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Recent advances in DNA sequencing have expanded our understanding of the molecular basis of genetic disorders and in-

creased the utilization of clinical genomic tests. Given the paucity of evidence to accurately classify each variant and the

difficulty of experimentally evaluating its clinical significance, a large number of variants generated by clinical tests are re-

ported as variants of unknown clinical significance. Population-scale variant databases can improve clinical interpretation.

Specifically, pathogenicity prediction for novel missense variants can use features describing regional variant constraint.

Constrained genomic regions are those that have an unusually low variant count in the general population.

Computational methods have been introduced to capture these regions and incorporate them into pathogenicity classifiers,

but these methods have yet to be compared on an independent clinical variant data set. Here, we introduce one variant data

set derived from clinical sequencing panels and use it to compare the ability of different genomic constraint metrics to deter-

mine missense variant pathogenicity. This data set is compiled from 17,071 patients surveyed with clinical genomic sequenc-

ing for cardiomyopathy, epilepsy, or RASopathies. We further use this data set to demonstrate the necessity of disease-

specific classifiers and to train PathoPredictor, a disease-specific ensemble classifier of pathogenicity based on regional con-

straint and variant-level features. PathoPredictor achieves an average precision >90% for variants from all 99 tested disease

genes while approaching 100% accuracy for some genes. The accumulation of larger clinical variant training data sets can

significantly enhance their performance in a disease- and gene-specific manner.

[Supplemental material is available for this article.]

Comprehensive sequencing has become the cornerstone of geno-
mic medicine and research. However, unlike previous targeted or
single gene testing, multigene sequencing can yield thousands of
rare variants often requiring manual clinical correlation and inter-
pretation. Unlike synonymous (or silent) and loss-of-function
(mainly nonsense, frameshift, and canonical splice site) variants
forwhich the impact on the protein can be relatively easily predict-
ed, novel missense variants are the most challenging to interpret,
often leading to inconclusive genomic reports and leaving clini-
cians and familieswith uncertainties. On the other hand, research-
ers are currently incapable of studying the impact of every possible
missense variant in the ∼20,000 genes of the human genome.
Therefore, novel clinical-grade approaches are needed to assist cli-
nicians and researchers in determining the pathogenicity of mis-
sense variants.

Machine learning has yielded several pathogenicity predic-
tion tools built with variant features and previously assigned path-
ogenic and benign labels. Collections of labeled variant labels for
classifier training and testing include the Human Gene Mutation
Database (HGMD) (Stenson et al. 2009), the Leiden Open
Variation Database (Fokkema et al. 2011), and ClinVar (Landrum

et al. 2016). In addition, frequently occurring variants from data-
bases like the Genome Aggregation Database (gnomAD) (Lek
et al. 2016) are used as a substitute for benign variants. Variant fea-
tures can describe single positions (e.g., genomic sequence context
and amino acid conservation) or regions that contain the variant
(e.g., protein domains and variation constraint).

Two uses of simple region features are seen in the Functional
Analysis throughHiddenMarkovModels (FATHMM) (Shihab et al.
2013) and the Variant Effect Scoring Tool (VEST) (Carter et al.
2013). FATHMM and VEST were found to be the most important
features for determining pathogenicity in an ensemble of 18 pre-
diction scores called REVEL (Ioannidis et al. 2016). VEST distin-
guished disease missense variants in HGMD from high
frequency (allele frequency >1%) missense variants from the
Exome Sequencing Project (ESP) (NHLBI GO Exome Sequencing
Project 2013, http://evs.gs.washington.edu/EVS/) using a random
forest with 86 features from the SNVBox database (Wong et al.
2011). These features describe amino acid substitutions, regional
amino acid composition, conservation scores, local protein struc-
ture, and annotations of functional protein sites. FATHMM scored

Corresponding author: Ahmad.Tayoun@ajch.ae
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.240994.118.

© 2019 Evans et al. This article is distributed exclusively by Cold Spring Harbor
Laboratory Press for the first six months after the full-issue publication date (see
http://genome.cshlp.org/site/misc/terms.xhtml). After sixmonths, it is available
under a Creative Commons License (Attribution-NonCommercial 4.0 Interna-
tional), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Method

1144 Genome Research 29:1144–1151 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/19; www.genome.org
www.genome.org

http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
mailto:Ahmad.Tayoun@ajch.ae
http://www.genome.org/cgi/doi/10.1101/gr.240994.118
http://www.genome.org/cgi/doi/10.1101/gr.240994.118
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


variants by their conservation in homologous sequences, weight-
ed by the tolerance of each variant’s protein family (Pfam) domain
or SUPERFAMILY (Gough et al. 2001) to mutations observed in
HGMD and the set of functionally neutral UniProt variants (The
UniProt Consortium 2017). VEST’s inclusion of functional protein
sites and FATHMM’s Pfam domain tolerance consideration en-
abled them to capture regional protein features such as domain
structure and conservation, but did not capture regional tolerance
to genetic variation.

Large variant collections like the Exome Aggregation Consor-
tium (ExAC) data set (Lek et al. 2016) and gnomAD have enabled
metrics that summarize purifying selection within genomic re-
gions. Regions with high purifying selection are constrained and
have less population variation than expected. Regions with low
purifying selection are unconstrained andhave equal ormore pop-
ulation variation compared to expectation. With this knowledge,
classifiersmight flag a variant as pathogenic if it lies within a geno-
mic region that selects against variants (Amr et al. 2017). Here, we
examine three constraint metrics derived from ExAC or gnomAD.
One such constraintmetric is the constrained coding region (CCR)
percentile, which compared observed variant counts from gno-
mAD to those predicted by CpG density (Havrilla et al. 2019). A
similar feature called missense depletion was constructed for the
missense badness, PolyPhen-2, and constraint (MPC) pathogenic-
ity classifier of de novo missense variants (Samocha et al. 2017).
MPC’s missense depletion feature was measured as the fraction
of expected ExAC variation that was observed in exons. Only
ExAC variants with minor allele frequencies <0.1% were consid-
ered. The expected rate of rare missense variants was based on a
model that used both gene and sequence context specific muta-
tion rates (Samocha et al. 2014). An additional pathogenicity fea-
ture introduced by MPC was missense badness, which accounted
for an amino acid substitution’s increase in deleteriousness when
it occurs in a missense-constrained region. The third constraint
metric is the missense tolerance ratio (MTR), which was calculated
in 31 codon windows using missense and synonymous variant
frequencies from ExAC and gnomAD (Traynelis et al. 2017).
MTR is the ratio of the observed missense variant fraction to the
missense variant fraction calculated from all possible variants in
the window when all nucleotide changes are equally likely. A var-
iant in a lowMTR region is expected to have a high chance of being
pathogenic.

In this paper, we evaluate the effectiveness of region-based
pathogenicity predictors in a clinical setting. We introduce three
patient variant training data sets gathered from clinical sequenc-
ing panels for cardiomyopathy, epilepsy, and RASopathies. These
data sets cover 17,071 patients. All variants have been manually
classified by two main clinical laboratories, whose members
significantly contributed to the development of the American
College of Medical Genetics and Genomics/Association for
Molecular Pathology (ACMG/AMP) sequence variant interpreta-
tion guidelines (Richards et al. 2015). We use each data set to com-
pare CCR, FATHMM,missense badness, missense depletion, MTR,
and VEST, and to train disease-specific predictors. These clinical
variant sets have the advantage of being consistently reviewed in
a clinically soundmanner and originate from focused disease stud-
ies. This allows us to explore the hypothesis that disease-specific
classifiers, first introduced for smaller gene sets (Tavtigian et al.
2008; Homburger et al. 2016), are better than general genome-
wide classifiers.We also introduce PathoPredictor, a disease-specif-
ic pathogenicity score trained with clinical sequencing panel var-
iants to combine the pathogenicity scores compared here.

Results

Variants and genes studied

We focused on patient variants from three disease panels: cardio-
myopathy, epilepsy, andRASopathies (Fig. 1).We also investigated
the subset of epilepsy dominant genes: CDKL5, KCNQ2, KCNQ3,
PCDH19, SCN1A, SCN1B, SCN2A, SCN8A, SLC2A1, SPTAN1,
STXBP1, and TSC1. These genes account for a large number of ep-
ilepsy pathogenic variants and, because they follow a dominant
inheritance pattern, might have distinct characteristics impacting
variant prediction relative to all other epilepsy genes (see below).
For each disease variant set, we compared the performance of
CCR, FATHMM, missense badness, missense depletion, MTR,
and VEST using panel and ClinVar variants with pathogenicity la-
bels. We also built PathoPredictor, an ensemble classifier of patho-
genicity, and tested it with variants fromClinVar not found in our
disease panel variant sets. To ensure the reliability of ClinVar var-
iant pathogenicity labels, we examined only unambiguously path-
ogenic or benign variants, and split ClinVar into two variant
groups: all ClinVar variants and those that have been reviewed.
Few of these variant collections have an equal amount of patho-
genic and benign variants, with a drastic imbalance for cardiomy-
opathy panel variants.

Disease-specific classifier evaluation

We used disease panel and ClinVar data sets to compare pathoge-
nicity classifiers and to train and test PathoPredictor (Fig. 2). For
each disease, we used panel and ClinVar variants to build preci-
sion-recall curves using pathogenicity scores fromCCR, FATHMM,
missense badness, missense depletion, MTR, and VEST. These
curves were summarized using average precision. To evaluate
PathoPredictor, we examined each disease panel gene, trained a
model using disease panel variants not found in the selected
gene, and tested the model using panel and ClinVar variants
from the gene. By training PathoPredictor with disease-specific
variants, we collected variants that belong to genes that are more
likely to share a common biological pathway and might have sim-
ilar tolerance to variants.

Figure 1. Study data sets. Missense variant and gene counts are shown
by disease panel and ClinVar variant set. We only used ClinVar variants
from panel genes and considered either any ClinVar variant (Total
ClinVar), or ClinVar variants that have been reviewed (ClinVar
w/Evidence). ClinVar variants were restricted to those with no conflicting
pathogenicity assignments, and any genomic position from the panel
data was removed from the ClinVar variant sets.

Disease-specific variant pathogenicity prediction
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PathoPredictor predicts the pathogenicity of disease panel
variants with an average precision higher than that obtained
with any single feature (Fig. 3). The average precision of PathoPre-
dictor is >90% for all disease panels. CCR has the highest average
precision among the single features. The majority of the time,
PathoPredictor’s performance was significantly better than that
of any single feature in the 24 comparisons made across six fea-
tures and four panel variant sets (18 of the total 24 comparisons
in all four panels, P<0.05). PathoPredictor was not significantly
better than CCR for the dominant epilepsy genes, where it was
expected that regional constraint would be most critical (see
above). The remaining five exceptions were in the RASopathies
and cardiomyopathy panels, which both had the lowest variant
count (Fig. 1). However, when evaluating with more variants
(below), a significant advantage of PathoPredictor over all single
features was observed (P<0.03) (Fig. 4).

PathoPredictor’s performance was next evaluated using a
larger independent variant set from ClinVar (Fig. 4). For each dis-
ease panel, we found that PathoPredictor performed significantly
better than any single featurewhen examining all ClinVar variants
(P<0.03). PathoPredictor performed similarly when using all of
ClinVar and the reviewed subset of ClinVar, achieving an average
precision >95% for all variant sets. The poor average precision
obtained when using VEST, FATHMM, and missense badness
to predict cardiomyopathy panel variants was not replicated
using ClinVar variants in cardiomyopathy panel genes. This
discrepancy can be attributed to the lower number of cardio-
myopathy panel variants, especially pathogenic variants (Fig. 1).

PathoPredictor showed consistent results
for RASopathy ClinVar and panel vari-
ants; however, given the larger number
of ClinVar variants, the improved perfor-
mance of PathoPredictor was now statis-
tically significant in ClinVar (P<0.004).

As a further test of PathoPredictor,
we trained PathoPredictor with ClinVar
variants and evaluated each classifier
with disease panel variants (Fig. 5). For
training, we used either total ClinVar
variants or those that had been review-
ed, and we restricted ClinVar training
variants to genes from the disease panel
used for evaluation. PathoPredictor
achieved an average precision of at least
90% for all evaluations. PathoPredictor
performed better than each of its six fea-
tures (P<0.05), except for missense
depletion for cardiomyopathy panel var-
iants, CCR, missense badness, and VEST
for RASopathypanel variants (most likely
owing to limited cardiomyopathy and
RASopathy panel variants), and CCR for
dominant epilepsy panel variants. These
findings are consistent with the disease
panel hold-one-gene-out approach in
Figure 3.

Assessing the gene-wise perfor-
mance of PathoPredictor is challenging
because most genes have a small variant
sample size. However, some genes with
high variant count were found to best
demonstrate the utility of PathoPredic-

tor (Fig. 6A). When using the hold-one-gene-out approach for
training and evaluation on disease panel data, PathoPredictor
had an accuracy of 95% for the 27 pathogenic and 10 benign var-
iants in KCNQ2. When training on panel variants and validating
with ClinVar variants, PathoPredictor had a 96% accuracy for
41 pathogenic and six benign ClinVar variants in KCNQ2. High
accuracies were also observed for RAF1, SCN2A, SCN5A, and
STXBP1.

Comparing PathoPredictor with MPC and REVEL

REVEL is a state-of-art ensemble classifier of pathogenicity.
Built using 18 prediction scores, it has more features than
PathoPredictor, but does not contain recent genomic constraint
features likeCCR andmissense depletion.MPC is a recent classifier
of pathogenicity that was trained to combine genomic constraint
features with PolyPhen-2 scores using missense pathogenic
ClinVar variants and a benign variant set constructed using mis-
sense variants with 1% or higher ExAC frequencies. We used the
set of de novo variants to compare PathoPredictor, MPC, and
REVEL (Fig. 6B; Methods). We focused on our PathoPredictor epi-
lepsy classifiers because they were expected to be most relevant to
the neurodevelopmental and autism disorder variants from the
validation de novo data set. We found that the dominant epilepsy
trained PathoPredictor achieved >94% average precision, which
was significantly higher than that of REVEL or MPC (P<0.05)
(Fig. 6C). Both PathoPredictor classifiers achieved a greater average
precision than REVEL (P<0.05) (Fig. 6C).

Figure 2. Method description. Our goal was to build disease-specific classifiers of missense variant
pathogenicity using variants from clinical panels. For all genes in a disease panel, we trained a model us-
ing variants from all other genes except the gene in question and tested the model using variants from
that gene of interest. We then used ClinVar variants from the gene of interest as an independent test set.
Test results were summarized as average precision scores.
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Discussion

We have shown that the efficacy of vari-
ant pathogenicity prediction varies by
disease, whereby each disease dictates
a unique combination of classifier
features. We have also presented Patho-
Predictor, a new missense variant patho-
genicity predictor trained with variants
from clinical sequencing results to pro-
duce pathogenicity scores from disease-
specific combinations of regional con-
straint and variant features. PathoPredic-
tor achieves an average precision greater
than its components: CCR, FATHMM,
missense depletion, missense badness,
MTR, Pfam domain status, and VEST.
FATHMM, Pfam domain status, and
VEST capture regional constraint by us-
ing domains and protein families, where-
as CCR, missense depletion, missense
badness, and MTR locate genomic re-
gions with less natural population vari-
ants than expected by null models of
variation.

The evaluation of PathoPredictor
and other variant classification tools is
limited by available data describing path-
ogenic and benign variants. Ideally,
these data would come from unbiased
functional, mechanistic, tissue-based
studies. Because these data sets do not ex-
ist in large quantities, we chose to use

ClinVar and established variant interpre-
tation protocols to determine a ground
truth for variant pathogenicity. The per-
formance of PathoPredictor is dependent
on the quality of these annotations, and
additional functional studies are needed
to construct better databases for the
training and evaluation of pathogenicity
classifiers.

CCR was determined to be the
most useful feature for classification,
replicating results from Havrilla et al.
(2019). Consistent with a recent survey
of pathogenicity predictor performance
using ClinVar variants (Ghosh et al.
2017), we found that VEST outper-
formed FATHMM for ClinVar variants.
Missense depletion and badness were
consistently the worst performing classi-
fication scores. The differing perfor-
mance of these tools by disease panel
demonstrates the utility of constructing
PathoPredictor as a disease-specific com-
bination of tools.

To construct PathoPredictor, we in-
troduced a unique variant data set de-
rived from clinical panel sequencing

A

B

Figure 3. Disease-specific classifier performance using disease panel cross-validation. For each disease
panel, we used a hold-one-gene-out approach to evaluate a logistic regression model’s ability to predict
pathogenicity. For all genes in a disease panel, we trained PathoPredictor using variants from all other
genes and tested themodel using variants from the gene of interest. Using the held-out gene variant pre-
diction scores, we computed a precision-recall curve (A) and summarized the curve as the average pre-
cision (B). We then computed a precision-recall curve for each individual feature using untransformed
scores. The numbers of pathogenic (p) and benign (b) variants investigated are shown at the bottom
left of each panel in B. For all epilepsy variants, PathoPredictor performed significantly better than any
single feature (P<10−4), and PathoPredictor only failed to be significantly better in six of the 24 total fea-
ture comparisons (CCR, VEST, and missense depletion for RASopathies, CCR for dominant epilepsy
genes, and missense depletion and MTR for cardiomyopathy).

A

B

Figure 4. Disease-specific classifier performance using disease panel data for training and ClinVar data
for testing. For each disease panel, we applied the hold-one-gene-out models from Figure 3 to ClinVar
variants from the held-out gene to obtain pathogenicity prediction scores. We compared
PathoPredictor to each feature using a precision-recall curves (A) and average precisions summarizing
each curve (B). We used either all ClinVar variants (Total ClinVar) or ClinVar variants with a review status
that included at least one submitter or an expert panel (ClinVar w/Evidence). The numbers of pathogenic
(p) and benign (b) variants investigated are shown at the bottom left of each panel in B. PathoPredictor
performs significantly better than any single feature when examining all ClinVar variants (P<0.03).
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results for cardiomyopathy, epilepsy, and RASopathy patients. A
benefit of this data set compared to ClinVar is that the variants
are labeled and obtained in a more homogeneous way, which
helps remove data biases. Furthermore, the variant labels followed
clinical interpretation standards similar to the ACMG/AMP guide-
lines, making the data set more similar to real-world clinical use
cases. The clinically classified (pathogenic and benign) variants in-
corporated several pieces of evidence, mainly segregation, variant
effect, functional, and allele frequency data, with limited reliance
on computer predictions (or none), thus ensuring that no biases
exist toward any one prediction tool. To avoid any further biases
in our training and test data sets, we removed all variants previous-
ly used to train any of the component features. However, this
significantly reduced the number of variants to optimize and
evaluate PathoPreditor. Further testing and optimization, with
larger clinically curated variant data sets, is required to confirm
PathoPredictor’s superior performance, and its utility in a clinical
setting. An additional limitation of PathoPredictor, and other
pathogenicity scores mentioned here, is that they are trained and
evaluated using missense variants, ignoring synonymous variants
that may impact splicing.

Wedemonstrated the utility of PathoPredictor usingmissense
variants from ClinVar and a variant set of de novo variants previ-

ously used to compare REVEL and CCR.
PathoPredictor performed significant-
ly better than its constituent features
when evaluated with ClinVar. However,
a recent study of ClinVar variants con-
cluded that although ClinVar has im-
proved over time, it contains incorrect
pathogenic labels for some endocrine tu-
mor syndrome variant labels (Toledo and
NGS in PPGL (NGSnPPGL) Study Group
2018), as an example. Although this
ClinVar problem could affect our results,
we also found that PathoPredictor had a
significantly higher average precision
than REVEL when testing with the de
novo variants, which is consistent with
CCR’s improvement over REVEL using
this same data set (Havrilla et al. 2019).

In conclusion,we recommendusing
PathoPredictor scores to predict missense
variant pathogenicity for cardiomyopa-
thy, epilepsy, and RASopathies. Predic-
tions for all possible missense variants
for disease panel genes are located in Sup-
plemental Table S2.

Methods

Classifier

We used Python’s scikit-learn machine
learning library to train a logistic regres-
sion model to predict the pathogenicity
of missense variants from clinical panels.
Variants were classified by two well-
known clinical laboratories, GeneDx
and the Laboratory for Molecular
Medicine (Harvard Medical School), us-
ing variant interpretation protocols that
are well within the most recent 2015

ACMG/AMPguidelines. Pathogenic and likely pathogenic variants
were assigned values of one, and benign and likely benign variants
were assigned values of zero. During training, we used L2 regular-
ization with a regularization strength of one. Our model included
six features corresponding tomeasures of pathogenicity, one Pfam
domain indicator, and all pairwise combinations of features. All
model terms were standardized by removing the mean and scaling
by the standard deviation with scikit-learn.

Pathogenicity scores as classifier features

We used seven features in our classifier: CCR, FATHMM, missense
depletion, missense badness, MTR, VEST, and Pfam protein do-
mains. FATHMM and VEST can provide multiple scores for one
variant, depending on isoforms. VEST scores were taken as the
minimum VEST v3.0 score provided by dbNSFP v2.9 (Liu et al.
2013). FATHMM scores were taken as the negative minimum
FATHMM v2.3 score provided by dbNSFP v2.9. FATHMM scores
were negated so that their interpretation would match the other
features. CCR scores were taken as the CCR percentile (ccr_pct)
from the CCR BED file v1.20171112 (Havrilla et al. 2019).
Missense depletion and badness scores were taken from the con-
straint MPC VCF file v2 as obs_exp and mis_badness, respectively
(Samocha et al. 2017). Missense depletion was negated so that its

A

B

Figure 5. Disease-specific classifier performance using ClinVar data for training and disease panel data
for testing. For each disease panel, we collected ClinVar variants in panel genes, using either all ClinVar
variants (Total ClinVar) or reviewed ClinVar variants (ClinVar w/Evidence). PathoPredictor training and
evaluation for each disease panel proceeded with a hold-one-gene approach. Disease panel variants
from the gene of interest were used for evaluation, and ClinVar variants from all remaining disease panel
genes were used for training. Using the held-out gene variant prediction scores, we computed a preci-
sion-recall curve (A) and summarized the curve with its average precision (B). We then computed a pre-
cision-recall curve for each individual feature using untransformed scores. The numbers of pathogenic (p)
and benign (b) variants investigated are shown at the bottom left of each panel in B. PathoPredictor per-
formed better than each of its six features (P<0.05), except for missense depletion for cardiomyopathy
panel variants, CCR, missense badness, and VEST for RASopathy panel variants, and CCR for dominant
epilepsy panel variants.
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interpretation would match the other features. Traynelis et al.
(2017) provided chromosome-specific tab delimited text files con-
taining MTR scores and associated metrics for single genomic po-
sitions. We extracted MTR scores, negated them so that their
interpretation would match the other features, and constructed
BED files in which each line corresponded to a region of consecu-
tive positions with identical MTR scores. A BED file of Pfam
domain locations was downloaded from the UCSC Genome
Browser. We assigned each variant a Pfam score of one if its posi-
tion fell within a domain, and zero otherwise. Note that we omit-
ted this simple Pfam domain feature from figures comparing
feature classification performance because we did not expect it to
perform well by itself. Feature values were assigned to variants as
described below in the variant annotation and filtering pipeline.

For each disease data set, we used Python’s scikit-learn library
to standardize each feature by removing itsmean and scaling by its
standard deviation. Disease panel, ClinVar, and de novo variants

for the same disease were processed together so that their features
would be on the same scale.

Variant sets

We used three missense variant sources in this study: disease pan-
els and ClinVar for model training and validation (using unique
variant sets), and neurodevelopmental patients for comparing
PathPredicor to MPC and REVEL.

GeneDx provided clinical sequencing panel results for epilep-
sy, and the Laboratory for Molecular Medicine provided their clin-
ically curated data for cardiomyopathy and RASopathies. The
number of patients investigated differed by gene. The maximum
number of patients observed was 5466 for cardiomyopathy, 8583
for epilepsy, and 3022 for RASopathies. No gene was shared be-
tween the three data sets. Variants were provided in Human
Genome Variation Society (HGVS) c. notation (Dunnen et al.
2016), and were converted to VCF files of hg19-based variants
using Mutalyzer (Wildeman et al. 2008) and custom scripts
(Supplemental Code). To construct variant sets for our classifier,
we discarded variants of uncertain significance. We formed a
benign set of variants using “benign” and “likely benign” variants.
Similarly, our pathogenic variant set consistedof “pathogenic” and
“likely pathogenic” variants. These labeled variants were used for
training disease-specific classifiers (see below). Diseases panel vari-
ants and labels were deposited into Supplemental Table S1.

Variants from ClinVar were chosen as a validation set. We re-
stricted ClinVar genes to those found in the disease panels and re-
moved any ClinVar genomic position found in the disease panels,
producing an independent variant set. The hg19 ClinVar VCF file
was downloaded on February 25, 2018, and limited to unambigu-
ously pathogenic or likely pathogenic and benign or likely benign
variants with no conflicts according to CLINSIG (Landrum et al.
2016). We considered ClinVar variants with any review status as
one test set and consulted CLNREVSTAT (Landrum et al. 2016)
to produce a second ClinVar test variant set restricted to reviewed
variants.

As in the CCR paper (Havrilla et al. 2019), we compared
PathoPredictor, REVEL, andMPC using de novomissense variants
from 5620 neurodevelopmental disorder patients and 2078 unaf-
fected siblings of autism spectrum disorder patients (Samocha
et al. 2017; Havrilla et al. 2019). De novo variants from patients
were considered pathogenic, and de novo variants fromunaffected
siblingswere consideredbenign.HGVS formattedvariantswereup-
loaded toVariantValidator (Freeman et al. 2018), and aVCF filewas
constructed from the results. This file was normalized with vt (Tan
et al. 2015). To avoid evaluating with any tool’s training data, we
removed disease panel variants, ClinVar variants, and benign vari-
ants present in >1% of ExAC (MPC’s benign training data).

Disease-specific classifier evaluation

We compared estimated pathogenicity probabilities produced by
our trained models with each pathogenicity score used as a model
feature via precision-recall curves and average precision, as imple-
mented in scikit-learn. Precision-recall curves and average preci-
sion are useful here because of the possibility of imbalances
between pathogenic and benign variant counts. Average precision
is an approximation of the area under the method’s precision-re-
call curve. We ran three experiments with disease panel and
ClinVar variants to evaluate the performance of PathoPredictor.
First, we used cross-validation with disease panel variants.
Second, we trained a model with disease panel variants and vali-
dated it with ClinVar variants. Third, we trained a model with
ClinVar variants and validated it with disease panel variants.

A

B

C

Figure 6. PathoPredictor performance. (A) Precision-recall curves are
shown for select genes evaluated during cross-validation with the disease
panel data set and tested with ClinVar variants. The curve for RAF1 closely
follows and is obscured by that of SCN2A. For KCNQ2, PathoPredictor had
an accuracy of 95% for panel variants and 96% for ClinVar variants.
(B) PathoPredictor epilepsy-specific classifiers were compared to REVEL
and MPC. De novo missense variants in epilepsy panel genes were used
as pathogenic variants. Epilepsy panel gene missense variants from unaf-
fected siblings of autism spectrum disorder patients were used as benign
variants. PathoPredictor was trained as in Figure 4, but only utilizing the
full and dominant epilepsy data sets. Variants were filtered using the
same methods applied to ClinVar variants, and additional filters were
applied to remove training data for MPC. (C ) We summarized each
scoring metric’s precision-recall curve as the average precision. Both
PathoPredictor classifiers achieved a greater average precision than
REVEL (P<0.05), and the dominant epilepsy classifier performed better
than MPC (P<0.05). (p) pathogenic; (b) benign.
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Comparisonswere conducted in a leave-one-gene-outmanner.We
iterated over all genes in a disease, holding out the gene of interest
and training amodel using variants from all remaining genes. This
model was applied to variants from the gene of interest, ensuring
that a given gene was never used for training and validation.
ClinVar variant data sets were restricted to variants not found in
the disease panel results. Precision-recall curves and average preci-
sion scores were made for each pathogenicity score by aggregating
the results from each gene evaluation. The DeLong test as imple-
mented in R’s pROC package (Robin et al. 2011) was used to com-
pare areas under receiver operating characteristics curves produced
by predictors. We used this test to gauge the significance of differ-
ences between classifiers.

Comparing PathoPredictor with MPC and REVEL

We applied our epilepsy variant trained PathoPredictor (using all
or dominant epilepsy genes) to de novo missense variants. For
the evaluation of PathoPredictor, MPC, and REVEL, we used 54
pathogenic missense variants located in the epilepsy panel genes.
Limiting the benign missense data set to epilepsy genes produced
only six benign variants for evaluation, sowe randomly selected 48
variants from the full benign missense data set of 969 variants not
located in epilepsy genes so that the pathogenic and benign eval-
uation sets would have the same size. PathoPredictor, MPC, and
REVEL scores were compared using precision-recall curves, average
precision, and the DeLong test.

Variant annotation and filtering pipeline

Our pipeline began with VCF files containing 6382 de novo,
345,849 ClinVar, and 7840 disease panel variants labeled as
benign, pathogenic, or variant of unknown clinical significance.
SnpEff v4.3.1T (Cingolani et al. 2012) was used to determine vari-
ant effects in GRCh37.75. SnpSift v4.3 (Cingolani et al. 2012) was
used to annotate variants with allele frequencies from the ESP,
FATHMM scores, and VEST scores from dbNSFP. We annotated
variants with values fromBED (CCR and Pfam) and VCF (missense
badness and depletion and calculated ESP frequencies from
ESP6500SI-V2) files using vcfanno v0.2.8 (Pedersen et al. 2016).
The ESP frequencies are needed next when removing the training
data used for VEST.

We next removed variants that had been used to train
FATHMM (∼49,500 disease variants and ∼37,000 putatively neu-
tral variants) or VEST (∼45,000 disease variants and ∼45,000 puta-
tively neutral variants), ensuring that these features would not
have an advantage when comparing pathogenicity scores and
that our validation data sets would not overlap with any variants
used for training. Both FATHMMandVESTwere trainedwith dam-
aging mutations from HGMD, but they differed in their choice of
neutral missense variant set. FATHMM was trained with neutral
variants from UniProt (The UniProt Consortium 2017), and
VEST was trained with missense variants from ESP achieving a
population frequency of 1% or higher.

We then removed variants found in the set of 154,257 DM
(damaging mutation) in HGMD Professional 2016.1. To address
frequent ESP variants, we took the variant frequency as the maxi-
mum of dbNSFP fields ESP6500_EA_AF, ESP6500_AA_AF, and the
total ESP allele frequency determined using vcfanno.Wediscarded
variants (68 for ClinVar and 59 disease panel) when thismaximum
value reached at least 0.01. To remove neutral UniProt variants, we
used “Polymorphism” annotations to build a list of neutral codons
relative to hg38. Polymorphism annotations were downloaded
(www.uniprot.org/docs/humsavar.txt) and joined with hg38 co-
don coordinates from UniProt. Both were downloaded on April

5, 2018. We used liftOver (Hinrichs et al. 2006) to convert these
to hg19 and removed any variant found in any of 921,722 neutral
codons.

Final variant sets were taken as missense variants with CCR
and missense depletion and MTR scores to avoid missing data is-
sues. After applying all the aforementioned filters, 666 disease pan-
el, 1159 ClinVar, and 108 de novo missense variants were used in
this study.

Software availability

Source code for this manuscript is available at https://github.com/
samesense/pathopredictor and included as Supplemental Code. A
docker image for running PathoPredictor is available at https://hub
.docker.com/r/samesense/pathopredictor/. Diseases panel vari-
ants and labels were deposited into Supplemental Table S1.
Predictions for all possible missense variants for disease panel
genes are located in Supplemental Table S2.
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