
Advances in the application of 3D
tumor models in precision
oncology and drug screening

Xiaoyong Guan1† and Shigao Huang2*†

1Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and
Technology, Liuzhou, Guangxi, China, 2Department of Radiation Oncology, The First Affiliated
Hospital, Air Force Medical University, Xi’an, China

Traditional tumor models cannot perfectly simulate the real state of tumors in

vivo, resulting in the termination of many clinical trials. 3D tumor models’

technology provides new in vitro models that bridge the gap between

in vitro and in vivo findings, and organoids maintain the properties of the

original tissue over a long period of culture, which enables extensive

research in this area. In addition, they can be used as a substitute for animal

and in vitromodels, and organoids can be established from patients’ normal and

malignant tissues, with unique advantages in clinical drug development and in

guiding individualized therapies. 3D tumor models also provide a promising

platform for high-throughput research, drug and toxicity testing, disease

modeling, and regenerative medicine. This report summarizes the 3D tumor

model, including evidence regarding the 3D tumor cell culturemodel, 3D tumor

slice model, and organoid culture model. In addition, it provides evidence

regarding the application of 3D tumor organoid models in precision oncology

and drug screening. The aim of this report is to elucidate the value of 3D tumor

models in cancer research and provide a preclinical reference for the precise

treatment of cancer patients.
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Introduction

The success rate of the clinical development of antineoplastic drugs is much lower

than that of other drugs. The reason is that tumors are a far more complex disease than is

retained, and their occurrence, growth, and metastasis are related not only to tumor cells

but also to their environment (Swann and Smyth, 2007). The tumor microenvironment is

the ecological environment on which tumor cells depend for survival and development

(Anderson and Simon, 2020). In this environment, tumor cells come into contact with

each other and with immune cells (Sharonov et al., 2020), tumor-associated fibroblasts

(Truffi et al., 2020), endothelial cells (Sobierajska et al., 2020), inflammatory cells (Turley

et al., 2015), and noncellular components, which can significantly affect the biological

properties of tumor cells, such as their polarity, structure, resistance, migration, and

invasion (Turley et al., 2015). The traditional tumor monolayer cell culture model uses the
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nature of cell adherent growth to form a dense tumor monolayer

cell structure; these culture methods are simple to operate with

and low cost, but 2D cell culture does not reflect the in vivo

environment in terms of morphology, structure, and function

and cannot simulate the three-dimensional characteristics of

tumor heterogeneity and the microenvironment (Tuveson and

Clevers, 2019). Therefore, the single-layer planar culture model is

insufficient for predicting the real condition of drugs in tumor

tissue, and the experimental results are rarely consistent with the

results of clinical trials, resulting in a low success rate in

antitumor drug development (Xu et al., 2018a). This study

summarizes the 3D tumor cell culture model, 3D tumor slice

model, and organoid culture model and reviews their application

in antitumor drug research (Figure 1). It aims at elucidating the

value of 3D tumor models in cancer research and provides a

preclinical reference for the precise treatment of cancer patients.

Culture to promote our understanding of complex biological

processes, and address the limitations of many traditional 2D cell

cultures. At present, organoid models derived from 3D cell

culture are gradually being used in a variety of research

applications, including cell biology, regeneration methods,

precision medicine, and drug toxicity and efficacy testing,

showing great application potential. The use of 3D cell culture

as the main cell culture process in the future will undoubtedly

become a major trend, but there are still some challenges for

scientists to solve before this technology can be widely used (Neal

et al., 2018). As cell culture media components, such as scaffolds

and gels, continue to evolve, 3D tumor cell models can be used to

simulate three-dimensional spaces and microenvironments

similar to tumors in vivo. This technology has gradually

become the most promising cell research model and is widely

used in antitumor drug research. This section provides a brief

introduction to commonly used 3D tumor cell models and their

applications in antitumor drug research (Figure 2).

Multicellular tumor spheroid culture
model

At present, the cell model that can be used to best

characterize tumor organs is multicellular tumor spheroids

(MCTSs). MCTSs are classified according to the culture

method, mainly including suspension culture, rotary

culture, and scaffold culture (Figure 3). Suspension culture

occurs when a dish rich in cell droplets is flipped, and surface

tension and gravity promote the formation of a suspension of

FIGURE 1
Schematic of 3D tumor models in precision oncology and drug screening.
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FIGURE 2
Types of 3D tumor culture process in xenograft and human model.

FIGURE 3
The typical spheroid formation methods and materials-based spheroid formation systems.
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cells that aggregate into tumor spheres (Tung et al., 2011).

Suspension droplet culture does not require special

equipment, the culture cost is low, and the size of the

tumor ball is relatively uniform, but the traditional

suspension drop method is not suitable for long-term

culture due to evaporation; additionally, it is difficult to

keep the original microenvironment features, the tumor

spheroids need to metastasize after formation and then

cultured, and the isolation and purification procedures are

more complicated. Tumor cell aggregates are later cultured

using 96-well or 384-well plates to more accurately control the

size of the tumor spheres. Suspension culture promotes the

spontaneous aggregation of tumor cells by reducing the effects

of gravity during the formation of multi tumor cell spheroids

(Lee et al., 2007). Suspension cultures are easy to perform and

no special equipment is required, but the culture cycle is long,

and the tumor bulb size is not easy to control.

By maintaining a certain stirring rate and promoting the

transport of nutrients and metabolic waste, the interaction of the

matrix is maintained. This method can be used to culture a wide

variety of cell types but is complex and expensive until making it

particularly unsuitable for shear-sensitive or low-adhesion cells.

Multiple cell co-culture models based on scaffolds have been

widely studied. Scaffolder-based 3D models are embedded

outside the cells of the simulated tumor with cells or clusters

of cells. Scaffold culture promotes the adherence of tumor cells to

the scaffold fiber culture through the continuous division of cells;

the cells fill the gaps in the scaffold and form a cell ball. The

technique is simple, can be used to culture a variety of cell types,

and can also utilize growth factors, cytokines and other features

of the tumor cell microenvironment (Tsai et al., 2022). The most

commonly used scaffold is collagen. The disadvantage of stent

culture is that the stent is relatively expensive, and the scaffold

component has a greater impact on cell culture. Stent culture is

the most commonly used and well-studied method of tumor

spheroid culture.

Since single tumor spheroid formation cannot reflect the

tumor microenvironment (Pang et al., 2019), a hybrid system

with different cells were applied in anti-tumor drug evaluation

to overcome the limitation of tumor, and the effect on tumor

cell properties was also studied. Generally, a hybrid co-culture

system from different cells is difficult to establish. However, to

some extent, the hybrid co-culture system reflects the

interaction between tumor and its surrounding

microenvironment in vitro. It can be used to screen drugs.

Kim et al. (2012) developed cellular complexes containing

human hepatocellular carcinoma cell line (Hep-G2) and rat

insulin-secreting cell line (RIN-5F) by using a co-culture hybrid

cellular spheroids model (HCSs). They found that the insulin

and albumin levels in the HCSs were considerably higher than

those in single tumor spheroid formation. Thus, a hybrid

system had its advantage in immune effect in the whole

tumor microenvironment.

Tumor-on-a-chip culture model

With the rapid development of chip-making technology,

production materials, and detection methods in

microelectronic processing technology, generating a culture

model of cells and even “organs” on chips for screening drugs

is of great importance (Albanese et al., 2013). The tumor on a

chip fabrication and design are mainly constituted of a cell

culture/tissue chamber and a channel for delivering the

medium. Through adjusting microchannels on the chip to

simulate the structure and state of solid tumor tissue, which

can be used to evaluate and screening drugs. Aung et al. (2020)

has implanted breast cancer cells in multilayer paper chips for

perfusion culture, simulated the structure of 3D solid tumors,

established a barrier for the exchange of materials between tumor

cells and the external environment, simulated capillaries in vivo

with microchannels in the chip, adjusted the perfusion speed of

microchannels on the chip, and simulated the relatively

insufficient state of vascular oxygenation in solid tumor tissue.

After the perfusion culture was completed, the tumor tissue is

decomposed by splitting the multilayer membrane and detecting

the tumor metabolic state at different depths. Experiments have

proven that this multilayer paper chip promotes fast external

growth and slow internal growth in solid tumors, and internal

hypoxia necrosis occurs in the presence of tumor

microenvironments with low oxygen and low pH (Kang et al.,

2016). Microfluidic cell culture (Huh et al., 2011; Mehling and

Tay, 2014; Ng et al., 2015; Bale and Borenstein, 2018) on a chip is

a technique for cell culture on a chip with a cell culture chamber

and a channel for delivering media (Walsh et al., 2009).

Microfluidics can be used to precisely control the perfusion

speed of the injected and transported medium between cells

and extracellular matrix simulation materials. Unlike traditional

cell experiments, microfluidic chip culture can be used to reflect

the interaction between cells, the cell microenvironment, and the

concentration gradient formed by various cytokines, etc., with

strong controllability, large data volume, and reliable results

(Huh et al., 2011; Polidoro et al., 2021). Recently, using a 3D

microfluidic system in the presence of fibronectin to explore the

crosstalk between fibroblasts and breast cancer cells (MDA-MB-

231), the results showed that the capability of the model to

pinpoint the contribution of different components of the tumor

microenvironment (TME) (Lugo-Cintrón et al., 2020). However,

shortcomings, such as difficulties in chip production and

application, have limited the promotion of this model.

The hydrogel-based 3D bioprinting tumor
models

3D bioprinting is a 3D printing technology that uses bio-ink

loaded with cells as a printing material to produce biologically

active tissue and organ scaffolds and chips (Mandrycky et al.,
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2016; Gungor-Ozkerim et al., 2018; Heinrich et al., 2019; Murphy

et al., 2020). At present, 3D bioprinting combined with cells has

gradually become a research hotspot, which has a good expected

application and prospect in tissue engineering regeneration, drug

screening, disease treatment and other aspects (Annabi et al.,

2014). Hydrogel materials contain a large amount of water, which

requires mild conditions for printing. There are three main

working principles applied to hydrogel, including inkjet

bioprinting system based on materials and adhesives,

extrusion nozzle bioprinting system and bioprinting system

based on photopolymerization. The printing methods based

on photopolymerization included stereo lithography, two-

photon polymerization and laser-induced transfer (Murphy

et al., 2020). 3D printing technologies with various working

principles have been widely used in hydrogels. In addition, 3D

bioprinting combined with microfluidic technology can create

complex flow channels/chambers and functional biological

structures with 3D heterostructures, cell placement, and tissue

specificity to more closely resemble real tissues or organs

(Heinrich et al., 2019). Colosi et al. (2016) used the mixture

of alginate and GelMA to develop a bioink with low viscosity,

combined with a microfluidic platform to form a microfluidic

system with accurate and controlled deposition. It could promote

the propagation and migration of cells inside biological

structures. Based on this, they created a non-uniform 3D

tissue model in vitro to simulate native tissues. It can be used

in drug development.

3D tumor tissue culture sectioning model

The tumor tissue culture model is an aged tumor three-

dimensional model in which a block of tumor tissue is placed on a

dedicated porous culture plate, an appropriate medium is added,

and the tumor tissue is cultured before it can be used for

experimental studies (Huh et al., 2011; Polidoro et al., 2021)

(Figure 2). Unlike traditional monolayer cell culture, this method

can be used to accurately predict the sensitivity of tumor tissue to

antitumor drugs while maintaining the original tumor structure

and is used to screen antitumor drugs and guide personalized

administration (Ravi et al., 2015; Zuppinger, 2019; De León et al.,

2020; Jensen and Teng, 2020; Habanjar et al., 2021). The

disadvantages of this model are the lack of reproducibility due

to the natural heterogeneity of donor tissues and the difficulty of

applying the required techniques, such as imaging and flow

cytometry; thus, the application has limitations.

Three-dimensional tumor slide culture (3D-TSC) can be

used to quickly and accurately reproduce the high complexity

of tumors in vivo for drug screening, especially for

immunotherapy drugs (Sivakumar et al., 2019; Nishida-Aoki

et al., 2020). 3D-TSCs are produced by cutting slices of a

fresh tumor without prior treatment while preserving the

tumor structure, stroma, and TME. In our previous study

(Huang and Zhao, 2020; Xing et al., 2021; Huang and Zhao,

2022; Peng et al., 2022), tumor slices from colon cancer and liver

cancer patients generated after surgery were used, and

nanomedicine combined with immunotherapy was applied to

this platform to test toxicity and efficiency. Other results also

showed that the components of the TME, including T cells and

macrophages, could survive in the 3D-TSC platform for more

than a week after 3D-TSC culture, thus allowing the study of the

immune environment (Kenerson et al., 2021). The early drug

screening results of 3D-TSC showed similar results to those of

PDOs, and the generation of 3D-TSC can produce faster results,

providing rapid and accurate guidance strategies for clinical

patients during treatment decision-making, especially

regarding the response of the tumor to various new

immunotherapies (Ravi et al., 2015; Habanjar et al., 2021).

Figure 2 summarizes the flow of the use of 3D-TSCs in a

preclinical tumor model.

Organoid culture model

The development of organoid technology has laid the

foundation for the cultivation of tumor organoids. Tumor

organoids are mainly generated either by gene editing normal

tissue-derived organoids or by culturing directly from tumor

tissue (Lee et al., 2007; Li et al., 2018; Jensen and Teng, 2020).

Tumor tissue extraction is less restrictive, and the procedure

inolves surgery, puncture biopsy, circulating tumor cells, pleural

effusion, and cell brushing. Themethod of establishing organoids

from tumor tissue is summarized as follows: after obtaining

surgical excision of tissue, first, fat and muscle tissue are

removed from cancer tissue, followed by trypsin (and) or

collagenase treatment to digest the tissue according to the

characteristics of the tissue. The cell suspension is

resuspended with stromal colloid after passing through the

cell screen and finally injected into the culture plate, and the

appropriate medium is added for subsequent culture. The

composition of the medium varies according to the

characteristics of different cancer species, which are usually

based on several types of factors, including V82 signaling

pathway activators, tyrosine receptor kinase ligands, and

signaling pathway inhibitors (Neal et al., 2018; Nuciforo et al.,

2018; Cattaneo et al., 2020; Lu et al., 2021). During organoid

research, clonal drift can be avoided by passing the entire Petri

dish, using earlier generations of organoids, and reducing the

number of passages.

Tumor research requires identifying the model that is closest

to the real state of the tumor in vivo as the object of study. The

traditional tumor research models mainly include cell culture,

transgenic mice, and human tumor xenotransplantation models,

each with advantages and disadvantages (Neal et al., 2018;

Cattaneo et al., 2020; Yuki et al., 2020; Zhang et al., 2022a).

Cell culture cycles are short and inexpensive, but gene drift
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occurs after multiple passages, resulting in changes in cell

phenotype and drug sensitivity. In addition, cell culture

cannot be used to simulate the interaction between cancer

cells and the microenvironment, and it is difficult to replicate

the patient’s treatment response. A human tumor can be directly

transplanted into an animal for modeling, which preserves the

heterogeneity of the tumor, but exhibits the limitations of a long

modeling cycle and high cost (van de Wetering et al., 2015; Yan

et al., 2018; Tuveson and Clevers, 2019; Yoshida, 2020; Yuki et al.,

2020; Xu et al., 2021). In addition, the inability to maintain the

matrix composition of human tumors may lead to mouse-like

evolution of the tumor tissue. Finally, due to species differences,

transgenic mice cannot be used to fully reflect the genetic and

proteomic complexity of human tumors, and the results of these

experiments lack consistency with human disease progression

and drug sensitivity, which weakens the application value of

transgenic mouse models to a certain extent.

Organoids have the combined advantages of the above

culture methods and have unique advantages in tumor

research (Neal et al., 2018). First, the core advantage of tumor

organoid research is that it preserves the heterogeneity of the

original tumor. Second, tumor organoids enable the expansion of

small tumor samples from different sources (e.g., from puncture

biopsy, pleural effusion, circulating tumor cells), which can be

used to model different stages of tumors. Unlike tumor cells

cultured using traditional (Zhang et al., 2022a) methods, tumor

organoids exhibit genomic and transcriptome stability, which

result in the maintenance of the protein expression pattern of the

original tissue. Tumor cell organoids are implanted in mice after

culture, and the modeling speed and success rate are high. It is

worth noting that organoid technology can be used to separately

model cancerous tissue and normal tissue obtained from the

same patient source, providing a reliable control during tumor

research.

Application of 3D tumor organoids
models

Antitumor drug screening

The tumor microenvironment significantly affects targeted

drug therapy, and cell growth performed in traditional 2D

culture models does not exhibit three-dimensional spatial

structure, resulting in antitumor drugs with false-positive

results entering clinical trials, with a high failure rate and a

large time and energy costs. Part of the reason is that the early

trials using monolayer planar cells as the subject of the study

were poorly designed, and the screening efficiency of

antitumor drugs was low. Ingeson-Carlsson et al. (2015)

compared the effects of RAF and MEK inhibitors to BRAF

inhibitors on thyroid cancer drug responses during

experiments on tumor cell migration in 2D and 3D cultures.

They have shown that RAF and MEK inhibitors block the

invasion of thyroid cancer spheroids (SW1736) but have no

effect on the migration of SW1736 monolayer cells. Other

studies (Godugu et al., 2013; Godugu and Singh, 2016) showed

that an in vitro 3D model of antineoplastic drug screening was

developed with the AlgiMatrix™ scaffold, in which cytotoxicity

can be determined by a cell proliferation test and the

effectiveness of antineoplastic drugs can be evaluated based

on the spheroid number and size distribution. By

immunohistochemistry and RT‒PCR evaluation, the

assessment of anti-apoptotic markers and the comparison of

3D model and 2D monolayer model results, the data showed

that 3D in vitro trials of cultured antineoplastic drugs were

more suitable for the screening and evaluation of

antineoplastic drugs. Active tumor-stromal interactions in

hepatocellular carcinoma showed weaker efficacy than in

two-dimensional monolayer cultured cell and different

potency in 3D spheroid models, demonstrating the great

potential of 3D multicellular spheroid models in the

discovery and development of anticancer drugs (Vinci et al.,

2015; Nath and Devi, 2016; Rodríguez-Dorantes et al., 2021;

Zaki et al., 2021). The antitumor drug screening application are

summarized in Table 1.

Tumor cell metabolism and signaling
pathways

Tumor signaling pathways and interventions do occur in

monolayer planar cell culture (Rodenhizer et al., 2016; Flint

et al., 2020; Garcia-Alonso et al., 2021; Yi et al., 2021);

(Table 1). However, studies have shown that signaling

pathway activation in 3D cultured multicellular tumor

spheres is significantly different from that in monolayer 2D

planar cells due to the death receptor DR4. One of the reasons

for the difference in signaling pathways between 2D and 3D

cultured cell models is the different tumor microenvironment.

Extracellular matrix components, such as adhesin and

fibronectin, provide key signals that affect cellular function

by activating intracellular signaling pathways, and integrins

located at the cell-matrix interface are also activated by

changes in extracellular matrix composition (Rashidian and

Luo, 2016; Rodenhizer et al., 2016; Yi et al., 2021). Hsu and

Huang (2013) developed a dynamic 3D multicellular spheroid

(MSCs) using a unique biomaterial, and its differentiation

ability was observed to be transmitted with Wnt signaling.

This finding is not observable in conventional monolayer

culture cells; suitable 3D cell spheres can be used to detect

the role of Wnt signal regulation in different extracellular

environments and can be used to study the behavior of tumor

stem cells. The function and properties of 3D tumor spheres

are more similar to those of solid tumor tissue than monolayer

planar cell cultures.
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Invasion and metastasis of tumor cells

Invasion and metastasis of tumor cells, including the

interaction of tumor cancer cells with the in-situ cell

microenvironment and metastatic microenvironment, is an

extremely complex process (Horie et al., 2012; Horie et al.,

2015; Dwyer et al., 2016; Cattin et al., 2018; Du et al., 2018; Ilina

et al., 2020; Colombo and Cattaneo, 2021). The main reason for

the lack of recent research resides in the absence of an ideal

model to simulate this complex physiological environment

(Salgueiredo-Giudice et al., 2012; Schreiber-Brynzak et al.,

2015; Rodenhizer et al., 2018). Velez et al. (2017) used a

customized 3D collagen matrix to study the metastasis

mechanisms of malignant cell tumors. They have shown that

in a relatively narrow matrix-enclosing model, malignant

tumor cells re-encode specific malignancy genes, generate a

structure that mimics blood vessels, and promote the spread of

cancer cells through the blood to other areas of the body, and

this property of tumor cells has never been demonstrated in

traditional monolayer cell culture methods; thus, the key to

successful tumor cell experiments is to establish a 3D cell

culture model that more accurately simulates the in vivo

environment (De León et al., 2020; Garcia-Alonso et al.,

2021). Metastasis of tumor cells model are summarized

in Table 1.

Drug delivery system evaluation

Using tumor-targeted nanocarriers, such as liposomes,

nanoparticles, or micelles, produces unique advantages for

the delivery of antitumor drugs or genes, such as increasing

the in vivo circulation time, increasing tumor site

accumulation, and reducing toxicity to normal organs

(Campisi et al., 2012; Shin et al., 2013; Li et al., 2018;

Carey-Ewend et al., 2020; Nii et al., 2020; Bartusik-

Aebisher et al., 2021; Borodina et al., 2021; Bromma et al.,

2021; Foglietta et al., 2021). RGD peptides are a kind of

peptide that contain Arg-Gly-Asp sequence, internalizing

RGD peptide (iRGD) can increase drug penetration into

extravascular tumor tissue. PEGylated PAMAM dendrimer

(G4) with DOX conjugated by acid-sensitive cis-aconityl

linkage (PEG-PAMAM-cis-aconityl-DOX, PPCD) was

modified by a RGD cyclopeptide. Wang et al. (2014) used

C6 glioma 3D spheroids to show that the iRGD-PPCD

(internalizing RGD peptide with PEG-PAMAM-cis-

aconityl-DOX, PPCD antitumor drug delivery system is

similar to RGD-PPCD, which exhibits higher tumor

permeability, and when this group of experiments was

performed in a 2D cell model, there was no significant

difference in the results of analyses of in vitro cytotoxicity

and cell uptake using the two delivery systems. This finding

TABLE 1 Various applications of 3D tumor organoid models in drug screening and mechanism.

Year Finding Method Cancer type Reference

2015 RAF and MEK inhibitors block the invasion of thyroid
cancer spheroids (SW1736) but have no effect on the
migration of SW1736 monolayer cells

2D and 3D spheroids cultures Thyroid cancer Ingeson-Carlsson et al.
(2015)

2016 The effect of EphA2 receptor targeted docetaxel-loaded
nanoparticles on MDA-MB-468 TNBC cell lines

Algimatrix™-based 3D Cell culture system Non-small-cell lung
cancer (NSCLC) models

Godugu and Singh
(2016)

2021 A protocol to using prostate cancer cell lines (lncap,
PC3, vcap) to improve research considering tumoral
heterogeneity role

3D model of spheroids Prostate cancer Rodríguez-Dorantes
et al. (2021)

2021 Corroborated using Hep3B homotypic spheroids
cultured in LX2 (human hepatic stellate cell line)
conditioned medium (CM). LX2 CM triggered the
proliferation of Hep3B spheroids compared to control
tumor spheroids

3D homotypic and heterotypic tumor spheroids
by immobilizing cell suspensions on the lids of
standard 10 cm3 Petri dishes

Hepatocellular
carcinoma

Zaki et al. (2021)

2021 Deconvolute bulk data from endometrial cancers and
endometriotic lesions, illuminating the cell types
dominating in each of these disorders

Generated dense single-cell and spatial reference
maps of the human uterus and 3D endometrial
organoid cultures

Benchmark of the
endometrial organoids

Garcia-Alonso et al.
(2021)

2017 Narrowmatrix-enclosingmodel, malignant tumor cells
reencode specific malignancy genes, generate a
structure that mimics blood vessels, and promote the
spread of cancer cells through the blood to other areas
of the body

Customized 3D collagen matrix Solid human cancers Velez et al. (2017)

2014 iRGD-PPCD antitumor drug delivery system exhibits
higher tumor permeability comparing to RGD-PPCD
in 3D spheroids but has no difference in 2D cell model

3D spheroids C6 glioma tumor Wang et al. (2014)

2D cell model

2016 Specific methods and recommend the use of adapted
and standardized spheroid generation protocols for
each cell line.

Different spheroid generation models including
hanging drop, liquid overlay and suspension
culture

Breast cancer tumor Froehlich et al. (2016)

Abbreviation: MEK, mitogen-activated protein kinase; iRGD, internalizing RGD; PPCD, PEG-PAMAM-cis-aconityl-DOX
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shows that the 3D model has incomparable advantages in the

evaluation of the permeability of antitumor drug delivery

systems. Traditional 2D monolayer cell culture systems

have many limitations, and 3D tumor cells can be used to

mimic more complex cellular heterogeneity and interactions

as well as tumor microenvironmental conditions (Wang et al.,

2014; Xu et al., 2014; Wan et al., 2017; Tortorella et al., 2021).

Although 3D models have incomparable advantages over 2D

models, 3D cell culture models also have limitations that

hinder their further application. First, not all tumor cells

can be cultured into 3D cell models, and although many

cell lines can form dense spheroids with the help of ECM

substrates or scaffolds, cell lines such as SK-BR-3 and

suspension cell lines remain difficult to use in the

formation of spheroids (Froehlich et al., 2016). In addition,

the culture and analysis protocols for 3D cell models have not

been standardized; although 3D cell models can be established

in large quantities, their formation method, initial cell

number, the type and amount of cell-matrix used, and

many other factors affect the formation process and

lead to the uneven size of 3D cells (Xu et al., 2014; Wan

et al., 2017).

Challenges and opportunities

The dilemma of tumor organoids

First, due to uncertainty in the growth factors required for

some tumor tissues, it is difficult for the corresponding organoids

to grow in vitro for a long time (Turco et al., 2017; Peng et al.,

2018; Zhang et al., 2022b; Geng et al., 2022). Second, at present,

tumor organoids are mainly derived from epithelial tumors, and

methods for generating nonepithelial cell-derived organoids still

need further research (Lombaert et al., 2017; Nikolić and

Rawlins, 2017; Martignani et al., 2018). In addition, during

organoid culture, growth factors or small molecule inhibitors

need to be added to the culture medium, and the requirements

for the culture medium are different due to the differences in

gene expression in different tumor subtypes, whichmay affect the

gene expression or signal transduction pathway of organoids,

which in turn affects drug sensitivity and interferes with the

results of the study.

Although organoid technology still has limitations, it

provides a new model for tumor research and has great

potential. To date, efficient organoid establishment has

been achieved in a variety of tumors. Tumor organoids can

be used to study the dynamic evolution of tumors and to

perform preclinical efficacy evaluation, tumor

microenvironment studies, and assessments of adjuvant

immunotherapy. With the further development of organoid

biobanks and chips, the future use of tumor organoid research

is worth investigating during the development of preclinical

experiments (Tatullo et al., 2020; Benitez et al., 2021; Zhou

et al., 2021).

The first biobank of tumor organoids was
established

Intestinal tumor organoids were the first to be established.

Subsequently, the colorectal cancer tumor organoid

biobank was established for the first time. Since then, the

generation of biobanks of different tumor organoids has

begun to develop, and the number has been expanding

continuously (Pauli et al., 2017). The Tumor Organoid

Biobank contains resources regarding tumor organoids with

different pathological types and gene mutations, and tumor

organoid studies conducted with large sample sizes can be

used to further statistically clarify the relationship between

specific gene mutations and drug sensitivity (Pauli et al., 2017;

Yang et al., 2021; Ren et al., 2022). The Human Cancer Model

Initiative is generating an organoid biobank that provides

clinical and genetic information on existing organoids on its

website.

Application in preclinical drug evaluation

Preclinical drug trials focus on clarifying an

understanding of drug efficacy and toxicity. Table 2 lists

the represented tumor models and their effects. At present,

the study of drug efficacy is mostly carried out in animal

tumor models. Due to the lack of tumor heterogeneity and the

existence of species differences, most drugs show different

drug sensitivities in vivo and in vitro and even in different

in vitro models (Weeber et al., 2017; Bleijs et al., 2019;

Driehuis et al., 2020; Yoshida, 2020). Tumor organoids

have high accuracy in predicting a patient’s response to

treatment. In colorectal cancer, the patient’s organoid and

patient response to the drug were compared, and the results

showed that the positive predictive value of the tumor

organoid’s response to the patient’s drug was DDA. The

study suggests that organoids have shorter incubation times

and higher predictive value than traditional models, which

helps shorten the drug development cycle. Microfluidic

platforms can be used to simulate capillary drug

transmission in the tumor microenvironment, providing

data regarding drug metabolism and response in cancer

patients under physiological flow conditions (Ng et al.,

2015). In recent years, a variety of tumor organoids have

shown great potential in clinical drug screening, and tumor

organoids exhibit drug responses that are consistent with the

patient’s drug response and can be used to predict the patient’s

treatment response to mitigate the shortcomings of traditional

preclinical models in clarifying drug efficacy. It is worth
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noting that the combination of microfluidic technology and

organoid technology can be used to carry out high-throughput

drug screening, which greatly shortens the drug development

cycle.

Application in immunotherapy

The development of immunotherapy is gradually

changing the treatment strategy that is used in cancer

patients. Studies (Jacob et al., 2020; Yuki et al., 2020;

Forsythe et al., 2021; Qu et al., 2021) have found

that neoantigens associated with tumor cells are key to

stimulating an immune response. Insufficient tumor-

associated antigens can weaken the proliferation of

antitumor immune cells in vivo, and in patients with a

low tumor mutation burden, in vitro activation to

amplify immune cells and infusion is a good

treatment strategy. Organoids have a highly similar

heterogeneity to tumors in vivo, and coculture with

peripheral blood lymphocytes can induce and enrich

reactive S cells in peripheral blood without antigen

agnosticism, which is highly targeted for specific individual

tumors (Jacob et al., 2020; Yuki et al., 2020; Forsythe et al.,

2021; Qu et al., 2021). In the future, chimeric antigen receptor

(CAR)-T cell (CART-T) therapy and other cellular

immunotherapies in the 3D tumor organoid model

platform will be developed for antitumor drug screening

(Xu et al., 2018b; Schnalzger et al., 2019; Klein et al., 2020;

Yu and Huang, 2020).

In addition, multicellular tumor spheroid culture has 3D

characteristics under quiescent culture conditions, but

conventional tumor spheroids cannot be used to reflect

vascular perfusion or other dynamic characteristics. Some

researchers use microfluidic systems to culture multicellular

tumor spheroids, but because of the high cost of this approach,

it is not suitable for large-scale production, which hinders its

application, and the culture method also needs to be

further studied. Therefore, 3D tumor cell culture

technology still needs to be developed, and when selecting

antitumor drugs, it is necessary to consider the conditions and

purposes of the experiments and to reasonably select 3D cell

culture methods and support material or matrix according to

cell type (Edmondson et al., 2014; Fang and Eglen, 2017;

Davoudi et al., 2021; Sun et al., 2021). 3D tumor cells

mimicking the 3D microenvironment are receiving

increasing attention from researchers. In the future, with

the continuous improvement of the functionality and

controllability of biological materials, materials more

suitable for 3D cell culture will likely be prepared

according to different research purposes and tumor cell

types, such as CloneSeq - Single-cell clonal 3D culture

development (Sun et al., 2021). To address the limitations

of current 3D tumor cell culture methods and to more

accurately simulate the real microenvironment of tumor

cells in vivo, scientific researchers should aim at obtaining

more accurate scientific conclusions in preclinical research

and improve antitumor drug screening.

Conclusion

This report summarizes the 3D tumor organoid

model, including the 3D tumor cell culture model, 3D

TABLE 2 Preclinical drug evaluation development in 3D tumor model.

Year Method Tumor type Effect Reference

2022 Decellularizing and delipidating a porcine breast tissue
(TDM) compatible with hydrogel formation

Breast cancer More closely recreate the breast tumor by incorporating
collagen type I (Col1)

Blanco-Fernandez
et al. (2022)

2018 Patient-derived pancreatic cancer cells and cancer-
associated fibroblasts

Pancreatic cancer Increase model pathophysiologic relevance, yielding
fibroblast-mediated tumor invasion and matrix
alignment.

Puls et al. (2018)

2021 Custom 3D printed masks along with simple chemistry
modifications to localize hydrophilic “virtual
microwells”

Breast cancer cell lines Tumor response to cisplatin drug treatment, and allows
for 3D tumor arrays to be cryopreserved and thawed for
on-demand use

Samara et al. (2021)

2019 PANC-1 cells were cultured as tumor spheroids (TSs)
using our previously developed mini pillar chips and co-
cultured with PSCs, both embedded in collagen gels

Pancreatic ductal
adenocarcinoma

Established 3D co-culture of TSs of PANC-1 cells and
PSCs using mini pillar histochips as a novel tumoroid
model of PDAC

Hwang et al. (2019)

2021 Deconvolute bulk data from endometrial cancers and
endometriotic lesions, illuminating the cell types
dominating in each of these disorders

Colorectal cancer Benchmark of the endometrial organoids Garcia-Alonso et al.
(2021)

2018 A living biobank of PDOs from metastatic,
gastroesophageal cancer patients in phase I/II clinical
trials.

Metastatic
gastrointestinal
cancers

PDOs could complement existing approaches in
defining cancer vulnerabilities and improving treatment
responses.

Vlachogiannis et al.
(2018)

Abbreviation: PDO, patient-derived organoids; TSs, tumor spheroids; PSCs, pancreatic stellate cells; PDAC, pancreatic ductal adenocarcinoma
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tumor slice model, and organoid culture model. In addition,

it provides evidence of the application of the 3D tumor

organoid model in precision oncology and drug

screening. The aim of the report is to elucidate the value of

3D tumor models in cancer research and provide a

preclinical reference for the precise treatment of cancer

patients.
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