions to φ(n)(rA, r2, . . . , rn−1) - all n− 1 molecules 
must remain within approximately 16% of the minimum separation, rAimin . Thus, while three-body collisions 
certainly take place, for example, due to this restrictive condition, pair-wise collisions dominate. Predicted 
dynamic viscosities above, which assume dominant pairwise collisions, are consistent with this simple argument.

Conclusions
Unraveling the dynamics of individual atoms and small molecules in liquids represents a centuries-old physics 
problem. While neutron and light-scattering experiments, as well as molecular dynamics simulations, instantane-
ous normal mode analyses, and molecular hydrodynamics expose and explain single-particle-scale and collective 
liquid-state dynamics, the descriptions are largely couched in terms of dynamical correlation functions. In an 
attempt to expose the essential dynamical elements that determine single molecule motion, at least in nonpolar, 
nonmetallic liquids, this paper presents physical arguments that suggest: (i) intermolecular dispersion forces 
and temperature-dependent electron screening determine viscosity, i.e., temperature-dependent intermolecular 
friction forces, and (ii) a narrow band of phonons, lying near the liquid-solid (Frenkel) transition frequency, 
drives the random molecular jumps constituting self-diffusion.

In mechanistic terms, we present preliminary evidence that, in simple liquids, both viscosity and single mol-
ecule viscous drag emerge due to small, collision-induced tangential distortions of individual electron clouds. 
By contrast, self-diffusional, single-molecule hops are produced by collision-induced compression of interacting 
molecular clouds; the latter mechanism pushes interacting molecular pairs into short-lived repulsive energy 
states.

We are hopeful that the preliminary picture of single molecule, liquid state dynamics proposed here promotes 
further progress in understanding this complex problem.
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