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A B S T R A C T   

RNA-binding proteins (RBPs) are key post-transcriptional regulators, and the malfunctions of RBP-RNA binding 
lead to diverse human diseases. However, prediction of RBP binding sites is largely based on RNA sequence 
features, whereas in vivo RNA structural features based on high-throughput sequencing are rarely incorporated. 
Here, we designed a deep bimodal information fusion network called DeepFusion for unraveling protein-RNA 
interactions by incorporating structural features derived from DMS-seq data. DeepFusion integrates two sub- 
models to extract local motif-like information and long-term context information. We show that DeepFusion 
performs best compared with other cutting-edge methods with only sequence inputs on two datasets. Deep-
Fusion’s performance is further improved with bimodal input after adding in vivo DMS-seq structural features. 
Furthermore, DeepFusion can be used for analyzing RNA degradation, demonstrating significantly different RBP- 
binding scores in genes with slow degradation rates versus those with rapid degradation rates. DeepFusion thus 
provides enhanced abilities for further analysis of functional RNAs. DeepFusion’s code and data are available at 
http://bioinfo.org/deepfusion/.   

1. Introduction 

RNA-binding proteins (RBPs) have emerged as key regulators that 
play important roles in post-transcriptional regulation. These different 
RBPs bound their RNA targets competitively, constituting dynamic 
complexes that regulate numerous cellular processes in diverse cell 
types, tissues, and physiopathologic states. Such processes include 
splicing, degradation, and translation [1]. For example, RBPs like 
OTUD3, TTP, and HNRNPK affect mRNA degradation and regulate the 
abundance of diverse transcripts. Dysregulation of these RBPs is asso-
ciated with esophageal cancer, systemic inflammation, and progenitor 
cell differentiation [2–5]. 

The high-throughput technique of CLIP-seq became widely used to 
discover the mechanisms by which RBPs bind to RNA targets. CLIP-seq 
experiments can comprehensively identify the landscape of RNA binding 
sites for each RBP in single-nucleotide resolution in vivo by using UV 
radiation to guide cross-linking and immunoprecipitation (CLIP) of a 

particular RBP and its binding RNAs followed by reverse transcription 
and high-throughput sequencing of these RNA segments. Diverse CLIP- 
seq protocols have been developed, such as HITS-CLIP, iCLIP, eCLIP, 
etc. [6]. As a result, publicly available CLIP-seq datasets have been 
accumulated by different laboratories [7–9]. The largest such dataset 
has been produced by the ENCODE consortium using the eCLIP protocol, 
covering 133 different human RBPs in the human cell lines [10]. These 
resources allow us to better understand the binding preferences of RBPs 
[11]. 

Using machine-learning or deep-learning techniques to identify RBP 
binding sites, the sequence specificity of each RBP can be determined 
from experimental data. Traditional machine-learning-based algorithms 
require sophisticated feature engineering [12]. Comparatively, 
deep-learning-based methods automatically extract features from the 
sequences derived from the CLIP-seq data. The first of such methods, 
DeepBind, applied convolutional neural networks (CNNs) to the prob-
lem of RBP-RNA and TF-DNA interactions to automatically extract 
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patterns of short sequence segments using the motif detector based on a 
convolution kernel [13]. Since then, there have been several advanced 
methods to improve this prediction by refining the model structure. For 
example, Pan et al. built several predictive models for RBP-RNA in-
teractions on several datasets [14], including iDeep [15], iDeepV [16], 
and iDeepE [9]. iDeepE provides the best performance by merging two 
types of CNN sequence features, one for the global view and the other for 
the local view. In addition, DeepCLIP enhances the model capacity by 
combining a CNN architecture with a bi-directional long short-term 
memory layer (BLSTM) for capturing the contextual dependencies 
[17]. Finally, EDCNN improves the predictions of a CNN by introducing 
an additional evolutionary algorithm for optimizing the 
hyper-parameters [18]. 

The binding preferences of RBPs depend not only on the RNA se-
quences but also on the structural features of these RBP binding sites 
[19–25]. For example, A G-rich internal loop in the lncRNA Braveheart 
is critical for binding to a zinc-finger protein CNBP, which is required for 
the cardiac specification in mice [26]. Therefore, incorporating RNA 
structure-related features into the predictive models can improve their 
capacity to reveal the mechanisms of RNA-protein interactions [27,28]. 
For example, GraphProt used the predicted secondary structures derived 
from RNAshapes [29] and a graph kernel to learn both sequence and 
structural features of the binding preference for 24 RBPs [30]. In addi-
tion, RPI-Net introduced the predicted RNA secondary structures as a 
base pairing probability matrix using RNAplfold [31] and takes this 
adjacency matrix into a graph neural network [32]. Moreover, 
deepnet-rbp utilized the secondary and tertiary RNA structures pre-
dicted by RNAshapes [29] and JAR3D [33,34] to generate a multi-modal 
deep-learning framework for predicting RBP binding sites [35]. How-
ever, the RNA structures used in these studies are prediction-based, and 
their accuracy is limited by factors such as thermodynamic parameters 
and kinetic barrier errors [36]. Moreover, these in vitro predictions 
differ significantly from the in vivo RNA structure states. 

Fortunately, in vivo RNA structures have been probed in human cell 
lines by diverse experimental protocols, the most representative of 
which are icSHAPE [37] and DMS-seq [38]. icSHAPE measures the 
nucleotide flexibility at base resolution by treating cells with a 
structure-sensitive molecule NAI-N3 and then enriching and sequencing 
the NAI-N3-modified RNAs to generate flexibility scores for every base 
with signals. In contrast, DMS-seq uses dimethyl sulphate (DMS), which 
is small enough to penetrate cells and react with solvent-accessible un-
paired adenine and cytosine residues. As a result, the in vivo pairing 
states of these A/C bases can be revealed by using the DMS-seq tech-
nique. These data allow researchers to model both in vivo RNA struc-
tures and in vivo RNA-protein interactions, leading to better information 
fusion. A previous study called PrismNet showed that incorporating 
icSHAPE data can better predict RBP binding sites [39]. However, in 
vivo DMS-seq data have never been systematically evaluated in this 
context. 

In this work, we introduce the in vivo human DMS-seq data and 
design a deep bimodal information fusion network called DeepFusion 
for unraveling protein-RNA interactions by incorporating both RNA 
sequence and structural features. DeepFusion integrates two sub-models 
based on convolutional neural networks and long short-term memory 
networks to extract local motif-like and long-term context information, 
respectively. DeepFusion can accept single- or bimodal data as input. We 
first show that DeepFusion with single-modal sequence input improves 
the prediction accuracy over a series of cutting-edge methods. Second, 
we show that DeepFusion with bimodal input, which adds in vivo DMS- 
seq structural features to sequence features, substantially improves the 
model performance and interpretability for resolving the RBP binding 
motifs. Third, we extend the application of DeepFusion in the context of 
RNA degradation. DeepFusion’s prediction scores for degradation- 
related RBPs differ statistically in genes with slow and rapid degrada-
tion rates, demonstrating that DeepFusion can capture biologically 
meaningful associations for further analysis of functional RNAs. 

2. Materials and methods 

2.1. Data resource 

To evaluate DeepFusion and other tools, we used two characteristic 
datasets. The first dataset was downloaded from the GraphProt paper 
[40] called “RBP-24″. The second dataset was derived from the ENCODE 
eCLIP-seq data called “RBP-120″. We used the eCLIP-seq data for 120 
RBPs in the human K562 cell line because the matched DMS-seq data in 
the same cell line was also available [10]. 

2.1.1. The RBP-24 dataset 
We downloaded the RBP-24 dataset from the GraphProt website 

(http://www.bioinf.uni-freiburg.de/Software/GraphProt/). The RBP- 
24 dataset is a standard benchmark dataset frequently used in the 
field. These CLIP-seq data for 24 RBPs are produced using HITS-CLIP, 
PAR-CLIP, and iCLIP protocols in diverse cell types. The dataset pro-
vides sequences for binding sites (positive set) and nonbinding sites 
(negative set) for these 24 RBPs. Each sequence contains three parts: one 
motif sequence with a length of up to 75 nucleotides (nt) and two sur-
rounding sequences, including 150 nt upstream and 150 nt downstream. 
We also utilized cd-hit-est in the CD-HIT tool [41] for each RBP to 
eliminate redundant RNA sequences in the test set with greater than 
80% sequence similarity to any of the sequences in the training and 
validation sets, thus creating a non-redundant RBP-24 dataset. The 
detailed distribution of RBP-24 is shown in Supplementary Table S1. 

2.1.2. The RBP-120 dataset 
We downloaded alignments in BAM files and peaks in BED files of the 

eCLIP-seq data for the human K562 cell line from the ENCODE website 
(https://www.encodeproject.org). We merged the peaks from two bio-
logical replicates of eCLIP-seq data for each RBP. To deal with incon-
sistency, we first obtained the intersected region supported by both 
replicates using BEDtools [42] and then expanded the intersected region 
by 15 upstream and downstream nucleotides [40,43]. We re-calculated 
the eCLIP-seq signals for these refined peak regions using SAMtools 
[44]. Then, we normalized CLIP BAM over input BAM using the 
ENCODE script “overlap_peakfi_with_bam.pl” [10]. The averaged sig-
nals across the two replicates were used as representatives. 

We selected robust positive sets by requiring that the peaks have an 
averaged log2(CLIP/input) signal ≥ 1, which means that the normalized 
read count in the CLIP sample is at least twice that in the mock input). 
We further required the peaks with a max length of 75 nt following the 
criteria of the GraphProt paper. We then created paired negative data-
sets by shuffling unbound sites of similar length and genomic distribu-
tion as binding sites. We used the human genome version hg19 and 
annotation version GENCODE v38lift37. We partitioned the genome 
into five different types, including CDS, 3′UTR, 5′UTR, intron, and 
intergenic, in a hierarchical way using the UCSC table browser. We 
ensured that each pair of positive and negative samples distributed in 
the same genomic type. We also ensured the non-binding sites in the 
negative sets did not intersect with any peak in either biological repli-
cate of eCLIP-seq data. In addition, we created non-redundant RBP-120 
datasets by excluding the RNA sequences in test set with sequence 
similarity greater than 80% to any sequences in training and validation 
set for each RBP by using the cd-hit-est in CD-HIT tool [41]. 

As a result, sequences for the raw and de-redundant RBP-120 set 
were released (http://bioinfo.org/deepfusion/). The peak regions for 
both positive and negative sets are padded to 75 nt with flanking Ns for 
missing bases, and the extended sequences covering peak, upstream, and 
downstream regions are padded to 375 nt, like GraphProt. The structural 
signals for the RBP-120 were derived from DMS-seq data, which are 
introduced in the following section. The detailed distribution of RBP- 
120 is shown in Supplementary Table S1. 
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2.1.3. The DMS-seq data 
We used the DMS-seq data probed in the human K562 cell line [38], 

which has been aligned to the human genome (hg19 assembly). The 
reverse transcription (RT) stop counts are considered as the raw 
DMS-seq signal C(i) for each nucleotide i and processed in the bigwig 
format in three conditions: in vivo, in vitro, and control [45]. Then we 
normalized the raw signal C(i) for each nucleotide across the whole 
transcriptome in each condition using the same formula in the original 
paper [36]. 

C′(i) =
In[C(i) + 1 ]

( ∑N
i=iIn[C(i) + 1 ]

)/
N 

where N is the length of the extended sequences for the peak, up-
stream, and downstream regions surrounding nucleotide i. We then 
removed the background by subtracting the normalized control count 
C′control(i) from the normalized in vivo count C′vivo(i) or in vitro count 
C′vitro(i). As a result, we obtained the DMS-reactivity scores for each 
nucleotide i for in vivo and in vitro conditions, respectively. We released 
the structural files for both positive and negative sets of 120 RBPs 
(http://bioinfo.org/deepfusion/). Similarly, the DMS reactivity is 
padded to 75 nt and 375 nt for the peak and extended regions, 
respectively. 

2.2. The DeepFusion model 

2.2.1. Bimodal inputs of DeepFusion 
DeepFusion accepts both RNA sequences and structural signals as 

input, with the latter optional. RNA sequences encoded by one-hot 
matrices of dimension 4 ×N convert linear biological sequences into 
image-like matrices that apply directly to convolutional neural net-
works. The first dimension, "4", refers to four types of bases, A, C, G, and 
U. The second dimension, "N," is the length of the RNA fragments in the 
input dataset, which are set to be 75 for local peak regions and 375 for 
extended long sequences, respectively. When ambiguous Ns are 

provided, they are encoded in equal-weight mode [0.25, 0.25, 0.25, 
0.25]. For structural input, we preprocessed the DMS-seq read counts 
into normalized DMS-reactivity scores for each base, with higher scores 
representing higher probabilities of the given base being single- 
stranded. We encoded these scores as a 1 ×N vector. The fusion of the 
bimodal inputs is done by concatenating the 4 ×N sequence matrix with 
the 1 ×N structural vector to form a 5 ×N heterogeneous input matrix. 

2.2.2. Bimodal architecture of DeepFusion 
DeepFusion is a deep-learning network designed in a bimodal ar-

chitecture, with a first sub-model used to extract motif-like information 
around the local peak regions and a second sub-model revealing the 
wider range interaction from the extended regions, as shown in Fig. 1. 
We named the sub-models as DeepFusion-s and DeepFusion-l, 
respectively. 

The sub-model DeepFusion-s extracts motif-like information from 
the local peak regions. It takes a 4 × 75 or 5 × 75 data matrix as input, 
depending on only sequences or sequences and structures inputs. It then 
feeds the input matrix into a convolution layer for local feature extrac-
tion. A ReLU activation layer is used to increase the nonlinear repre-
sentation of the whole model, and a max-pooling operation is used for 
sampling the most important features and reducing the dimensions of 
extracted features. Subsequently, a dropout layer is added to avoid over- 
fitting, and a fully connected layer plus a second ReLU function is used 
for extracting the final features from the peak region with properly 
reduced dimensions. The major operation of DeepFusion-s is based on 
convolution, with a kernel length set to 10 according to the average 
length of RBP binding sites [46]. 

The sub-model DeepFusion-l was introduced to extract wider range 
interaction information from the extended regions, including peak re-
gions and the genomic context upstream and downstream. A 4 × 375 or 
5 × 375 data matrix is required as single-modal sequence input or 
bimodal sequence and structure input. DeepFusion-l first uses the 
convolution with a kernel length of five, ReLU, and the max-pooling for 

Fig. 1. DeepFusion workflow. DeepFusion consists of two parts: The upper part is called DeepFusion-s, and the lower part is called DeepFusion-l. The two boxes on 
the left indicate the bimodal input data, including the RNA sequences and the DMS-seq structural signals. The boxes in the middle indicate the model architecture, 
with convolution and LSTM architectures in detail. The box on the right shows three applications of DeepFusion. 
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the initial feature extraction, just like DeepFusion-s. It then adds another 
layer called a bidirectional long short-term memory network (BLSTM), a 
variant of a recurrent neural network (RNN) suitable for learning long- 
range associations. The RNN extracts information progressively by 
sequentially connecting hidden layer units in a sequential manner and 
sharing parameters between the different base inputs. LSTM preserves 
long-range inter-base dependencies by using input, forget, and output 
gates across the LSTM memory cells. Bidirectional LSTM combines for-
ward and backward memory to learn how upstream and downstream 
sequences affect the binding between RBPs and their recognized RNA 
segments. DeepFusion-l thus learns abstract information about the 
extended regions and remembers valuable features between wider range 
interactions. Next, a dropout operation prevents over-fitting, and a fully 
connected layer is used to obtain the final feature description. In this 
way, DeepFusion-l is not limited to the local peak regions but explores 
the impact of complicated long-term contextual information. 

We combined DeepFusion-s and DeepFusion-l into the whole Deep-
Fusion model, which we used to analyze bimodal inputs to leverage the 
dual effect of the local motifs and the wider range protein-RNA in-
teractions. The fusion of the two sub-models occurs on the feature-vector 
level, i.e., concatenates the features of DeepFusion-s and DeepFusion-l to 
form a uniform feature vector. After that, a dropout operation was used 
to avoid overfitting, and a fully connected layer is used to predict 
binding or non-binding. 

2.2.3. Bi-dataset evaluation of DeepFusion 
We evaluated the performance of DeepFusion and other tools when 

applied to both the RBP-24 and RBP-120 datasets based only on 
sequence input. There are two reasons for making a sequence-based 
comparison: First, collecting matching DMS-seq data is difficult for the 
RBP-24 dataset because the CLIP-seq data for these 24 RBPs are in 
multiple cell lines. Second, most cutting-edge methods for comparing 
with DeepFusion cannot accept in vivo RNA structural features as input. 
For fairness, we thus evaluated DeepFusion with single-modal input. 

For the RBP-24 dataset, we compared DeepFusion with a series of 
tools (GraphProt [40], iDeepE [9], DeepCLIP [17], EDCNN [18], 
RPI-Net [32], deepnet-rbp [47], and PrismNet [39]) that were also 
previously evaluated in the same dataset. These tools mostly accept only 
sequence input, except for GraphProt and the latter three methods using 
the RNA structural features predicted from sequences or derived from 
icSHAPE. For the RBP-120 dataset, we selected iDeepE and EDCNN for 
sequence-based comparisons. The training strategies and hyper-
parameters of the compared methods were set in the same way as in the 
original papers (Supplementary Table S1). 

We next evaluated the improvement of the DeepFusion model upon 
supplying it with in vivo RNA structures. This evaluation is based only 
on the RBP-120 dataset, which contains matching eCLIP-seq data for 120 
RBPs and DMS-seq data from the human K562 cell line. We re-processed 
the DMS-seq signals to DMS-reactivity scores for both in vivo and in 
vitro experimental conditions. As a result, when we use DeepFusion with 
bimodal inputs, we can input either sequence and in vivo structural 
scores or sequence and in vitro structural scores. We thus compared the 
three modes of DeepFusion: sequence-only, sequence+vivo, and 
sequence+vitro. 

In all these evaluations, we train one model per RBP. We separated 
the training, test, and validation sets independently to ensure the 
generalizability of DeepFusion. For the original RBP-24 dataset, the 
training and test data were already separately provided. We further 
divided its training set into a secondary training and validation set at a 
ratio of 85: 15. For the newly generated RBP-120 dataset, we divided the 
training, test, and validation sets at the ratios 76.5: 10: 13.5. The pa-
rameters were trained by an Adam optimizer using the cross-entropy 
loss function for measuring the distance between the predicted results 
and the actual labels in the training set. Then, the model with the lowest 
loss function on the validation set was selected as the best model. All 
performances were measured by the area under the receiver operating 

characteristic curve (AUC), Matthews correlation coefficient (MCC), and 
F1 score based on the test set. 

2.2.4. Interpretation of DeepFusion results 
To interpret the results of DeepFusion, we extracted the sequence 

motifs around the peak regions and compared them with those recruited 
from existing databases. To this end, we extracted the 2000 largest 
feature values across the feature map generated by the first convolution 
layer in the sub-model DeepFusion-s, as done in a previous study [9]. 
The base composition of these 2000 sequences can be represented by a 
position weight matrix for depicting the preferences of bases in each 
position, i.e., a ten-mer sequence motif. We used the TOMTOM platform 
[48] to visualize the DeepFusion-derived position weight matrices as 
sequence logos and compared them against a database of known motifs 
[46]. We compared the motifs using the E-value scores that measured 
the expected number of false positives after adjusting the P-values. 
TOMTOM gave E-values based on Bonferroni correction of empirical 
motif P-values from searching shuffled query motifs against shuffled 
target motifs. As a result, a small E-value indicates a tiny probability of 
observing the alignment. 

2.3. Application of DeepFusion to RNA degradation 

We further extended the application of DeepFusion to RNA degra-
dation. We used the SLAM-seq data that measured the endogenous 
mRNA decay in the K562 cell line [49], from which the matching 
eCLIP-seq data were also available. In this work, the K562 cells were fed 
with S4U to block transcription, following performed time-course 
SLAM-seq, and then calculated the decay rate for 8861 genes. We thus 
divided these genes into two groups: the first group was the genes with 
rapid degradation (i.e., decay rates ranked in the top 25%), and the 
second group was the genes with slow degradation (i.e., decay rates 
ranked in the bottom 25%). 

We then set out to see whether these two gene groups differ in their 
RBP binding profiles according to DeepFusion’s prediction scores. We 
selected the mRNA with the longest 3′UTR as the representative of each 
gene and required the minimum length of the 3′UTR region to exceed 75 
nt. We predicted each mRNA’s RBP binding profiles using DeepFusion in 
a sliding window mode, with a widow size of 75 nucleotides and a step 
size of 50. In this way, the model can predict binding probability for 
each window sliding over the putative binding site. We then took the 
maximum of DeepFusion’s prediction scores across all 3′UTR windows 
on this mRNA as the final binding score. Then, we evaluated whether the 
two groups of genes with rapid degradation or slow degradation differ in 
their RBP binding profiles. Moreover, we re-analyzed this issue in an 
opposite way, named Degradation-opposite. To this end, we first divided 
two new groups of genes according to their binding scores predicted by 
DeepFusion, one group with scores of the top 25% and the other with the 
bottom 25%, and compared the differences in degradation rates between 
the two new groups. 

3. Results 

3.1. DeepFusion performs best when evaluated in RBP-24 dataset 

We first evaluated DeepFusion and other representative methods in 
the RBP-24 dataset based on single-modal sequence inputs. The detailed 
AUC scores for each RBP for these methods are listed in Table 1, with the 
best performance for each row shown in bold. DeepFusion performs the 
best with an average AUC of 0.952, which is significantly higher than 
that for EDCNN (0.944), DeepCLIP (0.935), iDeepE (0.931), PrismNet 
(0.827), and other methods. The differences between DeepFusion and 
other methods are all statistically significant under the two-tailed paired 
T-test. For example, the P-value of DeepFusion vs. EDCNN (with the 
second highest AUCavg) comparison is 0.022, and the P-value of Deep-
Fusion vs. DeepCLIP (with the third highest AUCavg) comparison is 
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0.0006. We found that DeepFusion still performs best when using other 
metrics. Take the second-rank EDCNN as an example. The differences 
between DeepFusion and EDCNN are still significant, with a P-value of 
0.044 for MCC (Matthews correlation coefficient) and a P-value = 0.042 
for F1 score. Moreover, DeepFusion’s performance is higher than its two 
sub-models, DeepFusion-s and DeepFusion-l in the RBP-24 dataset. In 
addition, we evaluated DeepFusion on the stringent non-redundant RBP- 
24 dataset, in which CD-HIT was used to exclude any sequence in the test 
set that had greater than 80% sequence similarity to the training and 
validation sets. We found that the fraction of redundant sequences be-
tween the training and the test set is rather low (8.1%). And DeepFusion 
still performs the best after de-redundancy. All these results can be found 
in the Supplementary Table S2. 

We then analyzed why DeepFusion provides such an improvement 
by visualizing the sequence motifs identified by DeepFusion. To this end, 
we extract the 10-mer sequences with the largest 2000 feature values 
across the feature map generated by the first convolution layer in the 
sub-model DeepFusion-s. We compare the extracted motif of DeepFusion 

with the known motif from the TOMTOM database and with that derived 
from other models, as shown in Fig. 2. It indicates that DeepFusion 
extracted U-rich motifs for ELAVL1A, ELAVL1C, HNRNPC, and TIA1 
consistent with their reference motifs [50–52]. DeepFusion also obtains 
other informative motifs for QKI and PTB, for example, the “ACUAAC” 
motif for QKI [46]. The consistency between the sequence motif 
extracted by the model and that restored in the known database can 
reflect the effectiveness of the feature extraction methods designed in 
the DeepFusion framework. 

3.2. DeepFusion performs best when evaluated in RBP-120 dataset 

Subsequently, we generated a larger dataset consisting of 120 RBPs 
following the same procedure of RBP-24 for consistency. Firstly, we 
performed model comparisons based on only sequence input. We 
selected representative methods, EDCNN and iDeepE, for comparison 
with DeepFusion, as they perform well in the RBP-24 dataset, and all of 
them are built under the same deep-learning framework PyTorch [53]. 

Table 1 
Comparison of DeepFusion performance with that of seven representative methods using the RBP-24 dataset.  

RBP GraphProt iDeepE DeepCLIP EDCNN RPI-Net (GNN) (debiased) deepnet-rbp (mDBN+) PrismNet DeepFusion 

AGO1-4  0.895  0.915  0.918  0.934  0.927  0.881  0.800  0.951 
AGO2  0.765  0.884  0.859  0.895  0.877  0.809  0.795  0.916 
ALKBH5  0.680  0.758  0.716  0.768  0.724  0.714  0.761  0.770 
C17ORF85  0.800  0.830  0.898  0.880  0.844  0.820  0.757  0.892 
C22ORF28  0.751  0.837  0.838  0.869  0.849  0.792  0.786  0.904 
CAPRIN1  0.855  0.893  0.948  0.912  0.869  0.834  0.755  0.956 
ELAVL1  0.955  0.979  0.981  0.981  0.971  0.966  0.849  0.984 
ELAVL1 (A)  0.959  0.964  0.982  0.977  0.968  0.966  0.853  0.979 
ELAVL1 (B)  0.935  0.971  0.982  0.982  0.964  0.961  0.884  0.984 
ELAVL1(C)/HuR  0.991  0.988  0.995  0.993  0.995  0.994  0.929  0.997 
EWSR1  0.935  0.969  0.973  0.976  0.967  0.966  0.799  0.985 
FUS  0.968  0.985  0.986  0.988  0.980  0.980  0.827  0.992 
HNRNPC  0.952  0.976  0.983  0.983  0.986  0.962  0.860  0.984 
IGF2BP1-3  0.889  0.947  0.898  0.969  0.912  0.879  0.758  0.926 
MOV10  0.863  0.916  0.940  0.940  0.875  0.854  0.818  0.948 
PTBP1/PTB  0.937  0.944  0.927  0.954  0.958  0.983  0.893  0.959 
PUM2  0.954  0.967  0.969  0.974  0.972  0.971  0.906  0.982 
QKI  0.957  0.970  0.975  0.973  0.977  0.983  0.929  0.978 
SFRS1  0.898  0.946  0.955  0.957  0.941  0.931  0.825  0.965 
TAF15  0.970  0.976  0.982  0.982  0.981  0.983  0.806  0.987 
TDP-43  0.874  0.945  0.905  0.955  0.959  0.876  0.901  0.958 
TIA1  0.861  0.937  0.945  0.950  0.963  0.891  0.823  0.950 
TIAL1  0.833  0.934  0.943  0.944  0.959  0.870  0.805  0.951 
ZC3H7B  0.820  0.907  0.933  0.920  0.838  0.796  0.728  0.942 
Average  0.887  0.931  0.935  0.944  0.927  0.903  0.827  0.952 

Note: the bolded font indicates that the model performed best on this RBP among all models. 

Fig. 2. Visualization of motifs extracted by DeepFusion on the RBP-24 dataset The motifs from existing databases and extracted by representative methods are 
shown. We showed the E-values that quantify the statistical significance of the similarity between DeepFusion’s predicted motifs and known motifs by using 
TOMTOM in the RBP-24 dataset. 
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Fig. 3A shows their performances via box plots, which show the 
upper quantile, median, and lower quantile of the AUC performances for 
all 120 RBPs for the three methods. DeepFusion performs best, with a 
mean AUC of 0.874 for the 120 RBPs. Comparatively, EDCNN and 
iDeepE reported mean AUCs of 0.860 and 0.839, respectively, signifi-
cantly lower than that for DeepFusion under the two-tailed paired t-test 
(1.24 ×10− 9 and 3.50 ×10− 30). As some RBPs cannot be predicted by 
EDCNN, we also compared the average performance across the 
remaining 99 RBPs, and DeepFusion still performs best. Moreover, 
DeepFusion’s performance is higher than its two submodels, 
DeepFusion-s and DeepFusion-l in the RBP-120 dataset. In addition, 
DeepFusion’s performance superiority is maintained using the MCC and 
F1 score metrics. Again, we also created a non-redundant RBP-120 
dataset and found that DeepFusion still performs best after de- 
redundancy. All these results can be found in the Supplementary 
Table S3. 

We also show in Fig. 3B the sequence motifs extracted by DeepFusion 
in the RBP-120 dataset. Some RBPs appear in the RBP-24 and RBP-120 
datasets and have known motifs in the TOMTOM database, such as 
HNRNPC, PTBP1 (PTB), and QKI. DeepFusion extracts similar sequence 
motifs for them. Other new RBPs introduced in the RBP-120 dataset (e. 
g., CPEB4, PCBP1, and U2AF2) also have known motifs. DeepFusion 
extracts the U-rich motifs for CPEB4 and U2AF2 with E-values of 
3.15 × 10− 2 and 3.07 × 10− 3, respectively, and the C-rich motifs for 
PCBP1 with an E-value of 3.06 × 10− 2. These results demonstrate that 
DeepFusion can identify the intrinsic sequence features recognized by 
diverse RNA-binding proteins. 

3.3. DeepFusion improves performance with the aid of in vivo RNA 
structures 

We further evaluate DeepFusion on RBP-120 with bimodal inputs to 
fully exploit its bimodal architecture. We compare the performance of 
DeepFusion in three modes: The first mode accepts only single-modal 
sequence input, called sequence-only, and the latter two modes accept 
bimodal inputs with both sequence and structural information derived 
from the DMS-seq data. When pre-processing the DMS-seq data, we 
obtain the DMS reactivities for both in vivo and in vitro conditions. 
69.2%/66.1% of the sequences in the RBP-120 dataset have in vivo/in 
vitro DMS-seq structural signals, which reflecting the single-stranded 
states of probed bases. As a result, the DeepFusion evaluation with 
bimodal inputs can be further classified into sequence+vitro or sequen-
ce+vivo modes. 

Fig. 4A shows DeepFusion’s AUC scores for the three evaluations. 
The box plots indicate that DeepFusion improves performance with 

DMS-seq-derived structural information, especially in vivo RNA struc-
tures. The mean AUC goes from 0.874 in the sequence-only model to 
0.927 in the sequence+vitro model and 0.933 in the sequence+vivo mode. 
In addition, the elevation is statistically significant, with a P-value of 
3.08 × 10− 30 between adding the in vitro signals or not and 
6.72 × 10− 35 for in vivo under the paired T-test, two-tailed. The detailed 
AUC score for each RBP for the three modes is provided in Supple-
mentary Table S4. More performance improvement from the in vivo 
DMS-seq inputs is consistent with the biological rationale. CLIP-seq 
experiments are also performed under the in vivo conditions, making 
the bimodal inputs of sequence+vivo more coherent and compatible. 

The scatter plot in Fig. 4B shows the performance difference between 
sequence-only and the sequence+vivo mode. Almost all RBPs get higher 
AUC scores after adding the in vivo structural signals and 71 of them 
improve performance by over 5%. We show that the better the sequence- 
only prediction, the less improvement from adding structural informa-
tion. We also compared the AUC of sequence+vivo over sequence+vitro in 
a scatter plot in Supplementary Fig. 1. We further investigate how 
adding in vivo structural features to DeepFusion affects its sequence 
motif extraction, as shown in Fig. 4C. For RBPs whose motifs can be 
revealed only by sequence features (Fig. 3B), the sequence motifs can 
still be dissected after incorporating in vivo RNA structural features, 
such as PCBP1, PTBP1, and QKI. For other RBPs, adding structural sig-
nals clarifies their sequence motifs. For example, both DeepFusion and 
the previous database demonstrate an ACACAC motif for HNRNPL [46], 
and a poly-C motif for HNRNPK [54]. This motif analysis demonstrates 
that DeepFusion can use different modal data to improve the predictive 
power and interpretability for resolving the binding patterns of RBPs. 

3.4. DeepFusion helps to dissect RNA degradation patterns 

We further extend the application of DeepFusion in RNA degradation 
because RNA degradation is essential in the post-transcriptional regu-
lation of RNAs regulated by RBPs. We use third-party data to distinguish 
two groups of genes: one group consists of 2181 genes with a low rate of 
degradation, and the other group consists of 2194 genes with a rapid 
rate of degradation. The degradation rate is measured by SLAM-seq in 
the same K562 cell line as the eCLIP-seq data [49]. 

For the two gene groups, we evaluated whether they differ in their 
RBP binding profiles, as shown in Fig. 5. We selected six representative 
RBPs known to be involved in RNA stability. For example, QKI affects 
endolysosome-dependent degradation in glioma stem cells [55], and 
SERBP1 is known to regulate Serpine1 mRNA stability in human skeletal 
muscle [56]. Our analysis shows that the DeepFusion predictions for 
these RBPs in genes with slow degradation differ from those with rapid 

Fig. 3. Evaluation of DeepFusion’s performance in the RBP-120 dataset Performance of DeepFusion, iDeepE, and EDCNN using sequence-only input measured by 
AUC. B. Visualization of motifs extracted by DeepFusion and comparison with known motifs using TOMTOM in the RBP-120 dataset. 
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degradation. For instance, SSB and SERBP1 tend to concentrate more on 
genes with slow degradation than genes with rapid degradation. The 
median binding scores of the two RBPs with slow (rapid) degradation 
are 0.777 and 0.607 (0.724 and 0.547), respectively. In contrast, QKI, 
KHSRP, HNRNPL, and PABPC4 concentrate more on genes with rapid 
degradation than genes with slow degradation, with statistically higher 
binding scores in the rapid-degradation group. This suggests that 
DeepFusion’s prediction about RBP binding can give further insights 
about RNA degradation. In addition, we also conducted an opposite 
analysis and got significantly different degradation rates in genes with 
high DeepFusion predicted scores versus those with low scores. We 
showed that these analyses are statistically significant by providing 
detailed P-values in Supplementary Table S5. These results demonstrate 
the extended utility of DeepFusion. 

4. Conclusions 

Analytical algorithms can determine the binding preferences of RBPs 
from experimental data. However, in vivo RNA structures based on high- 
throughput sequencing are rarely incorporated in algorithms for dis-
secting protein-RNA interactions. In this work, we introduce Deep-
Fusion, a deep bimodal information fusion network containing RNA 
sequences and in vivo DMS-seq structural features to predict RBP 
bindings on RNAs. We evaluated DeepFusion and compared it with other 
cutting-edge methods based on two sets of CLIP-seq data: one is a widely 
used dataset called RBP-24, and the other is a comprehensive set called 
RBP-120 based on the ENCODE project. The results show that Deep-
Fusion performs best on two independent datasets with only sequence 
inputs, and performs better when using bimodal input after adding in 
vivo DMS-seq structural features. The alignment of DeepFusion- 

Fig. 4. Performance improvement of DeepFusion when using DMS-seq structural input Performance of DeepFusion as measured by AUC on the RBP-120 dataset with 
different inputs, including sequence-only, sequence+vitro, and sequence+vivo. B. Scatter plot of each RBP’s performance as measured by AUC in the sequence+vivo 
mode compared with the sequence-only mode. C. Visualization of motifs extracted by DeepFusion after the addition of in vivo structural signal and comparison with 
known motifs using TOMTOM. 
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predicted motifs with the motifs in existing databases can provide in-
terpretations for DeepFusion’s prediction results. In addition, Deep-
Fusion can be used to analyze RNA degradation, expanding its potential 
application. Taken together, DeepFusion offers enhanced abilities to 
dissect the patterns of RNA-protein interactions and provides more 
support for further analysis of therapeutic RNAs. 
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