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Abstract: Adiponectin is an adipokine predominantly
produced by fat cells, circulates and exerts insulin-
sensitizing, cardioprotective and anti-inflammatory ef-
fects. Dysregulation of adiponectin and/or adiponectin
signaling is implicated in a number of metabolic diseases
such as obesity, insulin resistance, diabetes, and cardio-
vascular diseases. However, while the insulin-sensitizing
and cardioprotective effects of adiponectin have been
widely appreciated in the field, the obesogenic and anti-
inflammatory effects of adiponectin are still of much
debate. Understanding the physiological function of adi-
ponectin is critical for adiponectin-based therapeutics for
the treatment of metabolic diseases.

Keywords: adipogenesis; adiponectin; inflammation; in-
sulin sensitivity; obesity.

Introduction

Adipose tissue plays a central role in the maintenance of
whole-body energy and metabolic homeostasis at both
organ and system levels [1], by serving as a passive fuel
reservoir, an endocrine organ and thermogenic effector.
Adiponectin, the most representative adipokine, is a
30 kDa protein predominantly secreted by adipocytes and
targets a variety of cell types or tissue/organs by binding to
its own receptors, protecting against obesity [2–5], insulin

resistance [6, 7], and inflammation-related diseases [5, 8].
As a circulating protein, adiponectin accumulates in heart,
vasculature, and skeletal muscles through interaction with
T-cadherin, which is essential for adiponectin-mediated
cardiovascular protection [9–11]. Since obesity increases
the risk of developing serious health problems including
metabolic diseases [12, 13], there is an urgent need for the
advanced understanding of the physiological function of
adiponectin for the therapeutic purpose [14].

Despite well-accepted beneficial effects in meta-
bolism, adiponectin-based treatment is still challenging
given its high abundance in circulation and the potential
adverse effects, including increased food intake, elevated
adipogenesis, decreased energy expenditure, and sub-
stantial adiposity [15–18].

In this review, we have discussed the physiological
roles of adiponectin, not only its beneficial properties but
also the unfavorable effects related to its therapeutic
potential for the treatment of obesity and its related dis-
eases. We also summarized the advances in the under-
standing of adiponectin action in the regulation of
metabolism and inflammation, highlighting the obeso-
genic and pro-inflammatory effects of adiponectin.

Adiponectin and adiponectin
signaling

Adiponectin was discovered as an adipocyte-enriched
protein highly induced during adipogenesis [2, 3, 5, 19]
and cloned in 1995 [5]. The full-length adiponectin protein
contains a signal peptide, a variable region, a collagen-like
domain, and a C-terminal globular domain [20, 21].
Adiponectin circulates in multiple forms: low-molecular
weight (LMW) trimers, medium-molecular weight
(MMW) hexamers, and high-molecular weight (HMW)
multimers [22–25], and globular adiponectin (gAd)which is
a proteolytic adiponectin globular domain at very low
concentrations in human plasma [26, 27]. Each form exerts
distinct biological effects due to their divergent affinity to
their receptors and various cellular targets [20, 28–30]. The
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HMW form presents most biological effects of
adiponectin [24, 25, 30–32]. However, it is still a challenge
to measure the levels of individual isoform of adiponectin
and enrich a particular isoform in vivo [33].

The pleiotropic actions of adiponectin are mediated by
its receptors including AdipoRs (AdipoR1 and AdipoR2) and
T-cadherin [34]. Adiponectin receptors present in metaboli-
cally active cell types such as adipocytes, hepatocytes, and
muscle cells as well as immune cells and neuronal cells in
the different brain regions [18, 35–38]. AdipoR1 is abun-
dantly expressed in skeletal muscle, while AdipoR2 is
enriched in liver. Adiponectin binds to AdipoRs and exerts
antidiabetic effect through activation of two critical down-
stream factors: 5′-adenosine monophosphate-activated pro-
tein kinase (AMPK) and peroxisome proliferator-activated
receptor α (PPARα) [37, 39–41]. APPL1 binds to AdipoRs and
mediates adiponectin signaling and its downstream events,
promoting glucose uptake and insulin receptor substrate-1
(IRS-1) action to sensitize insulin signaling [42, 43]. Adipo-
nectin homolog osmotin activates AdipoR1/R2 to suppress
abdominal fat accumulation in mice on high-fat
diet (HFD) [44, 45], and prevents obesity-caused
NAFLD by upregulating AdipoRs/APPL1/PPAR-α/
AMPK/SIRT1 pathway [46]. The additional downstream path-
ways of adiponectin, including MAPK, mTOR, STAT3, PI3K/
Akt and NF-κB pathways, are tissue- and cell-specific [47–50].
However, while the recombinant globular adiponectin has
been wide used to study its action in various cells, HMW
multimer of adiponectin has been considered as most biolog-
ically active form [24, 25, 30–32]. Whereas the mechanism
underlying thebindingofHMWadiponectin to its receptor and
subsequent signaling transduction are poorly defined. One of
existingchallenge is thatHMWform16–18mer isover400kDa,
about 10 times larger than the receptors themselves. The
structural analysis using current state-of-the-art-technology
may provide information on how HMWmultimer works.

Furthermore, ceramidase-activating effect of AdipoRs is
critical for the clearance of cellular ceramides which was
considered an important mechanism by which adiponectin
improves glucose and lipid metabolism [51–56]. AdipoRs
are also required for adiponectin to suppress macrophage
lipid accumulation and foam cell formation via an APPL1-
dependent mechanism [57]. In an AdipoR2-dependent
manner, adiponectin promotes M2 macrophage polariza-
tion [58, 59], whereas the anti-inflammatory effects of gAd in
brain are mediated by AdipoR1 to limit the M1 activation
state of microglia [60]. Moreover, Smad1/5/8 acts as a novel
intracellular partner of adiponectin/AdipoR1 signaling in
osteoblasts and mesenchymal progenitor cells that is par-
allel to APPL1 [61]. In addition, the physiological role
of AdipoRs beyond adiponectin signaling have been

recognized. For instance, the insulin sensitiving effects of
adiponectin are partiallymediated by AdipoR1 andAdipoR2
in mice [34, 62–64]. In adiponectin deficient mice, piogli-
tazone is able to improve insulin sensitivity by stimulationof
AdipoR2 pathway in skeletal muscle [65].

T-cadherin is a glycosylphosphatidylinositol-anchored
(GPI-anchored) cadherin without the intracellular or trans-
membrane domain required for intracellular signaling. It
selectively binds to MMW and HMW adiponectin and im-
pacts circulating adiponectin by regulating its binding to
cardiovascular tissues, and adiponectin positively regulates
T-cadherin abundance on endothelial cells via attenuating
phosphatidylinositol-specific phospholipase C-mediated
T-cadherin release from the cell surface [66, 67]. Further-
more, adiponectin was reported to be endocytosed into
multivesicular bodies with T-cadherin and enhances exo-
some biogenesis and release dependently on T-cadherin,
leading to reduction of cellular ceramides in endothelial
cells [68]. Single nucleotide polymorphism of T-cadherin
strongly correlates with plasma adiponectin level and car-
diovascular diseases in human [69–74]. It has been
demonstrated that adiponectin/T-cadherin axis protects
against vascular injury related to atherosclerosis and car-
diac stress [9, 10, 75]. Besides, T-cadherin is also required for
tethering of adiponectin to M2 macrophages during cold-
induced browning in subcutaneous white adipose tissue
(WAT) [76]. Later, adiponectin was shown to be accumu-
lated in CD63-positive endosomes of regeneratingmyotubes
and promote muscle regeneration in a T-cadherin-depen-
dent manner [77]. This ability of T-cadherin in adiponectin
sequestration to cell surface is responsible for adiponectin
signal transduction pathway, and could be disrupted by an
increased specific phospholipase D (GPI-PLD)-mediated
cleavage of T-cadherin during diet-induced obesity or in-
sulin resistance [78], ultimately leading to a state of adipo-
nectin resistance inmetabolic diseases [79]. Taken together,
these findings supported adiponectin/T-cadherin interac-
tion interprets the cardioprotective effects of adiponectin.

Insulin sensitizing effect of
adiponectin

Adiponectin is an insulin-sensitizing hormone. The circu-
lating levels of adiponectin are inversely correlated with
obesity, and such downregulation has been considered as
amechanismmediating obesity-induced insulin resistance
and diabetes in mice and humans [41, 80–84]. Congenital
deletion of adiponectin led to insulin resistance in mice
fed a high calorie diet [40, 85], and acute depletion of
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adiponectin resulted in more severe systemic insulin
resistance, hyperlipidemia and dramatic reduction in sur-
vival rate in obese mice [86]. Conversely, enhanced adi-
ponectin expression improves insulin resistance and other
metabolic parameters in ob/obmice [16]. Administration of
adiponectin or pharmaceutically enhancing adiponectin
signaling ameliorates insulin resistance and hyperglyce-
mia in several mouse models [16, 34, 39, 40, 65, 84, 87, 88].
Furthermore, adiponectin has been shown to mediate in-
sulin sensitizing effects of FGF21 on maintaining a
“healthy-obese” status, a factor that contributes to pro-
longed healthspan and lifespan [89–91].

Suppressing gluconeogenesis has been suggested as a
primary mechanism by which adiponetin enhances insulin
sensitivity in liver [92, 93]. In addition, other mechanisms
includestimulating fatty acidoxidationviaAdipoRs-mediated
activation of AMPK and PPAR-α in the liver and skeletal
muscle [7, 34, 84, 94, 95], and suppressing hepatic SREBP1c,
the master regulator in fatty acid synthesis, through the Adi-
poR1/LKB1/AMPK pathway [96]. Moreover, adiponectin via
signal transducer and activator of transcription-3 (STAT3)
upregulates hepatic IRS-2 and enhances insulin signaling,
which is linked to adiponectin-increased NFκB activity and
subsequently macrophage IL-6 production [97]. Ceramides-
lowing effect of adiponectin and the ceramidase activity of
AdipoRs provide new insight into insulin sensitizing effects of
adiponectin [52, 55, 56]. Adiponectin stimulates the ceram-
idase activity of AdipoRs to improve insulin action by
disruption of ceramide accumulation and decrease apoptosis
via formation of sphingosine-1-phosphate (S1P) which does
not require AMPK [53]. Overexpression of AdipoRs in adipo-
cyteor hepatocyte enhances ceramidaseactivity and results in
adiponectin-dependent improvement of insulin sensitivity
and hepatic steatosis [54]. In line with this, an FGF21--
adiponectin-ceramide axis was shown to exert its glycemic
and insulin sensitizing effects in mice [89]. The adiponectin-
increased S1P secretion attenuated insulin resistance in HFD
mice or palmitate-induced cardiomyocyte lipotoxicity model,
another mechanism mediating insulin sensitizing and car-
dioprotective effects of adiponectin [51]. Contradictory to this,
a recent study showed that the total ceramide contentmaynot
reflect the insulin-sensitizing effect of adiponectin in liver and
muscle under obesity conditions [98].

More recently, skeletal muscle has been identified as a
source of adiponectin [99, 100], fueling interest in the role of
adiponectin as both a circulating adipokine and a locally
expressed paracrine/autocrine factor [101, 102]. Within skel-
etal muscle, adiponectin stimulates phosphorylation of IRS1
at Ser 636/639 and activates of Akt by inhibiting mTOR
signaling [100]. It also improves insulin signal transduction
by decreasing fatty-acid transporter CD36 and subsequent

triglyceride accumulation in muscle and liver [84]. In addi-
tion, adiponectin regulates mitochondrial biogenesis and
insulin sensitivity via AdipoR1-mediated CaMKKβ/AMPK/
SIRT1 pathway to induce PGC-1α deacetylation and further
regulating the expression of mitochondrial-derived peptide
MOTS-c [103, 104]. What’s more, adiponectin activates skel-
etalmuscle autophagy and reduces oxidative stress bywhich
enhances insulin sensitivity in HFD-feeding mice [105, 106].
Along this line, suppressing endoplasmic reticulum
(ER) stress mediates adiponectin-induced autophagy in
skeletal muscle cells [107]. Consistently, syringin improve
HFD-induced insulin resistance through adiponectin-
mediated attenuation of ER stress in skeletal muscle [108].
Interestingly, adiponectin and its signaling are improved in
skeletal muscle and may explain the beneficial effects of
exercise [109–112]. Characterization of the role of exercise-
activated adiponectin signaling in muscle or system meta-
bolism may provide mechanistic insights into how exercise
promotes metabolic health and improves physical fitness.

By targeting adipocytes, adipoenctin induces glucose
transporter 4 (GLUT4) gene expression and improve insulin
sensitivity [15]. Consistently, HMW adiponectin has been
reported to enhance insulin action by regulation of GLUT4
in 3T3-L1 adipocytes [113]. Overexpression of AdipoRs in
adipocytes suppresses the levels of ceramide in both fat
and liver and improves whole-body insulin sensitivity [54].
To date, multiple mechanisms have been suggested to
contribute to the insulin sensitizing effects of adiponectin
(Figure 1), which are critical for the development of
adiponectin-based therapeutic strategies.

Adiponectin serves as a starvation
mediator

Adiponectin is induced by fasting [114] and calorie re-
striction [83, 115, 116], and elevated adiponectin
by intermittent fasting (IF) [117] may mediate the bene-
ficial effects of IF on cardioprotection and metabolic
stress [118–120]. In agreement with this, circulating levels of
adiponectin were markedly increased in patients with
anorexia nervosa [121]. Nutritional stress also explains the
increased adiponectin levels in the circulation of heart failure
patients [122]. Consistent with this, the inducing effects on
adiponectin/adiponectin signaling components in muscle,
adipose and brain are also applied under nutritional stress
conditions [123–125], suggesting the involvement of adipo-
nectin/adiponectin signaling in fasting adaptation.

Furthermore, adiponectin contributes to fasting adap-
tation through its central and peripheral action. Infusion of
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adiponectin increased food intake of mice on the high fat
diet [84]. Adiponectin targets hypothalamus and stimulates
food intake but reduces energy expenditure via
AMPK-dependent mechanism [17]. In line with this, acti-
vating adiponectin-AMPK signaling in the hypothalamus
has been shown to enhance food intake, a mechanism that
thiazolidinediones (TZDs) increase body mass [126]. As a
peripheral “starvation” signal, overexpressing adiponectin
promotes the storage of triglycerides in adipose tissue with
an improved metabolic profile [16]. Thus, the character of
adiponectin as a starvation hormone and its related positive
energy balance has became a concern for adiponectin-based
therapeutics. However, the role of adiponectin in regulating

food intake is of much debate [124]. Some studies showed
that adiponectin deficiency had little effect on food intake in
response to fasting or caloric restriction [116, 127, 128]. Adi-
ponectin was also shown to decrease food intake and in-
crease energy expenditure by directly regulating the cellular
activity of arcuate Pomc and NPY/AgRP neurons [129]. In
support of this, adiponectin enhances energy expenditure
and suppresses ceramide bywhich itmediates the beneficial
effects of FGF21, another well-known fasting hormone [89].
Althoughadiponectin regulation of appetitemainly depends
on its central action [130], whether adiponectin moderates
energy-expenditure through central nervous system remains
incompletely understood. Only LMW form of adiponectin
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Figure 1: Insulin-sensitizing effects of adiponectin. Upon release from adipocytes, adiponectin circulates and targets threemetabolic tissue/
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was shown to be able to cross through the brain blood bar-
rier [131]. Little is known whether LMW multimer directly
binds to adiponectin receptor in specific neuron or needs to
be assembled to MMW and HMW before its action.

Obesogenic effects of adiponectin

It has been debated for many years on the bona fide role of
adiponectin in the regulation of energy homeostasis
and thermogenesis [18]. Several studies show that adipo-
nectin promotes energy expenditure and the cold-induced
browning effect through its central and peripheral
actions [76, 85, 89, 128, 132–134]. However, other studies have
suggested that adiponectin may be a negative regulator of
energy expenditure and thermogenesis [16–18, 126, 135–138].
These controversies may be partly due to the difference in the
adiponectin isoform, dose, genetic background, administra-
tion approach or animal tools. It is worth noticing that
although adiponectin deficiency does not appear to overtly
alter insulin sensitivity under normal chow diet condi-
tions [85, 139], adiponectin has been established to boost
appetite, slow energy metabolism, and promote adipo-
genesis; all well-defined factors promoting obesity develop-
ment [17, 135, 137]. This effect of adiponectin is similar to that
of PPARγ agonists thiazolidinediones (TZDs) that improve
insulin sensitivity but cause severe obesity [16, 140, 141]. The
recent study using two adiponectin-deficient mouse models
suggests that adiponectin inhibits energy expenditure and
exerts pro-obesogenic effect by regulating cold-induced type
2 immunity in adipose tissue [18]. In support of this, adipo-
nectin inhibits thermogenesis gene expression under cold
stress by suppressing β3-adrenergic receptor expression in
brown adipocytes independent of AdipoRs [137]. Kajimura
et al. also reported that adiponectin suppresses energy
expenditure, but their data suggest that the suppressing ef-
fect of adiponectin is mediated by the central nervous sys-
tem [135]. Collectively, alteration of sympathetic tone, type 2
immunity, and β3-adrenergic signaling in adipose tissuemay
be responsible for adiponectin suppression of thermogenesis
and energy expenditure. Adiponectin-based therapeutics
maybringpotential side effects such as anti-thermogenic and
pro-obesity effects.

On the other hand, adiponectin is a well-accepted
biomarker of adipogenesis and adipocyte differentiation in
human mesenchymal stromal cells [142, 143]. It is induced
during adipogenesis and has been suggested to facilitate
adipogenesis [15, 144]. Consistently, adiponectin exhibits
an ability to promote the adipogenesis of marrow osteo-
blasts [145] and hepatic stellate cells [146]. The inducing
effect of adiponectin on adipogenesis is likely mediated

by its feedforward activation of PPARγ, a master regu-
lator of adipogenesis [144, 147–149]. The supporting ev-
idence also include adiponectin-mediated induction
of preadipocyte factor Pref-1 as well assuppression of
C/EBPα, leading to the proliferation of pre-adipocytes
rather than to promote adipocyte differentiation [132].
Given the adverse effect of PPARγ agonists TZDs as potent
anti-diabetic drugs [84, 150], whether adiponectin-based
therapeutics causes the similar side effects as TZD re-
mains to be determined.

Dual role of adiponectin in
inflammation

Besides the insulin sensitizing effect, the anti-inflammatory
effect of adiponectinhas gained lot of attention [28, 151–154].
Adiponectin modulates inflammatory response, mainly by
targeting various types of immune cell [155–160], involving
macrophage [161, 162], eosinophil [159], andmast cell [38]. A
recent study reported a novel mechanism for the anti-
inflammatory effect of adiponectin by promoting IL-10
release in human Tregs via adiponectin/AdipoR1 axis [163].
Besides, adiponectin in myotubes suppresses Toll-Like
Receptor 4 (TLR4) signaling, leading to alleviated skeletal
muscle inflammation [164]. Adiponectin inhibits diet-
induced liver inflammation by suppressing MCP-1 expres-
sion and macrophage infiltration [165]. These findings
suggest adiponectin signaling as a suitable therapeutic
option for the treatment of inflammatory conditions.

However, there is a controversy as towhether adiponectin
acts as a pro-inflammatory mediator [29, 59, 85, 97, 166–171].
Several studies showed the pro-inflammatory properties of
adiponectin in cells such as macrophages [29, 97, 172, 173],
monocytes [174, 175], synovial fibroblasts [169, 176], endo-
thelial cells [115, 177] and osteoblasts [115]. Cot/tpl2 was re-
ported to participate in the production of inflammatory
mediators upon stimulation of macrophages with adipo-
nectin [178]. Besides, adiponectin-induced pro-inflammatory
response was also found in human astrocytes [179], human
microglia [175] and isolated human macrophages and
T cells [166]. However, Surendar et al. reported that adipo-
nectin reduces pro-inflammatory CD4+ T cells from HFD
mouse via restraining cell intrinsic glycolysis during
obesity [180], suggesting the context-specific and cell-
dependent manner of adiponectin pro-inflammatory proper-
ties [60]. In support of this, elevated adiponectin levels in
children with multiple sclerosis enhances pro-inflammatory
activation of innate and adaptive peripheral immune
cells [175]. Consistently, increased levels of adiponectin in
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muscle occurs 2 h post exercise and is required for the acute
exercise-induced inflammatory response in muscle [181].
More importantly, it remains largely unknown whether adi-
ponectin regulates thermogenesis and energy expenditure
via inflammatory response, a key factor of WAT
browning [182–185]. By using adiponectin knockout (KO)
mice, Hui et al. found that adiponectin promotes WAT
browning by direct stimulation of anti-inflammatory M2
macrophage proliferation with little effect on group 2 innate
lymphoid cells (ILC2s) mediated pro-inflammatory ef-
fects [76]. This mouse model was shown to display a rather
moderatephenotype in insulin sensitivity [139]. Byemploying
the adiponectin KO mice which displayed magnified insulin
resistance compared to the controls, when dietarily chal-
lenged [40], it was observed that adiponectin plays an
inhibitory role in regulating adipose-resident ILC2s, type 2
immunity and energy expenditure [18], suggesting that the
inhibitory effect of adiponectin on thermogenesismay be due
to its pro-inflammatory property.

The dual role of adiponectin in the regulation of
inflammation seems contrary but connected. Adiponectin
isoforms may contribute to dual effects of adiponectin on
inflammation as the full-length adiponectin was found to
inhibit inflammation response in cells, while gAd promoted
inflammation reaction inmacrophage through activation of
NF-κB signaling [179, 186, 187]. In support of this, gAd was
found to activate NF-κB and promote pro-inflammatory
cytokine production in macrophage, but full-length adipo-
nectin exerts PI3K mediated anti-inflammatory effects to
promote macrophage migration [188]. Kyoung-Hee et al.
verified dual anti- and pro-inflammatory effects of adipo-
nectin inmacrophages, depending on divergent stimulation
term [29, 58, 189]. It was suggested that the anti-
inflammatory action of adiponectin in macrophage is
mediated by its initial induction on inflammatory response
and the subsequent tolerance to itself and to other pro-
inflammatory signals [29, 172, 173]. In line with this, short-
term treatment of macrophage with adiponectin initially
increases TNF-alpha production, which in turn leads to
increased expression of interleukin-10, autophagy induc-
tion, and an eventual decreasing of LPS-mediated pro-
duction of inflammatory cytokine [29, 190–192].
Additional mechanism was proposed that adiponectin
induced IRAK-M, an inactive isoform of the IRAK family
of kinases, suppressing the production of proin-
flammatory mediators that are controlled by IRAK/
TRAF6 signals [193]. A recent study showed that a lower
concentration of adiponectin in women with the meta-
bolic syndrome but not in men, suggesting that sex-
specific regulation of adiponectin in systemic low-grade
inflammation [194, 195].

Despite the downregulated adiponectin/adiponectin
signaling in many metabolic diseases [196], higher adipo-
nectin levels has been observed and could enhance inflam-
matory disorders such as preeclampsia [197], inflammatory
bowel disease [198], rheumatoid arthritis [199, 200],multiple
sclerosis [175], and chronic obstructive pulmonary
disease [201–205] and heart failure with reduced ejection
fraction (HFrEF) [206, 207]. Clinic studies revealed that
increased serum adiponectin predicts the development of
rheumatoid arthritis, especially in subjects with
obesity [208–210]. In these inflammatory diseases, whether
adiponectin persistently acts as a pro-inflammation factor or
controls immune tolerance is still ambiguous [28, 211, 212].
The limitation of the studies on the pro-inflammatory action
and immune tolerance of adiponectin is highly context-
dependent and lack of establishment in vivo relevant in vitro
systems. It is still not clear whether adiponectin exerts
proinflammatory effects orchestrating the obesogenic func-
tion on the development of metabolic diseases. Thus, the
detailedmechanismsunderlyingpro-inflammatory effects of
adiponectin and its physiological significance under certain
circumstances need to be further investigated (Figure 2).

Summary

Adiponectin is an adipose tissue-derived hormone that
mediates inter-organ communication [213]. Dysregulation
of adiponectin production has been implicated in the
development and progression of metabolic diseases. As an
insulin sensitizer, adiponectin has been proved to improve
insulin resistance and protect againstmetabolic syndrome.
The inverse correlation of adiponectin with metabolic
diseases in humans emerges adiponectin as a noninvasive
biomarker for disease state, indicative of that upregulating
adiponectin could be an effective approach to prevent and
treat hypoadiponectinemia-associated diseases such as
obesity and diabetes [214]. However, the obesogenic effect
of adiponectin, reflecting the induction of adipogenesis
and food intake and the inhibition of thermogenesis, has
gained increased attention (Figure 3). Similar to PPARγ
agonists TZDs, adiponectin likely drives the development
of healthy obesity with improved adipose tissue fibrosis
and insulin sensitivity [16] through distinct mechanisms
which necessitate to be further clarified. The accumulated
evidence also raises a concern that adiponectin-based
therapeutics may bring adverse effects such as obesity and
inflammation. On the other hand, the positive correlation
between adiponectin and inflammatory disorders suggests
that adiponectin is a diversified player in immune system.
Upon binding to its receptors AdipoR1, AdipoR2, and
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T-cadherin, adiponectin targets a variety of immune cells
and acts on both innate and acquired immunity. However,
while it is well documented that adiponectin talks to
metabolically active tissue-resident immune cells, whether
and how adiponectin controls the development and func-
tion of immune organ remain largely unknown. Therefore,
the study on adiponectin regulation of inflammation and
energy metabolism may be a key, given the emerging
recognition of the interplay between immune system and
metabolism in health and disease.
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mechanisms. In macrophage, adiponectin acts as anti- and pro-inflammatory factor, which is mediated by its initial induction on inflammatory
response and the subsequent tolerance to its own stimulation and/or to other pro-inflammatory signals. NF-κB, nuclear factor-κB; IL-6, inter-
leukin-6; IL-8, interleukin-8; IL-10, interleukin-10; IL-33, interleukin-33; ILC2, group 2 innate lymphoid cells; MCP-1, monocyte chemoattractant
protein-1; TNF-α, tumor necrosis factor-α; IRAK-1, interleukin-1 receptor-associated kinase-1. [ refers to increase, while Y means decrease.
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Figure 3: Adiponectin controls metabolic homeostasis via a variety
of mechanisms. In addition to the insulin-sensitizing effect, adipo-
nectin plays a critical role in regulating energy balance and
inflammation. As a starvation signal, adiponectin promotes food
intake and suppresses cold-induced thermogenesis, leading to
positive energy balance and enhanced adipogenesis. This may
interpret in part the obesogenic effect of adiponectin and potential
side effects of adiponectin-based therapeutics. PPARγ, peroxisome
proliferator-activated receptor-γ; ADPN, adiponectin; FGF21,
fibroblast growth factor 21.
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