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Abstract

Korean peninsula weather is rapidly becoming subtropical due to global warming. In sum-

mer 2018, South Korea experienced the highest temperatures since the meteorological

observations recorded in 1907. Heat stress has a negative effect on Holstein cows, the

most popular breed of dairy cattle in South Korea, which is susceptible to heat. To examine

physiological changes in dairy cows under heat stress conditions, we analyzed the profiles

circulating microRNAs isolated from whole blood samples collected under heat stress and

non-heat stress conditions using small RNA sequencing. We compared the expression pro-

files in lactating cows under heat stress and non-heat stress conditions to understand the

regulation of biological processes in heat-stressed cows. Moreover, we measured several

heat stress indicators, such as rectal temperature, milk yield, and average daily gain. All

these assessments showed that pregnant cows were more susceptible to heat stress than

non-pregnant cows. In addition, we found the differential expression of 11 miRNAs (bta-

miR-19a, bta-miR-19b, bta-miR-30a-5p, and several from the bta-miR-2284 family) in both

pregnant and non-pregnant cows under heat stress conditions. In target gene prediction

and gene set enrichment analysis, these miRNAs were found to be associated with the cyto-

skeleton, cell junction, vasculogenesis, cell proliferation, ATP synthesis, oxidative stress,

and immune responses involved in heat response. These miRNAs can be used as potential

biomarkers for heat stress.

Introduction

Following global warming, including the northward expansion of the subtropical climate zone,

South Korea, located at the northern hemisphere of East Asia, is susceptible to the impact of

climate change [1–3]. For example, the average increase in temperature in South Korea was

1.7˚C, while global temperature increased by 0.7˚C from 1912 to 2008 [2, 4]. Mainly, in sum-

mer 2018, South Korea experienced extreme hot temperatures since the meteorological obser-

vations recorded in 1907. Moreover, heat stress (HS) has a negative influence on livestock
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productivity, particularly, Holstein Friesian, the most popular breed of dairy cattle in South

Korea. They are more sensitive to HS as it induces hormonal changes, infection, metabolic dis-

orders, and abnormal embryo development in dairy cattle [5, 6], consequently affecting the

economic traits such as growth, milk production, and infertility. HS can lead to limited feed-

intake and imbalanced hormone secretion, resulting in a decrease in growth and reproductive

efficiency. For example, the placental function of heat-stressed cows during late gestation is

impaired by decreased secretion of placental hormones such as estrone sulfate, leading to

retarded fetal growth and low birth weight of the calves [7]. Moreover, the reproductive perfor-

mance of Holstein cow is more susceptible to HS during summer, suggesting that HS condi-

tions, including elevated temperature and humidity, decrease thermal tolerance [8]. Jiangijing

Liu et al. (2019) reported that the pregnancy rate of Holstein cows is 39.4% at temperature-

humidity index (THI) < 72 (non-HS) and decreased to 31.6% at THI > 78.0 (Intermediate

HS) [9]. In Florida, pregnancy rates of lactating cows in the summer is low (13.5%) [10]. Fur-

thermore, the number of mounts per estrus also decreased by nearly half in summer, com-

pared to winter [11]. For lactating cows, HS conditions have been reported to reduce milk

yield by about 30–40% [12–14].

In addition to physiological responses, economic losses, including the cost of veterinary

care and farm management (fans, sprinklers installation) and involuntary culling can have

negative impacts on the dairy industry [15–17]. Therefore, the development of feasible meth-

ods and identification of biomarkers are essential for recognizing heat-stressed cows in order

to provide individual attention and tailor-made care. To investigate the effects of heat stress on

dairy cows, we used profiles of circulating microRNAs isolated from whole blood that was col-

lected in HS and non-HS season. Recent studies have demonstrated that microRNAs (miR-

NAs) are exported to the extracellular environment through microvesicles such as exosomes

and circulate in the blood [18, 19] and have shown tremendous potential as non-invasive bio-

markers in human cancers [20–22] and pregnancy [23], estrus [24], and aging [17] in dairy

cattle. In addition, miRNAs have different expression patterns under environmental and phys-

iological changes such as HS [25, 26]. The goal of this study was to find the potential biomark-

ers related to HS in lactating dairy cows and to identify the association of candidate miRNAs

with putative targeted genes under HS.

Materials and methods

Experimental animals

Before the start of the experiments, veterinarians regularly checked the cows’ medical condi-

tion in the dairy research center, and nine lactating Holstein-Friesian cows determined to be

healthy and free of disease were selected. All cows had 227±45.5 (mean±standard deviation)

average milking days (Individual cow records including age, parity, and calving date in S1

Table in S2 File). Diet was formulated according to NRC 2001, and the cows were fed twice a

day to meet the nutrient requirement. Pregnant (n = 4) and non-pregnant (n = 5) cows ate the

same feed in the same area. Freshwater was available for free, and mineral blocks were placed

on columns of the barn. In this study, all animal experimental designs and procedures were

approved by the National Institute of Animal Science Animal Care and Ethics Committee in

South Korea (NIAS-109). After the experiment, cows were housed for further studies.

Heat stress indicators

Temperature-humidity index (THI). In order to measure the THI in the barn, a THI

measuring device (Testo-174d, 5720500, Germany), which automatically recorded the temper-

ature and relative humidity, was attached to columns in three points in the barn. The
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measurements were recorded a total of 12 times a day at 2 h intervals. THI was calculated

using the following formula [27, 28]: THI = (0.8 × temperature (˚C) + [(relative humidity

(%)/100) × (temperature (˚C) − 14.4)] + 46.4.

Body weight & milk yield measurement. Bodyweight and milk yield were recorded auto-

matically during the milking by the milking robot (Lely Astronaut milking robot, Netherlands)

from June to October. We analyzed the average daily gain (ADG) using bodyweight data.

Based on the average milk yield for May, the relative average milk yield for each cow from

June to October was calculated.

Rectal temperature. Rectal temperature was measured at the same time as the blood col-

lection. In order to measure rectal temperature, the feces of cows were removed. Using rectal

thermometer (POLYGREEN Co. Ltd, Germany), the rectal temperature was manually mea-

sured at 14:00 under HS (Heat Stress; THI: 86.29) and NHS conditions (Non-Heat Stress;

THI: 60.87). For the accuracy, the measurement was repeated three times per cow, and the rec-

tal thermometer was inserted into the rectum more than 15 cm deep. We also calculated the

heat tolerance coefficient (HTC) according to the method described by Road A.O [29];

HTC = 100-10(RT(˚F)-101).

Statistical analysis. The quantitative data are presented as mean± standard error of the

mean (s.e.m) and analyzed by using GraphPad Prism (ver. 5.03, GraphPad Software, San

Diego, CA, USA). Significant differences were determined by Student t-test or one-way

ANOVA. P values <0.05 were considered statistically significant differences unless otherwise

stated.

Blood collection

The all cows were kept inside the barn that was opened for natural ventilation. We calculated

daily THI using the recorded air temperature and humidity, and chose the sampling date

when daily minimum THI > 72 and daily maximum THI <72 lasted for more than four

weeks (Fig 1). Whole blood was collected separately from jugular vein of the same cows (n = 9)

at two different environmental seasons (summer and autumn) using PAXgene Blood RNA

tube (2.5 ml/cow; Qiagen, 762165, California, USA) and vacutainer tube containing sodium

heparin (10 ml/cow; BD, vacutainer1, 367874, Franklin Lakes, NJ, USA). PAXgene Blood

RNA tubes were stored at -80˚C until miRNA extraction. Heparin tubes were immediately

centrifuged at 3,000×g for 10 min at 4˚C.

MiRNA extraction and cDNA synthesis

MiRNAs were isolated from whole blood using the PAXgene Blood MicroRNA Kit (Qiagen)

according to the manufacturer’s instructions. The miRNA concentrations were determined by

using NanoDrop (Optigen NANO Q, South Korea), and cDNA was synthesized using the miS-

cript II RT Kit (Qiagen, 218160, California, USA) following the manufacturer’s instructions

and stored at -80˚C until use. Realtime-qPCR was performed on 11 differentially expressed

(DE) miRNAs based on miRNA-seq results (|FC|� 2, P< 0.05) using miScript SYBR Green

PCR Kit (Qiagen 218073, California, USA) according to the manufacturer’s instructions with

StepOne Applied Biosystems real-time PCR machine (Applied Biosystems, Foster City, CA).

All RT-qPCR reactions were performed in triplicates. Endogenous control was bta-miR-128

[23]. All primer information used in this experiment is represented in S2 Table in S2 File.

miRNA-sequencing experiment and statistical analysis

We checked miRNA integrity using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, CA, USA) with an RNA integrity number greater than or equal to 7. To construct the
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library, we performed adapter ligation, reverse transcription, PCR amplification and pooled

gel purification using Truseq Small RNA Library Prep Kit (Illumina, San Diego, USA). A flow

cell containing millions of unique clusters was added to Illumina Hiseq2000 sequencer. Raw

sequencing reads of circulating miRNAs (publicly available on the GEO database accession

number GSE150912) extracted from all samples were pre-processed and analyzed using miR-

Deep2 software. Adapter trimming was performed to remove the adapter sequences attached

to the miRNA during small RNA library construction process using Cutadapt v.1.9.1 and then

to increase accuracy, trimmed reads (minimum 18 bp) were collected to form a cluster. The

pre-processed and clustered reads were aligned with Mus musculus reference genome, and

then those reads were aligned with Mus musculus precursor and matured miRNAs extracted

from miRBase v21. To detect known and novel miRNAs and estimate their abundance, we

used miRDeep2 software. The differentially expressed gene analysis was performed by Limma-

voom v3.34.9 R package [30–32]. Before the analysis, genes which had raw read counts were

filtered out by ‘filterByExpr’ function in edgeR R package [33]. Furthermore, TMM normaliza-

tion was performed to normalize each library size using ‘calcNormFactors’ function in edgeR.

Next, we used ‘voom’ function of Limma for read counts to transform to logarithmic (base 2)

scale prior to linear modeling. Finally, empirical Bayes and moderated t-test were used to

Fig 1. Temperature-humidity index (THI) measured on dairy barn. The straight line represents daily THI maximum and the dotted line represents daily

THI minimum. THI over 78 is marked in red (moderate to severe stress), and 72–78 in blue (mild to moderate stress), and less than 72 in black (non-stress).

Vertical dotted line represents THI on the day of sampling. BC, Blood collection; HS, Heat stress condition; NHS, Non-heat stress condition.

https://doi.org/10.1371/journal.pone.0231125.g001
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detect differentially expressed genes between two groups. The threshold to identify differen-

tially expressed genes was set up to the p-value < 0.01 and the logarithm fold change |logFC|

> 2.

Bioinformatics analysis

Two databases, miRmap (v1.1, mirmap.ezlab.org) and TargetScan (v7.2, targetscan.org), were

used to predict the target genes for DE miRNAs [34, 35]. Target genes were selected based on

the miRmap Score� 80 (provided by miRmap program) and context++ score percentile� 95

(provided by TargetScan program) was taken as the cut-off value to increase the accuracy of

the analysis. Gene Ontology analysis was performed using the PANTHER Classification Sys-

tem (v.14.1) [36] to identify the functional enrichment for a gene set. In addition, we analyzed

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways by uploading the target

gene list to DAVID Bioinformatics Resources 6.8 [37] to identify the functional enrichment

signaling pathways related to these target genes.

Results

Estimation of THI and blood collection

We measured ambient temperature and relative humidity inside the barn daily to estimate

THI (Fig 1). We observed that minimum THI exceeded 72 from the first week of July and even

reached over 80, and moderate/severe HS conditions (THI > 78) lasted for over one month.

Both maximum and minimum THI peaked around mid-August, and gradually declined; how-

ever, mild to moderate HS (THI 72–78) was detected until the end of September. We collected

whole blood at 14:00 from both pregnant and non-pregnant cows in the summer (HS) and

autumn (NHS). The THI ranged from 79.10 to 87.73 (14:00; 86.29) and 47.3–64.85 (14:00;

60.87) at the HS and NHS sample collecting day. The minimum THI of more than 72 (the cut-

off level for HS) until the HS sampling lasted for 36 days and the maximum THI of less than

72 until NHS sampling lasted for 28 days.

Effects of HS on physiological changes

We measured physiological HS indicators such as rectal temperature, milk yield, and ADG of

weight in pregnant and non-pregnant cows. The rectal temperature of cows was measured at

the time of blood collection. In NHS conditions, there were no differences between pregnant

(38.4˚C±0.07) and non-pregnant cows (38.02˚C±0.14). However, the rectal temperatures of

pregnant cows (40.15˚C±0.17) were higher than that of non-pregnant cows (39.36˚C±0.1,

P< 0.05, Table 1) under HS conditions. We also observed similar results in the HTC test;

non-pregnant cow showed higher tolerance in both HS and NHS conditions, and higher toler-

ance in non-pregnant under HS conditions were observed, compared to NHS conditions

(Table 1).

Table 1. Rectal temperature and HTC values under environmental conditions on the day of sampling.

Group Rectal temp.(˚C) HTC Temperature Range (˚C) THI

HS Pregnancy 40.15±0.17a 67.3±0.3a 27.3–37.4 79.10–87.73

Non-pregnancy 39.36±0.11b 81.52±0.20b

NHS Pregnancy 38.40±0.07c 98.8.±0.12c 8.4–17.6 47.3–64.85

Non-pregnancy 38.02±0.14c 105.64.±0.25d

HS, Heat stress; NHS, Non-heat stress; HTC, Heat tolerance coefficient: 100–10×(RT(˚F)-101).

https://doi.org/10.1371/journal.pone.0231125.t001
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To estimate the effect of HS on milk production, we used relative average milk yield; the

ratio of the total milk yield in a month of the testing period to the yield of a month (May). Rela-

tive average milk yield (AMY) decreased gradually in both pregnant and non-pregnant cows,

compared to milk yield of May, particularly a significant reduction was observed in pregnant

cows during extremely hot summer (August), and the recovery of AMY was observed in Sep-

tember (Fig 2A), indicating HS more severely may affect milk production of pregnant cows.

To investigate the effects of HS on growth performance, we analyzed the changes in ADG of

pregnant and non-pregnant cows during testing periods. As shown in Fig 2B, we found an

increase in ADG in both pregnant and non-pregnant cows, except for HS pregnant cows dur-

ing July, although ADG during summer was significantly reduced.

Identification of DE miRNAs of HS cows

We analyzed miRNAs isolated from the whole blood to identify DE miRNAs between heat-

stressed and non-heat-stressed cows using small RNA sequencing. In the non-pregnant group,

we found that 23 miRNAs were significantly DE (� 2-FC in the expression compared to NHS

controls; P< 0.05), including nine, upregulated and 14 downregulated miRNAs (Table 2). In

the pregnant group, we detected 28 DE miRNAs (10 upregulated, 18 downregulated;� 2-FC

and P< 0.05, Fig 3). We identified 11 common DE miRNAs in both non-pregnant and preg-

nant cows; two miRNAs (bta-miR-19a and bta-miR-19b) were upregulated and nine, includ-

ing bta-miR-30a-5p and several bta-miR-2284 families, were downregulated (Table 3). We

Fig 2. Physiological heat stress indicators recorded during HS and NHS conditions in both pregnant and non-pregnant lactating cows. (A) Relative average

milk yield (RAMY) to May; (B) Average dairy gain (ADG). HS, Heat stress; NHS, Non-heat stress; P, Pregnancy; NP, Non-pregnancy. Different superscript letters

indicate significant difference (P<0.05).

https://doi.org/10.1371/journal.pone.0231125.g002
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Table 2. Differentially expressed miRNAs in pregnant and non-pregnant groups under heat-stressed condition.

Status Mature_miRNA RNA sequencing

Fold change

|FC| (HS/NHS)� 2 (P<0.05)

NP FC value: Up-regulation

Bta-miR-19a 3.73

Bta-miR-19b 3.01

Bta-miR-153 2.64

Bta-miR-301a 2.32

Bta-miR-370 5.63

Bta-miR-374a 2.81

Bta-miR-454 2.01

Bta-miR-2285h 2.26

Bta-miR-6119-5p 2.18

FC value: Downregulation

Bta-miR-30a-5p -2.77

Bta-miR-133a -10.17

Bta-miR-151-3p -2.10

Bta-miR-2284a -11.04

Bta-miR-2284b -2.87

Bta-miR-2284h-5p -4.56

Bta-miR-2284k -5.47

Bta-miR-2284v -2.16

Bta-miR-2284w -2.20

Bta-miR-2284x -4.87

Bta-miR-2284y -4.71

Bta-miR-2332 -2.33

Bta-miR-2424 -3.17

Bta-miR-2453 -4.13

P FC value: Up-regulation

Bta-miR-19a 3.49

Bta-miR-19b 3.34

Bta-miR-20b 2.40

Bta-miR-29d-3p 3.77

Bta-miR-106a 2.25

Bta-miR-378d 2.39

Bta-miR-497 4.24

Bta-miR-502a 2.46

Bta-miR-2285ad 2.44

Bta-miR-2285o 5.98

FC value: Downregulation

Bta-miR-30a-5p -4.44

Bta-miR-146b -2.08

Bta-miR-296-3p -2.11

Bta-miR-1246 -9.49

Bta-miR-2284a -17.52

Bta-miR-2284aa -2.31

Bta-miR-2284ab -2.40

Bta-miR-2284b -3.61

(Continued)
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also validated these DE miRNAs by qRT-PCR. The results were very similar to the small RNA

sequencing results except for bta-miR-2284x (Table 3).

Putative target gene and signaling pathway analysis

We analyzed putative target genes of 11 common DE miRNAs using miRmap and TargetScan,

identified 890 genes, and performed gene set enrichment analysis (GSEA) using DAVID and

Table 2. (Continued)

Status Mature_miRNA RNA sequencing

Fold change

|FC| (HS/NHS)� 2 (P<0.05)

Bta-miR-2284h-5p -8.05

Bta-miR-2284k -7.77

Bta-miR-2284r -2.82

Bta-miR-2284v -2.84

Bta-miR-2284w -2.69

Bta-miR-2284x -10.37

Bta-miR-2284y -9.95

Bta-miR-2284z -2.19

Bta-miR-2397-5p -2.08

Bta-miR-2457 -2.15

https://doi.org/10.1371/journal.pone.0231125.t002

Fig 3. Volcano plot showing differentially expressed miRNAs between NHS and HS using transformed normalized data. |Fold change| value� 2 and P< 0.05

are represented different colors (minus: blue, plus: yellow). (A) Differentially expressed miRNA values in non-pregnant cows; (B) Differentially expressed miRNA

values in pregnant cows; HS, Heat stress; NHS, Non-heat stress; P, Pregnancy; NP, Non-pregnancy.

https://doi.org/10.1371/journal.pone.0231125.g003
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PANTHER (S1 Fig in S1 File). The GSEA showed that the putative target genes were associated

with the cytoskeleton, cell junction, immune response, oxidative stress involved in heat

response (Table 4). Besides, the KEGG pathway showed 18 statistically significant pathways

(S1-S3 Tables in S2 File). For example, the FoxO signaling pathway, peroxisome, regulation of

actin cytoskeleton, TNF signaling pathway, Rap1 signaling pathway, and chemokine signaling

pathway were found to be closely related to HS response. Furthermore, we analyzed putative

target genes of pregnancy-specific 23 DE miRNAs (S2 Fig in S1 File). Several DE miRNAs

(bta-miR-146b, bta-miR-20b, bta-miR-29d-3p, bta-miR-1246) were found to play essential

Table 3. Differentially expressed miRNAs in both non-pregnant and pregnant cows under HS conditions

(P< 0.05).

Mature_miRNA RNA sequencing RT-qPCR

Fold change

|FC| (HS/NHS) � 2 (P<0.05)

Endogenous Control: bta-miR-128

bta-miR-19a 3.61 2.01

bta-miR-19b 3.17 2.14

bta-miR-30a-5p -3.61 0.75

bta-miR-2284a -14.28 0.42

bta-miR-2284b -3.24 0.27

bta-miR-2284h-5p -6.30 0.84

bta-miR-2284k -6.62 0.98

bta-miR-2284v -2.50 0.35

bta-miR-2284w -2.45 0.63

bta-miR-2284x -7.62 1.08

bta-miR-2284y -7.33 0.79

HS, heat stress; NHS, non-heat stress.

https://doi.org/10.1371/journal.pone.0231125.t003

Table 4. Predicted target genes related to heat stress responses of miRNAs differentially expressed both pregnant

and non-pregnant cows.

DE miRNA Related to heat stress Target gene

Bta-miR-19a, -19b Cytoskeleton CLIP1, RAP2C, S1PR1, DNAI1, LPP, MICAL2, WASF3

Cell junction GJA1

Vasculogenesis ETV5, ANGPTL1, PTGER2

Cell proliferation VPS37A, POSTN, MAPK14, MAP3K12

Immune response TNF, MAPK14, MAP3K12, ALOX12, C5, BCL3

Oxidative and heat stress response HSPBAP1, UCP3

ATP synthesis COQ10B

DNA repair IGFBP3

Bta-miR-30a-5p Cytoskeleton RAP2C

Vasculogenesis ANGPTL1

Cell proliferation MAP3K12, KDHRBS3

Immune response FAP, ITK, AHSA2, PNKD

Oxidative stress UCP3, PLA2R1

Reproduction ADAM19

Bta-miR-2284 family Numerous genes involved in the immune responses (Data are not shown)

DE miRNAs, differentially expressed miRNAs.

https://doi.org/10.1371/journal.pone.0231125.t004
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roles in the regulation of progesterone biosynthesis and corpus luteum (Table 5). KEGG path-

way showed statistically significant 24 pathways (S4 Table in S2 File). Interestingly, the prolac-

tin signaling pathway was found to be closely related to progesterone synthesis.

Discussion

THI is widely used as an indicator to estimate the degree of HS in livestock animals because

the valid and reliable assessment of heat load may mitigate or minimize economic loss such as

inefficient reproductive performance and milk production in dairy cattle [38, 39]. The THI

values can be catabolized into five different classes; no HS (THI < 72), mild HS (72� THI�

78), moderate HS (78 < THI < 89), severe HS (89� THI� 98), and death (THI > 98) [40,

41]. To confirm whether cows experienced HS, we checked the association between THI and

physiological changes such as milk yield and ADG. We collected whole blood when mild HS

lasted more than one month (precisely 36 days), where milk yield and ADG decreased, and

non-HS samples were obtained at four weeks after minimum THI returned to< 72 (non-HS

condition), implying heat-stressed cows may fully recover from the long-term HS as seen in

increased milk production and ADG.

Interestingly, a significant decrease in milk production of pregnant cows during summer

might be attributed, in part, to feed-intake reduction because the lactating and pregnant cows

need more energy not only for the milk production but also for fetal growth, compared to

non-pregnant lactating cows [42, 43]. In this study, we indirectly estimated the feed-intake

using ADG. Notably, the negative ADG observed in pregnant HS cows suggested that HS may

cause appetite suppression and/or lower feed-intake, consequently resulting in the loss of body

weight. The dramatic increase in ADG may be attributed to compensatory placental growth by

increased feed-intake.

In accordance with previous studies, where a positive correlation between the rectal tem-

perature and THI value was reported [27], we also observed higher rectal temperature and

lower HTC in pregnant HS cows, indicating pregnant cows were more sensitive to HS than

non-pregnant cows. Physiological indicators proved that pregnant cows were more susceptible

to thermal stress, compared to non-pregnant cows.

To further understand the association between these physiological indicators, biological

processes, and cellular responses to HS, we identified DE miRNAs using RNAseq. We

employed an in silico approach for miRNA target prediction because circulating miRNAs in

body fluid may play essential roles in all biological processes and present as potentially useful

biomarkers of the HS response. We analyzed 11 common DE miRNAs in both pregnant and

non-pregnant cows under HS conditions (Table 3). Two upregulated bta-miR-19a and 19b

have been previously reported to targetHSPBAP1, DNAJB1, andHPX that respond to heat

stress, and downregulated bta-miR-30a-5p may have potential roles in heat stress response,

Table 5. Predicted target genes related to heat stress responses of miRNAs differentially expressed in pregnant

cows.

DE miRNA Target genes Responses

Bta-miR-146b CCL11 Improvement of Corpus luteum function

Bta-miR-20b XCL1
Bta-miR-29d-3p COL2A1, COL4A1, COL4A5, COL6A3, COL11A1

Bta-miR-1246 StAR Progesterone biosynthesis

DE miRNAs, differentially expressed miRNAs.

https://doi.org/10.1371/journal.pone.0231125.t005
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such as oxidation, through its target genes, PLA2R1 and PICEN [25]. In target gene prediction

and GESA, bta-miR-19a and bta-miR-19b are associated with biological functions including

the cytoskeleton, cell junction, vasculogenesis, cell proliferation, oxidative stress, immune

response and ATP synthesis (Table 4). It is well-established that mammalian cells, such as the

oocyte, embryo, and mammary gland epithelium were subjected to heat shock. Mainly, degra-

dation and dysfunction of the cytoskeleton in response to HS may result in the aberrant mito-

chondrial distribution, impaired mitochondrial function, and apoptosis/necrosis. Cellular

junctions are also involved in the transportation of ions and small molecules between the

blood and milk barrier at the mammary gland. Interestingly, we identified that bta-miR-30a-

5p regulated a disintegrin and metalloprotease 19 (ADAM19), which is required for early

embryo development and implantation in mammals [44]. A ruminant specific miRNA, bta-

miR-2284 family, was also identified, putative target genes of which are related to the heat-

induced immune response, although the biological roles have not been determined [45].

Integrative approaches using the predicted target genes of DE miRNAs, and DAVID identi-

fied several KEGG pathways such as FoxO signaling, actin cytoskeleton, Rap1 and rapamycin

(mTOR) signaling that are involved in transcription activation of heat shock proteins, mito-

chondria distribution and activity, regulation of energy homeostasis including glucose, and

lipid metabolism [46–54]. We also found, in line with a previous study [25], immune response

related pathways such as chemokine and TNF signaling [55, 56]. In addition, several DE miR-

NAs (bta-miR-146b, bta-miR-20b, bta-miR-29d-3p, bta-miR-1246) were differentially

expressed in summer heat-stressed pregnant cows. Interestingly, bioinformatics analysis

showed their predicted target genes are associated with function of corpus luteum including

progesterone biosynthesis [57, 58] and prolactin signaling pathways (S4 Table in S2 File).

As described above, the blood samples were collected from the same animals including

pregnant and non-pregnant cows, suggesting that the different period or gestational age may

affect the profile of gene expression. Thus, we first identified differential expressed genes in

both pregnant and non-pregnant cows under HS, reflecting effects of HS and different time

periods including different stage of lactation. However, the effects may be canceled out by the

common genes both pregnant and non-pregnant cows, and their parities with different stages

of lactation (S1 Table in S2 File). In addition, profiles of putative target genes by DE miRNAs

are also associated with metabolism and reproductive system, supporting that HS may induced

the DE miRNAs. Comprehensively, our findings suggest that the experimentally verified

miRNA targets and in silico analysis reflect that the selected miRNA could be potentially used

to determine response to HS.

Conclusions

We analyzed physiological HS indicators such as milk yield, rectal temperature, ADG, in preg-

nant and non-pregnant cows and found that pregnant cows are more vulnerable under HS

conditions. In transcriptome analysis of miRNAs using RNA-sequencing, 11 miRNAs (bta-

miR-19a, bta-miR-19b, bta-miR-30a-5p, several from bta-miR-2284 family) were differentially

expressed (|FC|� 2, P< 0.05) in both pregnant and non-pregnant cows. In pregnant cows

under HS, two miRNAs (bta-miR-20b, bta-miR-29d-3p) were upregulated while two miRNAs

(Bta-miR-146b, bta-miR-1246) were downregulated. These selected miRNAs could be poten-

tial biomarkers associated with HS. Admittedly, the our findings of the present study are lim-

ited by the small datasets, their statistical approach, experimental designs that could be

attributed to the inherent limitations of the samples (synchronized gestation ages, parities, lac-

tation stages) and heat stress condition (frequent, intense, and duration). Thus, we need to ver-

ify our results using model animals or the climate control system (temperature and humidity).
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