
PERSPECTIVE
published: 14 July 2021

doi: 10.3389/fpubh.2021.668062

Frontiers in Public Health | www.frontiersin.org 1 July 2021 | Volume 9 | Article 668062

Edited by:

John Hay,

University at Buffalo, United States

Reviewed by:

Jeanne Marie Fair,

Los Alamos National Laboratory

(DOE), United States

Faris Hasan al Lami,

University of Baghdad, Iraq

*Correspondence:

Willy A. Valdivia-Granda

willy.valdivia@orionbio.com

Specialty section:

This article was submitted to

Infectious Diseases - Surveillance,

Prevention and Treatment,

a section of the journal

Frontiers in Public Health

Received: 01 March 2021

Accepted: 07 June 2021

Published: 14 July 2021

Citation:

Valdivia-Granda WA (2021) Known

and Unknown Transboundary

Infectious Diseases as Hybrid Threats.

Front. Public Health 9:668062.

doi: 10.3389/fpubh.2021.668062

Known and Unknown Transboundary
Infectious Diseases as Hybrid
Threats
Willy A. Valdivia-Granda*

Orion Integrated Biosciences Inc., Manhattan, KS, United States

The pathogenicity, transmissibility, environmental stability, and potential for genetic

manipulation make microbes hybrid threats that could blur the distinction between peace

and war. These agents can fall below the detection, attribution, and response capabilities

of a nation and seriously affect their health, trade, and security. A framework that

could enhance horizon scanning regarding the potential risk of microbes used as hybrid

threats requires not only accurately discriminating known and unknown pathogens but

building novel scenarios to deploy mitigation strategies. This demands the transition of

analyst-based biosurveillance tracking a narrow set of pathogens toward an autonomous

biosurveillance enterprise capable of processing vast data streams beyond human

cognitive capabilities. Autonomous surveillance systems must gather, integrate, analyze,

and visualize billions of data points from different and unrelated sources. Machine

learning and artificial intelligence algorithms can contextualize capability information

for different stakeholders at different levels of resolution: strategic and tactical. This

document provides a discussion of the use of microorganisms as hybrid threats

and considerations to quantitatively estimate their risk to ensure societal awareness,

preparedness, mitigation, and resilience.
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INTRODUCTION

Known and unknown transboundary infectious diseases that can affect humans, animals, and
plants continue to emerge, reemerge, and persist in different locations worldwide (1, 2). The
current pandemic of SARS-CoV-2 (3), the spread of the African Swine Fever Virus (ASFV) (4),
and the impact of rice and wheat blast (5–7) are startling examples of how infectious diseases
can become global challenges disrupting health, trade, and security. In addition to environmental
factors, human activity contributes to the increasing emergence and reemergence of pathogenic
microorganisms (8). Travel and trade are associated with 61% of the infectious disease outbreaks,
and public health system failure and sociodemographic factors are accountable for 21 and 18% of
these incidents (1). With the increasing number of travelers and the transcontinental movement of
commodities, tracing the origins of natural or intentional pathogen introductions as acts of warfare
or terrorism is difficult (9–11).

A perpetrator can take advantage of the unknown diversity of microbes, DNA genetic
manipulation, and artificial intelligence to generate combinatorial organisms with new biological
properties engineered to inflict harm (10). Denial and deception activities can cover offensive
developments and transfer biological agents within state and non-state actors (8, 10, 12, 13).
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In addition to the direct threat posed to public health,
the intentional introduction of infectious agents can cause
political and economic destabilization, the coercion of markets,
resources, and technology (14). Such an event could trigger
trade restrictions or force countries to adopt quarantine policies
detrimental to their overall interests. The offensive use of
microorganisms targeting vulnerable soft targets can undermine
the political and military response of countries affected (15).
Because of the technological complexity of the attack, it could
take years for the intelligence community to understand this
biothreat terrain and more years for the research community to
develop countermeasures against them.

Hybrid warfare is an active strategy that uses a combination
of hybrid threats, including regular, irregular, terrorist, and
criminal acts, against the most vulnerable sectors of a nation
to achieve military and political goals. Because hybrid threats
aim to destabilize and undermine societies, microbes are ideal
agents to be used within a range of modes for sabotaging and
attacking soft targets such as public health systems, agricultural
production, and the food supply. Counteracting these hybrid
threats requires a highly adaptable and resilient response.
However, a fundamental dilemma of microbes as hybrid threats
is whether to do something about them or if such hostile activity
can be tolerated or absorbed (16). Another obstacle to thinking
clearly about infectious diseases as hybrid threats is terminology
(15, 17). Terms such as “hybrid” with the words “threats,”
“warfare,” “activity,” “operations,” and “tactics” are common in
military literature (16). Concepts such as “gray zone warfare,”
“competition short of war,” and “modern political warfare” are
conflated in policy publications (15, 18). However, these concepts
are seldomly used in the biological sciences. This limited scope
restricts possible scenario analysis of events where pathogens
outbreaks emerged into terrestrial and aquatic environments,
causing deaths, economic damage, and trade restrictions (19–
21). This document introduces concepts and plausible scenarios
about known and unknown microbes as hybrid threats. It
also proposes enhancing current analyst-based biosurveillance,
using improved capability assessment tools and implementing
autonomous systems tracking infectious disease outbreaks in
humans, animals, and plants.

TRANSBOUNDARY INFECTIOUS
DISEASES AS HYBRID THREATS

In 2005, Mattis et al. stated that “Our conventional superiority
creates a compelling logic for states and non-state actors to
move out of the traditional mode of war and seek some niche
capability or some unexpected combination of technologies and
tactics to gain an advantage.” (22). Although the term “hybrid
warfare” appeared along with irregular and asymmetric warfare,
hybrid warfare rose to prominence in academic literature
around 2014 to describe a change in the character of conflict
(23). Under this assessment, adversaries combine conventional,
unconventional, and irregular approaches with non-military
means to neutralize superior conventional military power.
Hybrid threats simultaneously and adaptively combine a wide

range of violent and non-violent means to target vulnerabilities
across society to undermine its functioning, unity, or will (15).
The magnitude of the agricultural system and the food supply
and its impact on public health and the economy make these
value chains ideal targets for disruption. Through proxies and
ambiguities, state-sponsored groups or self-funded attackers can
employ microbes as hybrids threats. These agents can prevent
or trigger early warning and avoid attribution, prosecution, or
retaliatory responses.

Natural and human-made pathogens and toxins can be used
as hybrid threats against soft targets as unknown unknowns (e.g.,
biothreats we are not even aware that we are unaware of) or
known unknowns (e.g., biothreats beyond traditional biological
agents). Artificial intelligence techniques simulating in silico
“genomic rewinding (reversion) or forwarding” (adaptation)
populations can lead to the synthesis of unknown ancestors
or variants targeting specific ethnic groups (24), animal or
plant breeds (25). These new unknown variants could not only
defeat DNA synthesis screening, diagnostics, and other available
countermeasures, including detection and antimicrobials, but
could be more virulent and overcome immune profiles generated
by vaccination or prior exposure to closely related pathogens.
Computational biology can also derive more thermostable
proteins modulating hyperthermic incubation and fever (26).
Pathogens can be introduced in asymptomatic and diseased cold-
or warm-blooded species and plants as a threat multiplier to
produce the loss of lives of humans, animals and crops, triggering
food product shortfalls, travel and trade restrictions, price spikes,
and market distortions. These systemic failures can affect the
capability of a nation and cause severe or catastrophic events (27).

LIMITATIONS OF BIOSURVEILLANCE AND
CAPABILITY ASSESSMENT SYSTEMS

Internet-based communicable disease outbreak monitoring
began to be implemented in the early nineties, but their
deployment expanded significantly after the 2001 anthrax attacks
in the US (28–32). Despite the progress, biosurveillance remains
retrospective and suffers from tradeoffs among sensitivity,
accuracy, and timeliness. Underreporting or misreporting
infectious disease outbreaks depends on the varying degrees of
detection capability, economic pressure, and trade dynamics of
each country. Current reporting methods can lag by days or
weeks in reporting the emergence of a narrow set of pathogens.
The quality of this information can be affected by the degree
of access, source moderation, language translation capacity, and
the use of rule-based tools to discard potential noise (29, 33–
37). The quality of information is often uncertain, leading to
judgment errors in the products that support decision-making
about prevention, preparedness, and response (38–42). Some
biosurveillance tools inaccurately reported or underestimated
the emergence or reemergence of infectious diseases, including
Ebola, Zika, and Chikungunya, yellow fever, cholera, and more
recently SARS-CoV-2 (29, 36, 43–46).

Pathogens can inflict harm depending on a complex set of
social, economic, and preparedness parameters intrinsic to the
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public health, agricultural, and food supply chains of each nation
(8). Therefore, an essential aspect of monitoring and tracking
potential disruptions is assessing the mitigation capability of
a nation. The logical framework dates back centuries from
examining how military forces could defend against foreign and
domestic adversaries. For the last 60 years, Military Balance
has used quantitative criteria to evaluate the military potential
of the state (47). By establishing capability indexes, military
commanders and state managers evaluated how specific policies
and modernization strategies improved readiness, efficiency,
and sustainability. Following a similar approach, in 1990, the
United Nations published the Human Development Report,
which quantitatively ranked the health, education, and income of
the nation in what is known as the Human Development Index
(HDI) (48). Analysis of the HDI led to expanding this approach
to quantify public health capabilities (33–35), societal safety,
resilience, technological development and establish national
strategies implementing joint activities performed by diverse
government agencies and organizations, providing a unified
solution to a problem or issue.

Public health indexes measuring the risk of catastrophic
events to a country draw information from internationally
accepted sources, and governments are crucial for global
policy development (49–51). These indexes estimate the risk to
infectious microorganisms by characterizing factors influencing
vulnerability: demographic, health care, public health, disease
dynamics, political-domestic, political-international, and
economics. These evaluations assume that data aggregation
and various statistics can explain the health differences
and technological expertise and physical investments that
correlate with technical capabilities (52). However, some of
the components of these indexes are aggregated based on
a score conversion, and clustering or classifying this data
does not necessarily coincide with the ranking of the index.
This situation arises because health indexes use quantitative
indicators from semi-structured interviews or surveys that
might be too subjective due to all the assumptions needed

to build them (41, 53). Some estimations are biased by the
nature of self-evaluation of each country or by the conclusions
of a small number of researchers with restricted analytic and
data mining tools. While global health indexes focus on the
technical soundness of estimation methods, country users are
more concerned about the extent of their involvement in the
estimation process (54). Therefore, disparities in analytical tools
used for near real-time infectious disease awareness vary across
and within countries (54). As a result, available data may not be
comparable over time, and estimates driven by covariates make
scoring and interpretation difficult (39).

MITIGATING HYBRID THREATS WITH
AUTONOMOUS BIOSURVEILLANCE

Tracking thousands of infectious agents and toxins, attributing to
their origin, identifying proliferation activities of the countries,
and detecting outbreaks, is key to quantifying the risk and
discriminating hybrid threats. Operating in an increasingly
dynamic, complex, and uncertain globalized world imposes new
requirements for early warning of infectious agents and toxins
affecting humans, animals, and plants. This requires overcoming
the limitations of analyst-based biosurveillance systems using
autonomous biosurveillance (3). A federated and distributed
biosurveillance enterprise should include data collection,
integration, disambiguation, analysis, contextualization, and
algorithms (Figure 1). This system uses heterogeneous data
sources generated at scales of gigabytes per second, including
novel or underexplored data sources initially generated not to
answer epidemiological questions. Daily passenger arrivals and
cargo importations, economic growth rates, buying patterns,
trade composition, competitiveness, and dynamics of specific
food commodities within different trading partners and
nations can complement epidemiological information. Data
with different levels of resolution and stakeholders, including
but not limited to remote sensing generated by satellites,

FIGURE 1 | Elements of an autonomous biosurveillance system.
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genomic sequencing, news outlets, aircraft, maritime vessels,
and terrestrial cargo movement, are integrated. Disambiguation
analysis discriminates misinformation by mapping and scoring
reliability and quality using credibility and precision-recall
algorithms (55). Because this type and volume of information
overwhelm human cognitive capabilities, deep learning analytics
and natural language can generate extractive and abstractive
summaries from documents with conflicting information (56).
These analytical techniques can autonomously access and
organize data, translate information from different languages,
and reduce human cognitive load and error.

Implementing an early warning pathogen system and a
robust autonomous biosurveillance enterprise must avoid a
centralized approach for data collection; instead, it should
promote a federated multilateral system. The current and future
computing power make it possible to analyze increasingly
complex information where statistical inferences are limited.
This could lead to the construction of different scenarios of
the potential impact of specific hybrid threats in human health,
agricultural production, and food supply (57). An autonomous
biosurveillance enterprise could perform risk assessments using
artificial intelligence algorithms that learn, adapt, and evolve
as hybrid threats emerge. This process can overcome the
cognitive biases that inevitably cloud human judgment and
focus on quantitative risk assessments in four-time national
security time frames and levels: the immediate and the
emerging and the strategic and tactical. More importantly,
it can open the possibility for near real-time policymaking
assessment and adjustment. Near real-time data-driven analysis
tools can provide new insights for evidence-based decision-
making. Forecasting tools provide scenarios with probabilities
of outcomes and provide some indicators to estimate capability
and vulnerability. Such an approach will require a new legislation
that improves information exchange efficiency between the
authorities, private industry, and other nations. Given the
connectivity of agricultural production with the global market
and the susceptibility to disruption of the food supply
chain, the development of robust autonomous biosurveillance
systems requires researchers and public health experts to
work closely with personnel in the ports of entry. Such an
approach could overcome the limitations of available systems
and help policymakers implement and deploy strategic and

tactical countermeasures to mitigate the impact of known and
unknown pathogens.

CONCLUDING REMARKS

Public health, agricultural production, and food supply chain
safety are the backbone of the development of a nation. The
disruption of this highly vulnerable system using known
and unknown pathogens could trigger severe economic
and catastrophic events. This offensive use will remain a
feature of the ambiguous and non-traditional hybrid warfare
seeking to undermine international norms. Therefore, it is
essential for the research and policy community to build
new strategies to mitigate the plausible deniability of state
and non-state perpetrators. Autonomous biosurveillance
integrating data stream and advanced analytics can reduce
human cognitive load and error of analyst-based biosurveillance
and guide decision-making strategies in near-real-time.
This approach can generate new capability enhancements,
accelerate international cooperation among public and
private stakeholders, and rapidly advance mitigation and
resilience strategies countering hybrid threats. We must
be prepared.
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