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Abstract: Normal cells produce adenosine 5′-triphosphate (ATP) mainly through mitochondrial
oxidative phosphorylation (OXPHOS) when oxygen is available. Most cancer cells, on the other
hand, are known to produce energy predominantly through accelerated glycolysis, followed by lactic
acid fermentation even under normoxic conditions. This metabolic phenomenon, known as aerobic
glycolysis or the Warburg effect, is less efficient compared with OXPHOS, from the viewpoint of
the amount of ATP produced from one molecule of glucose. However, it and its accompanying
pathway, the pentose phosphate pathway (PPP), have been reported to provide advantages for
cancer cells by producing various metabolites essential for proliferation, malignant progression,
and chemo/radioresistance. Here, focusing on a master transcriptional regulator of adaptive
responses to hypoxia, the hypoxia-inducible factor 1 (HIF-1), we review the accumulated knowledge
on the molecular basis and functions of the Warburg effect and its accompanying pathways. In
addition, we summarize our own findings revealing that a novel HIF-1-activating factor enhances
the antioxidant capacity and resultant radioresistance of cancer cells though reprogramming of the
glucose metabolic pathway.
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1. Introduction

Cells produce 2, 2, and 34 molecules of adenosine 5′-triphosphate (ATP) from one molecule of
glucose through glycolysis, the tricarboxylic acid (TCA) cycle (also known as the Krebs cycle or citric
acid cycle), and the electron transport chain (ETC), respectively. The ETC requires molecular oxygen as
the terminal acceptor of electrons for its own activity. Therefore, the TCA cycle, which does not directly
use oxygen but needs the oxidized form of nicotinamide adenine dinucleotide (NAD+) supplied
from the ETC, is also dependent on oxygen. In contrast to these mitochondrial pathways, glycolysis
never requires oxygen, which leads to a simple hypothetical model whereby cancer cells in malignant
solid tumors produce ATP mainly through mitochondrial pathways under normoxic conditions, but
use glycolysis under hypoxic conditions. However, accumulated evidence has demonstrated that
many cancer cells produce ATP predominantly through accelerated glycolysis followed by lactic acid
fermentation, even under normoxic conditions [1,2]. The molecular basis and functions of this unique
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metabolic property, which is designated as the Warburg effect, have been longstanding mysteries to be
solved in the research field of tumor biology.

The mysteries were solved to some extent when one of the transcription factors responsible for
physiological and pathophysiological responses to hypoxia, hypoxia-inducible factor 1 (HIF-1), was
cloned in the 1990s. HIF-1 was first identified as a factor inducing the expression of erythropoietin
(EPO) gene for hematopoiesis [3,4], but is now recognized as a master transcription factor affecting
the adaptive response to hypoxia because of its function in the induction of hundreds of genes
related to angiogenesis and the reprogramming of energy metabolism [5–8]. As many cancer cells
are exposed to hypoxic environments during malignant tumor growth, the metabolic reprogramming
from OXPHOS to accelerated glycolysis used to be recognized as one aspect of cancer cells’ adaptive
response to hypoxia. However, genetic alterations that potentially activate HIF-1 even under normoxic
conditions have been repeatedly identified in cancer cells, suggesting the association of HIF-1-mediated
mechanisms underlying the metabolic reprogramming with the Warburg effect [8–11]. Here, we review
the latest knowledge on the mechanism of action and function of HIF-1 in the Warburg effect and the
significance of both the Warburg effect and its associated pathways in the induction of antioxidant
capacity and radioresistance in cancer cells [12–15].

2. Regulation of HIF-1 Activity: From Canonical to Non-Canonical Mechanisms

2.1. Canonical Mechanism

HIF-1 is a heterodimeric transcription factor consisting of the HIF-1α and HIF-1β/Aryl
hydrocarbon receptor nuclear translocator (Arnt) [16,17]. HIF-1α functions as the main regulatory
subunit of HIF-1 activity; on the other hand, HIF-1β is recognized to be less important in terms of the
regulation of HIF-1 activity because its mRNA and protein are maintained at constant levels.

Accumulating evidence has suggested that mechanisms regulating the stability and
transactivating activity of HIF-1α protein exhibit the greatest impact on HIF-1 activity [18]
(Figure 1, Table 1). Proline residues at positions 402 and 564 (P402 and P564, respectively) of
HIF-1α are hydroxylated by prolyl-4-hydroxylase (PHDs) in an oxygen-, Fe2+-, and α-ketoglutarate
(α-KG)-dependent manner [19,20]. The hydroxylated HIF-1α is then immediately ubiquitinated by E3
ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL) and degraded
through the 26S proteasome [21–23]. Just like PHDs, factor inhibiting HIF-1 (FIH-1) has also been
identified as an oxygen-requiring hydroxylase for HIF-1α [24]. FIH-1 inhibits the transactivation
activity, but not stability, of the HIF-1α protein through asparaginyl hydroxylation of HIF-1α at
position 803 (N803), thereby suppressing its interaction with the histone acetyltransferase p300/CREB
binding protein (CBP) [18,24,25]. Because the oxygen affinity of PHDs is relatively lower than that
of FIH-1, PHDs become inactive prior to FIH-1 when the oxygen availability gradually decreases
from normoxic to hypoxic conditions [26–28]. Therefore, HIF-1α hydroxylated at N803 accumulates
under mild hypoxia, after which it acquires full transactivating activity under relatively severe hypoxic
conditions due to the inactivation of FIH-1. The stabilized HIF-1α interacts with its binding partner,
HIF-1β, and the resultant heterodimer, HIF-1, induces the expression of a series of hypoxia-responsive
genes by binding to the hypoxia-responsive enhancer sequence, hypoxia-response element (HRE) [3].
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Figure 1. Oxygen- and hydroxylase-dependent mechanisms regulating hypoxia-inducible factor 1 
(HIF-1) activity. PI3K: phosphoinositide 3-kinase; PKC: protein kinase C; HDAC: histone deacetylase; 
PHD: prolyl hydroxylase; VHL: von Hippel-Lindau; FIH-1: factor inhibiting HIF-1; CBP: CREB 
binding protein; SDH: succinate dehydrogenase; FH: fumarate hydratase; IDH3: isocitrate 
dehydrogenase 3; USP20: ubiquitin specific peptidase 20; VDU2: von Hippel-Lindau protein-
interacting deubiquitinating enzyme-2; USP8: ubiquitin specific peptidase 8; UCHL1: ubiquitin C-
terminal hydrolase L1; WSB1: tryptophan-aspartic acid (WD) repeat and suppressor of cytokines 
signaling (SOCS) box-containing 1. Black arrows show regulatory steps of HIF-1 activity, and red 
arrows and blue T bars show positive and negative impacts on them, respectively. 

Table 1. List of positive and negative regulators of HIF-1. 

Gene Products Mechanism Regulating HIF-1 Activity References 
Transcription initiation of the HIF1A gene 

PI3K/Akt/PKC/HDAC 
pathway 

Upregulating transcription initiation in case that 
mitochondrial ND6 gene harbors G13997A mutation  

[29] 

LY6E 
Activating the PI3K/Akt pathway through the 

decrease in PTEN expression  
[30] 

Translation initiation of the HIF1A gene 

PI3K/Akt pathway 
Upregulating both cap-dependent and IRES-

dependent translation initiation 
[31–33] 

Stability of the HIF-1α protein by modulating its prolyl hydroxylation status 

PHD1, 2, 3 
hydroxylating P402 and P564 of HIF-1α for 

ubiquitination 
[19,20,34] 

LOF mutant of SDH 
Inactivation of PHDs and FIH-1 through the “product 
inhibition” due to abnormal accumulation of succinate 

[35] 

LOF mutant of FH 
Inactivation of PHDs and FIH-1 through the “product 
inhibition” due to abnormal accumulation of fumarate 

[36] 

IDH3 
Inactivating PHDs through the decrease in 2OG levels, 

when overexpressed aberrantly. 
[37] 

Stability of the HIF-1α protein by modulating its ubiquitination status 
pVHL Ubiquitinating HIF-1α for its proteasomal degradation [21,22,38] 

USP20/VDU Deubiquitinating HIF-1α for its stabilization  [39] 
USP8 Deubiquitinating HIF-1α for its stabilization [40] 

UCHL1 
WSB1 

Deubiquitinating HIF-1α for its stabilization 
Ubiquitination of pVHL 

[41,42] 
[43] 

Transactivation activity of the HIF-1α protein 

Figure 1. Oxygen- and hydroxylase-dependent mechanisms regulating hypoxia-inducible factor 1
(HIF-1) activity. PI3K: phosphoinositide 3-kinase; PKC: protein kinase C; HDAC: histone deacetylase;
PHD: prolyl hydroxylase; VHL: von Hippel-Lindau; FIH-1: factor inhibiting HIF-1; CBP: CREB binding
protein; SDH: succinate dehydrogenase; FH: fumarate hydratase; IDH3: isocitrate dehydrogenase 3;
USP20: ubiquitin specific peptidase 20; VDU2: von Hippel-Lindau protein-interacting deubiquitinating
enzyme-2; USP8: ubiquitin specific peptidase 8; UCHL1: ubiquitin C-terminal hydrolase L1; WSB1:
tryptophan-aspartic acid (WD) repeat and suppressor of cytokines signaling (SOCS) box-containing 1.
Black arrows show regulatory steps of HIF-1 activity, and red arrows and blue T bars show positive
and negative impacts on them, respectively.

Table 1. List of positive and negative regulators of HIF-1.

Gene Products Mechanism Regulating HIF-1 Activity References

Transcription initiation of the HIF1A gene

PI3K/Akt/PKC/HDAC pathway Upregulating transcription initiation in case that
mitochondrial ND6 gene harbors G13997A mutation [29]

LY6E Activating the PI3K/Akt pathway through the decrease in
PTEN expression [30]

Translation initiation of the HIF1A gene

PI3K/Akt pathway Upregulating both cap-dependent and IRES-dependent
translation initiation [31–33]

Stability of the HIF-1α protein by modulating its prolyl hydroxylation status

PHD1, 2, 3 hydroxylating P402 and P564 of HIF-1α for ubiquitination [19,20,34]

LOF mutant of SDH Inactivation of PHDs and FIH-1 through the “product
inhibition” due to abnormal accumulation of succinate [35]

LOF mutant of FH Inactivation of PHDs and FIH-1 through the “product
inhibition” due to abnormal accumulation of fumarate [36]

IDH3 Inactivating PHDs through the decrease in 2OG levels,
when overexpressed aberrantly. [37]

Stability of the HIF-1α protein by modulating its ubiquitination status

pVHL Ubiquitinating HIF-1α for its proteasomal degradation [21,22,38]
USP20/VDU Deubiquitinating HIF-1α for its stabilization [39]

USP8 Deubiquitinating HIF-1α for its stabilization [40]

UCHL1WSB1 Deubiquitinating HIF-1α for its stabilization
Ubiquitination of pVHL

[41,42]
[43]

Transactivation activity of the HIF-1α protein

FIH-1 Hydroxylating N803 of HIF-1α to inhibit the interaction of
HIF-1α with p300/CBP [24,44]

IDH3 Inactivating FIH-1 through the decrease in 2OG levels,
when overexpressed aberrantly. [37]

p300/CBP Interacting with HIF-1α and functioning as a co-activator
with their histone acetyltransferase activity [18,24,25]
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2.2. Non-Canonical Mechanisms

HIF-1 is considered a master regulator of cellular adaptive responses to hypoxia because of its
hypoxia responsiveness. However, advancements in the field of HIF-1 biology have revealed that HIF-1
functions even under normoxic conditions due to cancer cell-specific gene mutations or an aberrant
gene expression profile (Table 1). For example, it has been reported that HIF-1 activity is upregulated
through various mechanisms, as follows: Aberrant activation of the phosphoinositide 3-kinase
(PI3K)/Akt/protein kinase C (PKC)/histone deacetylase (HDAC) pathway increases the transcription
initiation of the HIF1A gene [29]. Activation of the PI3K/Akt pathway upregulates the efficiency
of the translation initiation of the HIF-1α protein [32]. Deficiency of functional pVHL decreases the
ubiquitination and subsequent proteolysis of HIF-1α [21–23]. Overexpression of deubiquitinating
enzymes, such as ubiquitin C-terminal hydrolase L1 (UCHL1) [41,42,45], ubiquitin specific peptidase
20 (USP20/VDU2) [39], or ubiquitin specific peptidase 8 (USP8) [40] causes deubiquitination and
resultant stabilization of HIF-1α. Ubiquitination and subsequent degradation of pVHL triggered by
tryptophan-aspartic acid (WD) repeat and suppressor of cytokines signaling (SOCS) box-containing 1
(WSB1) also causes stabilization of the HIF-1α protein [43]. It remains unclear how the accumulated
HIF-1α escapes the suppressive effect of FIH-1 and subsequently gains transcription activity under
normoxic conditions.

In addition, disorders in the carbohydrate metabolic pathway have also been reported to induce
HIF-1 activity of cancer cells even under normoxic conditions. The hydroxylase activity of both
PHD and FIH-1 require not only molecular oxygen as a substrate, but also α-KG as a co-factor, as
described above. Therefore, a decrease in the intracellular α-KG levels due to overexpression of the
α subunit of isocitrate dehydrogenase 3 (IDH3), IDH3α [37], or mutations and resultant amino acid
substitutions in succinate dehydrogenase (SDH) or fumarate hydratase (FH) in the TCA cycle of cancer
cells results in the activation of HIF-1 by keeping P402, P564, and N803 unhydroxylated, even under
normoxic conditions [35–37]. Thus, the molecular mechanisms by which HIF-1α accumulates even in
the presence of oxygen have been elucidated one after another, making it possible to understand why
the HIF-1α protein is detected in the proximal regions of tumor blood vessels in clinical cancer tissues.

3. Functions of HIF-1 in the Warburg Effect: Switch from Mitochondrial OXPHOS to
Aerobic Glycolysis

3.1. Induction of Aerobic Glycolysis

Glycolysis is a metabolic pathway that produces two molecules each of pyruvate and ATP from a
glucose molecule through sequential and oxygen-independent enzymatic reactions (Figure 2; Table 2).
The first step is glucose uptake. Twelve types of glucose transporters (GLUT1-12) function in glucose
uptake into human cells. It is widely known that expression of the rate-limiting enzyme for glycolysis,
GLUT1, is under the positive regulation of HIF-1 [46]. Genetic alterations in cancer cells, as well
as hypoxic stimuli, have been reported to induce GLUT1 expression in a HIF-1-dependent manner,
increase cellular glucose uptake, and support the aerobic glycolysis of cancer cells.
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Figure 2. HIF-1-dependent reprogramming of the glucose metabolic pathway, and resultant 
radioresistance. GA3P: glyceraldehyde-3-phosphate; PEP: phosphoenol pyruvic acid; GLUT1: 
glucose transporter 1; LDH-A: lactate dehydrogenase-A; GAPDH: glyceraldehyde-3-phosphate 
dehydrogenase; MCT4: Monocarboxylate transporter 4; PDH: pyruvate dehydrogenase; PDK1: PDH 
kinase 1; ISCU 1/2: iron-sulfur cluster assembly protein 1/2; MXI1: MAX Interactor 1; PGC-1α: alpha 
subunit of peroxisome proliferator-activated receptor gamma coactivator 1; BNIP3: B-cell lymphoma 
2 (BCL2)-interacting protein 3; PKM2: pyruvate kinase M2; G6PD: glucose-6-phosphate 
dehydrogenase; GAP: glyceraldehyde-3-phosphate; 1,3-BPG: 1,3-bisphosphoglycerate; acetyl-CoA: 
acetyl coenzyme A; Bcl-2: B-cell lymphoma 2; G6P: glucose-6-phosphate; PPP: pentose phosphate 
pathway. Black and gray arrows show active and inactive glucose metabolic pathways, respectively. 
Red arrows and blue T bars show positive and negative impacts on the pathways, respectively. 

Table 2. List of genes influencing the Warburg effect. 

Gene 
Products 

Function  
Toward the 

Warburg 
Effect 

References 

GLUT1 Increase in glucose uptake to promote glycolysis Positive [46] 

LDH-A 
Hydrogenation of pyruvate to lactate in lactic acid 

fermentation 
Positive [47,48] 

GAPDH 
Catalyzing dehydrogenation of GAP to 1,3-BPG in 

glycolysis 
Positive [47,48] 

MCT4 Efflux of lactate Positive [49–51] 

PDH 
Catalyzing oxidative decarboxylation of pyruvate to 

acetyl-CoA 
Negative [52,53] 

PDK1 Phosphorylating PDH for its inhibition Positive [54,55] 

ISCU 1/2 
Facilitating the assembly of aconitase and enzymes 

of the mitochondrial complex I for their function 
Negative [56,57] 

MXI1 
Inhibiting c-Myc transcription activity by 

competing for MAX, a supporting protein to c-Myc 
Positive [58,59] 

Figure 2. HIF-1-dependent reprogramming of the glucose metabolic pathway, and resultant
radioresistance. GA3P: glyceraldehyde-3-phosphate; PEP: phosphoenol pyruvic acid; GLUT1: glucose
transporter 1; LDH-A: lactate dehydrogenase-A; GAPDH: glyceraldehyde-3-phosphate dehydrogenase;
MCT4: Monocarboxylate transporter 4; PDH: pyruvate dehydrogenase; PDK1: PDH kinase 1; ISCU
1/2: iron-sulfur cluster assembly protein 1/2; MXI1: MAX Interactor 1; PGC-1α: alpha subunit
of peroxisome proliferator-activated receptor gamma coactivator 1; BNIP3: B-cell lymphoma 2
(BCL2)-interacting protein 3; PKM2: pyruvate kinase M2; G6PD: glucose-6-phosphate dehydrogenase;
GAP: glyceraldehyde-3-phosphate; 1,3-BPG: 1,3-bisphosphoglycerate; acetyl-CoA: acetyl coenzyme A;
Bcl-2: B-cell lymphoma 2; G6P: glucose-6-phosphate; PPP: pentose phosphate pathway. Black and gray
arrows show active and inactive glucose metabolic pathways, respectively. Red arrows and blue T bars
show positive and negative impacts on the pathways, respectively.

Table 2. List of genes influencing the Warburg effect.

Gene Products Function Toward the Warburg
Effect References

GLUT1 Increase in glucose uptake to promote
glycolysis Positive [46]

LDH-A Hydrogenation of pyruvate to lactate in
lactic acid fermentation Positive [47,48]

GAPDH Catalyzing dehydrogenation of GAP to
1,3-BPG in glycolysis Positive [47,48]

MCT4 Efflux of lactate Positive [49–51]

PDH Catalyzing oxidative decarboxylation of
pyruvate to acetyl-CoA Negative [52,53]

PDK1 Phosphorylating PDH for its inhibition Positive [54,55]

ISCU 1/2
Facilitating the assembly of aconitase and

enzymes of the mitochondrial complex I for
their function

Negative [56,57]
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Table 2. Cont.

Gene Products Function Toward the Warburg
Effect References

MXI1
Inhibiting c-Myc transcription activity by
competing for MAX, a supporting protein

to c-Myc
Positive [58,59]

PGC-1α Inducing the expression of transcription
regulators for mitochondrial biogenesis Negative [58]

BNIP3 Interacting with Bcl-2 to dissociate Beclin-1
from Bcl-2 for mitophagy Positive [60,61]

PKM2 Regulating glycolytic flux and supply G6P
to the PPP No influence [62]

G6PD

Catalyzing the conversion of G6P to
6-phospho-glucono-1,5-lactone, and

functioning as a rate-limiting enzyme for
the PPP

No influence [41,42,45]

GLUT1: glucose transporter 1; LDH-A: lactate dehydrogenase-A; GAPDH: glyceraldehyde-3-phosphate
dehydrogenase; MCT4: monocarboxylate transporter 4; PDH: pyruvate dehydrogenase; PDK1: PDH kinase
1; ISCU 1/2: iron-sulfur cluster assembly protein 1/2; MXI1: MAX Interactor 1; MAX: c-Myc associated
factor X; PGC-1α: alpha subunit of peroxisome proliferator-activated receptor gamma coactivator 1; BNIP3:
BCL2-interacting protein 3; PKM2: pyruvate kinase M2; G6PD: glucose-6-phosphate dehydrogenase; GAP:
glyceraldehyde-3-phosphate; 1,3-BPG: 1,3-bisphosphoglycerate; acetyl-CoA: acetyl coenzyme A; Bcl-2: B-cell
lymphoma 2; G6P: glucose-6-phosphate; PPP: pentose phosphate pathway.

In addition to GLUTs, expressions of other glycolytic enzymes have also been demonstrated
to be induced by HIF-1, as Iyer et al. first reported in 1998 by culturing a human hepatocellular
carcinoma cell line under hypoxic conditions [48]. Pyruvate produced through glycolysis is further
metabolized to lactate rather than to acetyl coenzyme A (acetyl-CoA) through lactic acid fermentation
mediated by lactate dehydrogenase A (LDH-A) in cancer cells expressing high levels of LDH-A
in a HIF-1-dependent manner [47,48]. The lactic acid fermentation plays an indispensable role in
maintaining glycolysis because it produces NAD+, which is an essential coenzyme for the sixth
reaction in glycolysis, the conversion of glyceraldehyde-3-phosphate (GAP) to 1,3-bisphosphoglycerate
(1,3-BPG) by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Monocarboxylate transporter
4 (MCT4), whose expression is also HIF-1-dependent, functions in lactate efflux for intracellular pH
homeostasis [49].

3.2. Suppression of Mitochondrial Function

Another regulatory component leading to the Warburg effect is suppression of the mitochondrial
function, which is accomplished mainly through the following three mechanisms (Figure 2, Table 2).

The first is the inactivation of the TCA cycle due to a decrease in the levels of its initial metabolite,
acetyl-CoA. Acetyl-CoA is produced from the end product of glycolysis, pyruvate, through a process
called “pyruvate decarboxylation” or “pyruvate oxidation”. The process is mediated by the pyruvate
dehydrogenase (PDH) complex, whose first component enzyme is pyruvate dehydrogenase E1α
(PDH-E1α) [52,53]. Because PDH-E1α activity is suppressed through its phosphorylation by pyruvate
dehydrogenase kinase 1 (PDK1) and HIF-1 is responsible for the expression of PDK1, activation of
HIF-1 leads to a decrease in acetyl-CoA levels and inactivation of the TCA cycle [54,55].

The second is through reduction in the levels of proteins associated with mitochondrial functions.
The enzyme mediating the isomerization of citrate to isocitrate in the TCA cycle, aconitase, as well as
enzymes in mitochondrial complex I, are both important for mitochondrial activity and require the
assembly of iron-sulfur clusters mediated by the iron-sulfur cluster assembly protein 1/2 (ISCU1/2)
for their function [56]. It has been reported that microRNA-210 (miR-210), whose expression is induced
by HIF-1, directly targets ISCU 1/2-encoding mRNAs and suppresses their expression; therefore,
activation of HIF-1 results in a decline in the mitochondrial function [57].

The third is through an active decrease in the number of mitochondria by HIF-1-mediated
inhibition of mitochondrial biogenesis and induction of mitochondrial autophagy, mitophagy. HIF-1
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has been reported to repress the activity of an oncogene, c-Myc, for the suppression of mitochondrial
biogenesis through the following two mechanisms. First, HIF-1 directly induces the expression of
a negative regulator of c-Myc, MAX Interactor 1 (MXI1), which inhibits the transcriptional activity
of c-Myc by competing for MAX, a protein supporting c-Myc [58,59]. Also, HIF-1 functions in the
degradation of the c-Myc protein via the proteasome pathway [58]. The number of intracellular
mitochondria decreases when c-Myc activity is suppressed, because c-Myc upregulates the expression
of a positive transcriptional regulator of mitochondrial biogenesis, the alpha subunit of peroxisome
proliferator-activated receptor gamma coactivator 1 (PGC-1α).

As for the active decrease in the number of mitochondria through mitophagy, Beclin-1- and
Atg5-dependent mechanisms have been reported to be promoted when HIF-1 induces the expression
of a B-cell lymphoma 2 (Bcl-2) family-member protein, BCL2-interacting protein 3 (BNIP3) [60,61].
Beclin-1 protein, which works as the origin of autophagosome formation in autophagy, is usually
kept inactive through interaction with Bcl-2 [63]. However, once HIF-1-induced BNIP3 physically
interacts with Bcl-2, it promotes the release of Beclin-1 from Bcl-2 and induces mitophagy [60,61].
The BNIP3-dependent reduction in the number of mitochondria has been confirmed to play a very
important role in cellular adaptive responses to hypoxia based on the following experimental results:
inhibition of either HIF-1α or BNIP3 led to the production of reactive oxygen species (ROS) in
mitochondria and eventually induced cell death under hypoxic conditions; however, in the case
of mouse embryonic fibroblasts (MEFs) derived from a HIF-1α knockout mouse, cell death was
rescued by the forced expression of BNIP3 [60].

4. Significance of the HIF-1-Dependent Warburg Effect

Glycolysis is a less efficient pathway compared with mitochondrial OXPHOS in terms of the
amount of ATP produced from one molecule of glucose. However, there may be reasons why cancer
cells choose such an inefficient glucose metabolic pathway even under normoxic conditions.

4.1. Activation of HIF-1 and Angiogenesis by Lactate Uptake

Lactate produced as an end-product of lactic acid fermentation following glycolysis is exported
from cells by MCT4 [50,64]. Cancer cells then uptake the lactate using monocarboxylate transporter
1 (MCT1) [65] and convert it to pyruvate by the enzymatic activity of lactate dehydrogenase-B
(LDH-B) [66]. An increase in the intracellular levels of pyruvate suppresses the production of α-KG,
which stabilizes HIF-1α and activates HIF-1, leading to the induction of VEGF-dependent tumor
angiogenesis and acceleration of tumor growth [67].

4.2. Effect of HIF-1 on the Activation of the Pentose Phosphate Pathway, Nucleotide Biogenesis, and
Antioxidant Potential

Among the glycolytic enzymes whose expression is HIF-1-dependent, pyruvate kinase M2 (PKM2)
has been reported to influence the activity of the pentose phosphate pathway [62]. Because the
enzymatic activity of PKM2 is weaker than that of other isoforms, the pyruvate kinase (PK) complex,
when it contains PKM2 as a component, becomes unable to efficiently convert phosphoenolpyruvate
to pyruvate. It has also been reported that the enzymatic activity of PKM2 further decreases when
C358 is oxidized by ROS [60]. As a result of the decrease in PK activity and subsequent restriction of
glycolytic flux, an intermediary metabolite of glycolysis, glucose-6-phosphate (G6P), is supplied to
the pentose phosphate pathway. Because the pathway generates not only various kinds of pentoses,
which are used for the biogenesis of nucleotides such as ribonucleotide and deoxyribonucleotide, but
also the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), which is used for
the production of the antioxidant, reduced glutathione (GSH), activation of this pathway enhances the
antioxidant capacity and radioresistance of cancer cells.



Int. J. Mol. Sci. 2019, 20, 238 8 of 13

5. The Warburg Effect and Radioresistance of Cancer Cells Mediated by Novel Activators
of HIF-1

Radioresistance caused by induction of the Warburg effect by HIF-1 results in cancer cells that
are difficult to treat and that may lead to tumor recurrence. As such, activators of HIF-1 represent a
promising group of targets that may lead to the development of novel therapies.

5.1. Effects of microRNAs on the Regulation of HIF-1

Interestingly, there has been emerging evidence that there are numerous microRNAs that
participate in HIF-1-mediated regulation of the Warburg effect. miR-31-5p, a microRNA that is
upregulated in lung adenocarcinoma and is implicated to play roles in oncogenesis, has been found
to enhance the Warburg effect and promote cell proliferation through the canonical HIF-1 regulatory
pathway [68]. It has been found to do so by inhibiting FIH-1, leading to a rise in HIF-1 transactivation
activity. This results in the appearance of hallmarks of aerobic glycolysis, such as elevated glucose
uptake and lactate levels, as well as an increase in OXPHOS-independent ATP production [68].
Inhibition of miR-31-5p and FIH-1 overexpression were able to attenuate these effects [68]. Similarly,
miR-150, another microRNA that is aberrantly expressed in cancers, has been found to target and
inhibit pVHL in glioma cells [69]. As pVHL is the E3 ligase responsible for HIF-1 degradation, miR-150
stabilizes the HIF-1 protein [69]. Overexpression of miR-150 was found to increase glucose uptake,
lactate production, and cell proliferation [69]. These studies have shown that these microRNAs play
a role in regulating the HIF-1-dependent induction of the Warburg effect; however, they have not
yet evaluated if and how these microRNAs contribute to the resulting increase in antioxidants and
radioresistance in cancer cells. Further study in this area may lead to clues on how to radiosensitize
cancer cells and increase treatment options.

5.2. Effects of Novel Factor UCHL1 on the Regulation of HIF-1

Our own genetic screening experiments for exploring novel activators of HIF-1 [30,37,41] have
led us to identify a unique factor that induces cancer cell radioresistance through reprogramming
of the metabolic pathway. We first constructed a plasmid that expressed an enzyme for blasticidin
S-resistance, blasticidin-S deaminase (BSD), under the control of the HIF-1-dependent 5HRE promoter
(5HREp), and established a stable transfectant with it. The stable cells were then introduced with a
human cDNA library and cultured in the presence of blasticidin-S under normoxic conditions with the
expectation that some of the cDNA would lead to the survival of colonies through the activation of
HIF-1 and resultant expression of BSD. We successfully acquired several surviving colonies, analyzed
cDNA responsible for the survival, and eventually identified UCHL1 [41], IDH3α [37], and lymphocyte
antigen 6 locus E (LY6E) [30] as novel activators of HIF-1.

In vitro experiments revealed that UCHL1 stabilizes the HIF-1α protein with its deubiquitination
activity [41,42]. When we quantitatively analyzed intermediary metabolites of the glucose metabolic
pathway after overexpressing UCHL1, we found that these genes induced reprogramming of
the glucose metabolic pathway from mitochondrial OXPHOS to glycolysis [42]. The accelerated
glycolysis was confirmed to be accompanied by activation of the pentose phosphate pathway,
leading to the production of both NADPH and an antioxidant, reduced glutathione (glutathione-SH:
GSH) [42]. In vitro colony formation assays demonstrated that the forced expression of UCHL1
significantly increased GSH levels and subsequently induced the radioresistance of cancer cells [42].
UCHL1-dependent radioresistance was abrogated when the HIF-1α gene was silenced with siRNA or
when intracellular GSH levels were pharmacologically decreased with an inhibitor of the rate-limiting
enzyme of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) [42]. Finally,
clinical research confirmed that the expression levels of UCHL1 were positively correlated with that of
HIF-1α in malignant solid tumors and the poor prognosis of breast and lung cancer patients [41].

These results indicate that the UCHL1-mediated activation of HIF-1 leads to the radioresistance
of cancer cells through inducing the Warburg effect, and suggest the possibility that UCHL1, as well as
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HIF-1, could be exploited as rational targets for enhancing the effects of radiotherapy and markers for
predicting the effects.

6. Conclusions and Future Direction

In this review, we focused on the reprogramming of the glucose metabolic pathway in cancer
cells, especially on the Warburg effect, and summarized the HIF-1-dependent mechanism and function
behind it. Accumulated knowledge has revealed that cancer cells hijack the sophisticated systems in
tissue cells to acquire antioxidant properties through reprogramming the glucose metabolic pathway.
Elucidating the mechanistic and functional interplays between HIF-1 and factors functioning in the
regulation of glucose metabolism in cells is expected to deepen our understanding of the complex
features of cancer cells.

Although we highlighted the importance of HIF-1 in the induction of the Warburg effect, we
should not ignore the involvement and influences of other factors. For example, Dang suggested that
because oncogenic c-Myc and hypoxia-inducible factor (HIF) collaborate to increase the uptake of
glucose and its conversion to lactate and enhance the cancer cell’s metabolic needs, their common
downstream target genes, such as PDK1 and LDHA, can be utilized as attractive therapeutic targets [70].
Moreover, the Warburg effect-like glucose metabolism was reported in a HIF-1α-deficient clear cell
renal cell carcinoma cell line [71].

Each cancer cell exhibits different metabolic properties, even in identical tumor tissues; for
example, some cancer cells prefer glycolysis, but others prefer OXPHOS; this preference is assumed
to be caused by things like genetic heterogeneity within a tumor, the influences of oxygen
microenvironments, and/or by interplay with surrounding non-cancer cells. Research on the metabolic
pathway focusing on the tumor’s microenvironment and on the interplay between cancer and
non-cancer cells in vivo is needed to deepen our understanding of the nature of cancers and develop
novel strategies for cancer therapy.
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