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Abstract: The quality and developmental capacity of oocytes derived from in vitro maturation (IVM)
remain unsatisfactory, which greatly impairs the efficiency and application of embryo technologies.
The present experiment was designed to investigate the effect of the supplementation of EGF, IGF-
1, and Cx37 in an IVM medium on the maturation quality and development ability of bovine
oocytes. The cytoplasmic maturation events of oocytes and the quality of in vitro fertilization (IVF)
blastocysts were examined to investigate the relative mechanisms. Our results showed that the
nuclear maturation and blastocyst development after the IVF of oocytes treated with 25 µg/mL Cx37
or the combination of 50 ng/mL EGF and 100 ng/mL IGF-1 were significantly increased compared to
those of the control group (p < 0.05). Furthermore, the blastocyst rate, and blastocyst total cell number
and survival rate after vitrification of the EGF+IGF-1+Cx37 group, were significantly higher than
those of the control group (p < 0.05), but lower than those of the FSH+LH+EGF+IGF-1+Cx37 group
(p < 0.05). The transzonal projection (TZP) intensity, glutathione (GSH) level, and mitochondrial
function of the EGF+IGF-1+Cx37 group were significantly higher than that of the control group, and
lower than those of the FSH+LH+EGF+IGF-1+Cx37 group, in contrast to the results of the reactive
oxygen species (ROS) levels. In conclusion, our results showed that the supplementation of 50 ng/mL
EGF, 100 ng/mL IGF-1, and 25 µg/mL Cx37 in the IVM of bovine oocytes significantly improved their
quality and developmental ability by increasing the TZP, mitochondrial function, and GSH level.
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1. Introduction

In vitro maturation (IVM) is a kind of assisted reproductive technology, which permits
immature oocytes collected from the mid-size antral follicles of unstimulated ovaries to be
matured in vitro [1]. It provides abundant oocyte resources for agricultural research and
biomedical purposes [2], including nuclear transfer and transgenic technology [3]. IVM can
be used as an effective tool to study the key factors of early embryonic development [4],
preimplantation embryonic development, and post-transfer survival [5]. For patients
with infertility problems, IVM can reduce the cost of treatment [6], simplify the treatment
process, and avoid the potential of side effects by reducing gonadotrophin stimulation
in patients [7,8].

However, going through decades of research, many studies demonstrate that the qual-
ity and developmental ability of IVM oocytes were poorer than those matured in vivo [9,10],
including goats [11], cattle [9], mice [12], and rabbits [13]. IVM has been shown to cause a
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significant ultrastructural heterogeneity of oocytes, as well as the desynchronization of nu-
clear maturation and cytoplasmic maturation [9]. The volume density of mitochondria and
the nuclear volume density in in vitro fertilization (IVF) blastocysts are lower than those
in blastocysts obtained in vivo, in contrast to the lipid volume density [14]. Furthermore,
IVM blastocysts showed significantly lower cumulative biochemical pregnancy, clinical
pregnancy, and live-birth rates [15].

In vivo, cumulus–oocyte complexes (COCs) are bathed with follicular fluid, which
contains a series of proteins, cytokines, hormones, energy metabolites, steroids, and some
undefined factors [16]. However, a single non-physiological IVM system has now been
utilized in the IVM of oocytes [17]. Researchers have added different factors in the IVM
medium to improve the maturation quality of oocytes. EGF is the founding member of
the EGF ligand family, and it stimulates oocyte maturation and cumulus expansion [18].
IGF-1 is an effective mitogen of granulosa cells [19], and it enhances the nuclear maturation
of bovine [20], cat [21], and zebrafish [22] oocytes. Connexin37 (Cx37) is a member of
the connexin family that contributes to the gap junction construction [23], enhances the
communication between granulosa cells and oocytes, and facilitates the maturation of
oocytes [24]. However, little information is available about the effect of the combined
treatment of EGF, IGF-1, and Cx37 on the maturation of bovine oocytes.

To support the maturation of oocytes, most IVM media contain higher concentrations
of FSH than those present in the follicular fluid where follicles eventually grow and ovu-
late [25]. However, high doses of FSH may affect oocyte chromatin dynamics and oocyte
transcription/translation activities, impel gap connection-mediated communication be-
tween cumulus cells and oocytes by reducing transzonal projection (TZP) density [26], and
impair oocyte development and embryo production [27]. Moreover, the high concentration
of LH will significantly decrease polar body formation, initial cleavage, and blastocyst
development [28]. Until now, many experiments have been designed to culture immature
oocytes in an IVM medium without LH and FSH [29,30].

Therefore, the present experiment was designed to investigate the effect of the supple-
mentation of EGF, IGF-1, and Cx37 in an IVM medium on the maturation and development
ability of bovine oocytes. Furthermore, the addition of EGF, IGF-1, and Cx37 in an IVM
medium without gonadotropin was also examined. Finally, the cytoplasmic maturation
events (TZP, glutathione (GSH), and mitochondrial function) of oocytes and the quality of
IVF blastocysts were examined to investigate the mechanisms via which EGF, IGF-1, and
Cx37 worked.

2. Materials and Methods

In the present study, all chemicals were purchased from Sigma-Aldrich Chemical
Company (Missouri, MO, USA), and plastic products were obtained from Thermo Fisher
Scientific Company (Massachusetts, MA, USA). All animal processing was premised based
on the Institutional Animal Care and Use Committee of the Chinese Academy of Agricul-
tural Sciences.

2.1. IVM of Bovine Oocytes

Bovine ovaries were collected from local slaughterhouse, and transported to the
laboratory within 2 h in a physiological saline solution with penicillin and streptomycin.
Follicles with a diameter of 2–8 mm were selected to collect cumulus–oocyte complexes
(COCs), and only those with more than 3 layers of compact cumulus cells were used for
the experiment. For IVM, 50 COCs were incubated in 750 µL IVM medium in each well
with 5% CO2 at 38.5 ◦C for 22–24 h. The basic IVM medium contained medium 199 (Gibco
BRL, Carlsbad, CA, USA) supplemented with 10% (v/v) fetal bovine serum (FBS, Hyclone;
Gibco BRL) and 10 µg/mL estradiol.

According the experiment design, the oocytes were cultured in different IVM medium
as below.
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For the control group, the IVM medium contained medium 199 (Gibco BRL, Carlsbad,
CA, USA) supplemented with 10% (v/v) fetal bovine serum (FBS, Hyclone; Gibco BRL),
5 IU/mL FSH, 10 IU/mL LH, and 10 µg/mL estradiol.

In the first experiment, 100 ng/mL IGF-1 or 50 ng/mL EGF were added into the basic
IVM medium of bovine COCs in the presence of FSH and LH, and the maturation and
development ability of bovine oocytes were examined.

In the second experiment, 100 ng/mL IGF-1 or 50 ng/mL EGF were added into
the basic IVM medium of bovine COCs without FSH and LH, and the maturation and
development ability of bovine oocytes were examined.

In the third experiment, different concentrations of Cx37 (0, 12.5 µg/mL, 25 µg/mL,
and 50 µg/mL) were added to the basic IVM medium of bovine COCs in the presence of
FSH and LH, and nuclear maturation and development, and the optimal Cx37 concentra-
tion, were examined.

Finally, 100 ng/mL IGF-1, 50 ng/mL EGF, and 25 µg/mL Cx37 were added together
into the basic IVM medium of oocytes with or without FSH and LH, and cytoplasmic
events of bovine oocytes and the quality of their IVF blastocysts were examined.

2.2. IVF of Oocytes

The IVF procedure was performed according to the method described by Brackett
and Oliphant [31]. After being thawed in 38 ◦C water, one straw of frozen semen (Beijing
Dairy Cattle Center, Beijing, China) was washed twice in 7 mL Brackett and Oliphant (BO)
medium by centrifugation at 1500 rpm for 5 min. Then, the sperm pellet was resuspended
in fertilization medium (BO medium containing 20 µg/mL heparin), and 10 µL sperm
suspension was added to 90 µL fertilization medium to make the final sperm concentration
of 1 × 106/mL. Subsequently, 20 to 30 oocytes were placed in 100 µL fertilization droplet.
After 16–18 h of fertilization, the presumed zygotes were washed and cultured in Charles
Rosenkrans medium [32] for 48 h. Finally, the cleavage embryos were cultured in Charles
Rosenkrans medium with 10% FBS for another 120 h to blastocysts.

2.3. qRT-PCR of Candidate Genes in Oocytes and Blastocysts

As shown in Table 1, the qRT-PCR procedure was performed on an ABI 7500 SDS
instrument (Applied Biosystems, Foster City, CA, USA) using the comparative Ct (2−∆∆Ct)
method, and β-ACTIN was used as a reference gene. Each reaction was performed in a
total volume of 25 µL, and the PCR program consisted of a denaturing cycle (95 ◦C for
2 min) and 40 cycles of PCR (95 ◦C for 10 s, 60 ◦C for 30 s) [33].

Table 1. Primers used for qRT-PCR of candidate genes in oocytes and blastocysts.

Gene Primers (5′–3′) Size (bp) GenBank
Accession No.

Annealing
Temperature (◦C)

IFN- tau
F: GCTCCAGAAGGATCAGGCTATC

95 AF238611 60R: TGTTCCAAGCAGCAGACGAGT

CTNNBL1
F: GTTCCTGCCTAATGCTGAGTTCC

191 NM_174637.3 60R: GGTCCGTAAGCCAAGAATGTCA

AQP3
F: AACCCTGCTGTGACCTTTGCTA

230 AF123316 60R: TTGACCATGTCCAAGTGTCCAG

BAX
F: TTTCTGACGGCAACTTCAACTG

83 NM_173894.1 60R: GGTGCACAGGGCCTTGAG

BCL-2
F: TCAATTGTCGTGGCATCAAAA

249 NM_001077486.2 60R: CCCCCGACACCTGTTAGCTT

ATP6
F: GAACACCCACTCCACTAATCCCAAT

147 AF493542 60R: GTGCAAGTGTAGCTCCTCCGATT

ATP8
F: CACAATCCAGAACTGACACCAACAA

129 AF493542 60R: CGATAAGGGTTACGAGAGGGAGAC

B-ACTIN
F: TCCTGGGCATGGAATCCTG

177 NM_173979 60R: GGCGCGATGATCTTGATCTTC
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2.4. Examination of Total Nuclear Cell per Blastocyst

Blastocysts were treated with 5 mg/mL pronase to remove zona pellucida, then stained
with 10 µg/mL of Hoechst-33342 for 10 min. Finally, they were washed, mounted, and
examined under a fluorescence microscope (Olympus, Notting Hill, Australia) equipped
with a CoolSNAP HQ CCD camera.

2.5. Vitrification of Blastocysts

The vitrification procedure of IVF blastocysts was performed according to the
method described by Zhao et al. [34]. For vitrification, embryos were incubated in
10% EG + 10% DMSO for 30 s, treated with EDFS30 for 25 s, and finally plunged into
liquid nitrogen (LN2) in open-pulled straws (OPS). For warming, embryos were expelled
from the OPS and incubated in 0.5 M sucrose for 5 min. Then, embryos were incubated
in CR1aa for 30 min and those that survived were morphologically evaluated.

2.6. Analysis of TZP Intensity in Oocytes

The immunofluorescence staining of TZP in oocytes was performed according to the
methodology described by Yuan et al. [35]. Firstly, oocytes were fixed in 4% paraformalde-
hyde for 30 min at room temperature. Then, oocytes were permeated in 0.1% Triton X-100
for 5 min and blocked in 1% BSA for 1 h. Finally, oocytes were incubated in Rhodamine
Phalloidin (ab235138, 1:1000 dilution; Abcam, Cambridge, UK) for 1 h and imaged with
confocal microscopy (TCS SP8; Lecia Leica Microsystems, Wetzlar, Germany). The fluores-
cent intensity of TZP staining was analyzed with ImageJ software (Version1.40; National
Institutes of Health, Bethesda, MD, USA).

2.7. GSH Assay in Oocytes

Intra-oocyte GSH content was measured as the method previously described in ref-
erence [36]. A group of 20–30 oocytes was transferred into microtube containing 5 µL of
0.2 M sodium phosphate buffer with 10 mM Na2-EDTA and 5 µL of 1.25 M phosphoric
acid. Then, 350 µL of 0.33 mg/mL NADPH, 50 µL of 6 mM DTNB, and 90 µL of distilled
water was added into the microtube and mixed. Finally, 5 µL of 250 U/mL GSH reductase
was added to the microtube to start the reaction. Absorbance was monitored at 412 nm
using a spectrophotometer for 3 min, and total GSH content in oocytes was calculated from
a constructed standard curve [36].

2.8. Analysis of ROS Level in Oocytes

The ROS levels in oocytes were detected using the method described by
Rahimi et al. [37] with modifications. A fluorescent dye, 2′,7′-dichlorodihydrofluorescein
diacetate H2DCF-DA; Genmed Scientific Inc, Wilmington, DE, USA), was used to mea-
sure intra-cellular redox state. Briefly, oocytes were transferred to working solution
containing dye solution and incubated for 20 min at 37 C◦ in 5% CO2. Then, oocytes
were transferred into 96-well dishes with 100 µL storage solution in each well, and
luminescence was immediately measured using a luminometer (InfiniteM200, Tecan
Group Ltd., Männedorf, Switzerland). The fluorescence excitation level and emission
level were set at 488 nm, and 530 nm, respectively, and ROS values were expressed as
counted photons per sec (c.p.s).

2.9. ATP Content of Oocytes

ATP content was determined quantitatively by measuring the luminescence generated
in an ATP-dependent luciferin–luciferase bioluminescence assay (ATP Bioluminescence
Assay Kit HS II, Roche Diagnostics GmbH, Mannheim, Germany), as described by Van
Blerkom et al. [38]. Briefly, an aliquot (20 µL) of cell lysis reagent was added to a 0.5 mL
centrifuge tube containing oocytes, and the oocytes were homogenized and lysed by
repeated pipetting. A standard curve containing ATP concentrations from 0.01 to 10.0 pmol
was generated for each series of analyses. ATP detection solution (100 µL) was added
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to 96-well dishes and equilibrated for 3–5 min. Standard solutions and samples (20 µL)
were added to each well. Luminescence was immediately measured using a luminometer
(InfiniteM200, Tecan Group Ltd., Untersbergstrasse, Austria) for 10 s. A standard curve
was generated from the relative light intensity of the serial dilutions, and ATP content of
the samples was determined from the standard curve.

2.10. Statistical Analysis

Results were expressed as means ± standard error, and all experiments were repeated
at least 3 times. All data were analyzed using a one-way analysis of variance with Statistical
Analysis System software 8.1 (SAS Institute, Raleigh, NC, USA), and p < 0.05 was considered
statistically significant.

3. Results
3.1. Effect of EGF and IGF-1 on the Maturation and Developmental Ability of Bovine Oocytes

As shown in Table 2, the nuclear maturation rate of the FSH+LH+EGF group was
similar to that of the FSH+LH+IGF-1 group and control group (p > 0.05), but significantly
lower than that of the FSH+LH+EGF+IGF-1 group (p < 0.05). Meanwhile, when oocytes
were used for IVF, the cleavage rate and blastocysts development rate of the FSH+LH+EGF
group and FSH+LH+IGF-1 group were similar to those of the control group (p > 0.05), but
significantly lower than those of the FSH+LH+EGF+ IGF-1 group (p < 0.05).

Table 2. Effect of EGF and IGF-1 on the maturation and development ability of bovine oocytes.

Groups No. COCs No. Metaphase (M) II
Oocytes

No. Cleavage
Embryos No. Blastocysts

FSH+LH+EGF 187 159 (85.03 ± 5.04%) b 128 (80.50 ± 7.21%) b 39 (30.47 ± 2.71%) b

FSH+LH+IGF-1 194 163 (84.02 ± 4.93%) b 132 (80.98 ± 6.19%) b 41 (31.06 ± 2.63%) b

FSH+LH+EGF+IGF-1 210 194 (92.38 ± 2.18%) a 174 (89.69 ± 4.71%) a 71 (40.80 ± 3.59%) a

Control 291 238 (81.79 ± 1.39%) b 176 (73.95 ± 8.63%) b 51 (28.98 ± 2.45%) b

a, b Values with different superscripts indicate significant differences between groups (p < 0.05).

3.2. Effect of EGF and IGF-1 on the Maturation and Developmental Ability of Bovine Oocytes
without Gonadotropins

As shown in Table 3, the nuclear maturation rate of the EGF+IGF-1 group was similar
to that of the control group (p > 0.05), but significantly higher than that of the EGF group,
IGF-1 group, and -FSH-LH group (p < 0.05). At the same time, when the oocytes were used
for IVF, the cleavage rate and blastocysts development rate of the EGF+IGF-1 group were
similar to those of the control group (p > 0.05), but significantly higher than those of the
EGF group, IGF-1 group, and -FSH-LH group (p < 0.05).

Table 3. Effect of EGF and IGF-1 on the maturation and development ability of bovine oocytes
without gonadotropins.

Groups No. COCs No. MII Oocytes No. Cleavage
Embryos No. Blastocysts

EGF+IGF-1 243 203 (83.54 ± 4.92%) a 143 (70.44 ± 9.83%) a 44 (30.77 ± 3.09%) a

EGF 251 172 (68.53 ± 5.89%) b 93 (54.07 ± 4.34%) b 18 (19.35 ± 1.67%) b

IGF-1 288 200 (69.44 ± 8.44%) b 110 (55.00 ± 5.89%) b 23 (20.91 ± 2.39%) b

-FSH-LH 371 208 (56.06 ± 5.23%) c 94 (45.19 ± 4.47%) c 14 (14.89 ± 1.93%) c

Control 202 162 (80.20 ± 6.81%) a 122 (75.31 ± 5.17%) a 38 (31.15 ± 2.68%) a

a, b, c Values with different superscripts indicate significant differences between groups (p < 0.05).

3.3. Effect of Cx37 on the Maturation and Developmental Ability of Bovine Oocytes

To explore the Cx37 on the maturation of oocytes, three concentrations of Cx37 were
used in the IVM of bovine COCs. As shown in Table 4, there was no significant difference
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in the nuclear maturation rates among the four groups. However, the cleavage rate and
blastocysts development rate of the 25 µg/mL Cx37 group were significantly higher than
the 12.5 µg/mL Cx37 group, 50 µg/mL Cx37 group, and the control group.

Table 4. Effect of Cx37 on the maturation and development ability of bovine oocytes.

Groups No. Cocs No. MII Oocytes No. Cleavage
Embryos No. Blastocysts

12.5 µg/mL Cx37 102 84 (82.35 ± 7.82%) a 65 (77.38 ± 6.91%) b 19 (29.23 ± 2.13%) b

25 µg/mL Cx37 116 96 (82.76 ± 7.39%) a 83 (86.46 ± 8.08%) a 32 (38.55 ± 2.59%) a

50 µg/mL Cx37 105 86 (81.90 ± 7.13%) a 68 (79.07 ± 7.12%) b 21 (30.88 ± 2.79%) b

Control 94 76 (80.85 ± 6.34%) a 58 (76.32 ± 4.07%) b 17 (29.31 ± 2.62%) b

a, b Values with different superscripts indicate significant differences between groups (p < 0.05).

3.4. Effect of the Combination Treatment of EGF, IGF-1, and Cx37 on TZPs in Bovine Oocytes

Figure 1A shows the representative image of TZPs staining of the bovine oocytes.
As shown in Figure 1B, the fluorescence intensity of the EGF+IGF-1+Cx37 group was
significantly higher than that of the control group (p < 0.05), and lower than that of
FSH+LH+EGF+IGF-1+Cx37 group (p < 0.05).
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(A) Representative image staining of TZPs in bovine oocytes. (B) Effect of the combination treatment
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significant differences between groups (p < 0.05).

3.5. Effect of the Combination Treatment of EGF, IGF-1, and Cx37 on GSH, Reactive Oxygen
Species (ROS) Level in Bovine Oocytes

As shown in Figure 2A, the GSH level of the EGF+IGF-1+Cx37 group was sig-
nificantly higher than that of the control group (p < 0.05), and lower than that of
FSH+LH+EGF+IGF-1+Cx37 group (p < 0.05). As shown in Figure 2B, the ROS level in
oocytes of the FSH+LH+EGF+IGF-1+Cx37 group was significantly lower than that of
EGF+IGF-1+Cx 37 group and control group.
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3.6. Effect of the Combination Treatment of EGF, IGF-1, and Cx37on Mitochondrial Function in
Bovine Oocytes

As shown in Figure 3A, the ATP content in oocytes in the EGF+IGF-1+Cx37 group
was significantly higher than that in the control group (p < 0.05) and lower than the
FSH+LH+EGF+IGF-1+Cx37 group (p < 0.05). The same results were found for the expres-
sion of the ATP-synthesized genes ATP6 and ATP8 (Figure 3B).
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3.7. Effect of the Combination Treatment of EGF, IGF-1, and Cx37on the Maturation and
Developmental Ability of Bovine Oocytes

As shown in Table 5, the nuclear maturation rate of the EGF+IGF-1+Cx37 group
was significantly higher than that of the control group (p < 0.05), but lower than that of
the FSH+LH+EGF+IGF-1+Cx37 group (p < 0.05). At the same time, the cleavage rate
and blastocyst rate of the EGF+IGF-1+Cx37 group were significantly higher than those
of the control group (p < 0.05), but lower than those of the FSH+LH+EGF+IGF-1+Cx37
group (p < 0.05).
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Table 5. Effect of the combination treatment of EGF, IGF-1, and Cx37on the maturation and develop-
mental ability of bovine oocytes.

Groups No. COCs No. MII Oocytes No. Cleavage
Embryos No. Blastocysts

EGF+ IGF-1+Cx37 350 306 (87.43 ± 6.86%) b 250 (81.70 ± 7.65%) b 100 (40.00 ± 3.87%) b

FSH+LH+EGF+
IGF-1+Cx37 279 262 (93.91 ± 7.84%) a 237 (90.46 ± 8.28%) a 120 (50.63 ± 4.75%) a

Control 383 310 (80.94 ± 6.64%) c 234 (75.48 ± 6.82%) c 73 (31.20 ± 3.05%) c

a, b, c Values with different superscripts indicate significant differences between groups (p < 0.05).

3.8. Effect of the Combination Treatment of EGF, IGF-1, and Cx37on the Quality of IVF Blastocysts

As shown in Figure 4A,B, the total cell number and survival rate after the vitrification
of the blastocysts of the EGF+IGF-1+Cx37 group were significantly higher than that of
the control group (p < 0.05), but lower than that of the FSH+LH+EGF+IGF-1+Cx37 group
(p < 0.05). Meanwhile, as shown in Figure 4C, the mRNA expression level of IFN-tau, AQP
3, and CTNNBL1 genes in blastocysts of the EGF+IGF-1+Cx37 group was significantly
higher than those of the control group but lower than those of the FSH+LH+EGF+IGF-
1+Cx37 group. For apoptosis-related genes, the mRNA expression of the anti-apoptosis
gene BCL-2 of the EGF+IGF-1+Cx37 group was significantly higher than that of the control
group but lower than that of the EGF+IGF-1+Cx37 group, which was contrary to the results
in the expression of the pro-apoptosis gene BAX.
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4. Discussion

During the IVM of bovine oocytes, it has been proven that the treatment with EGF and
IGF-1 stimulates cumulus expansion, oxidative metabolism, and nuclear maturation [39],
and accelerates oocytes’ meiosis process by increasing the activity of H1 and MAP ki-
nases [40]. Similarly, as shown in Table 2, our experiments showed that when EGF and
IGF-1 were both added, the maturation of oocytes and development of their IVF embryos
were significantly improved.

Since a high level of gonadotropins affects the maturation and development ability
of mammalian oocytes, it is necessary to develop a hormone-free IVM medium for the
oocytes culture in vitro. As shown in Table 3, in the absence of FSH or LH, the addition of
EGF or IGF-1, especially both EGF and IGF-1, significantly improved the maturation and
development ability of bovine oocytes, which confirmed the results in buffalo oocytes [41].
EGF can effectively stimulate a series of cascade reactions and weaken meiosis inhibition,
resulting in meiosis of oocytes [18,35]. IGF-1 can promote the proliferation and differenti-
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ation of granulosa cells [42] by activating the mitogen-activated protein kinase-signaling
cascade [43], and inhibit apoptosis by mediating the phosphoinositide 3-kinase activation of
Akt and the inactivation of pro-apoptotic proteins [44], which ultimately promotes oocyte
maturation. In the absence of FSH or LH, a combination of EGF and IGF-1 stimulates a
cascade of events, including protein synthesis, which eventually generates positive signals
for the resumption of meiosis in oocytes [41]. All this evidence contributed to explaining
the increased maturation and development of oocytes treated by EGF and IGF-1 without
gonadotropins (Table 3).

As shown in Table 4, our results revealed that 25 µg/mL Cx37 efficiently accelerated
the subsequent developmental ability of oocytes. Studies have shown that the growth
rate of oocytes is proportional to the number of cumulus cells [45]. As a member of the
connexin family, Cx37 is present in both cumulus cells and oocytes at all stages of follicular
development [46] and has been proven to be essential for the communication between
oocyte and cumulus cells via the gap junction [47]. The lack of Cx37 in female mice reduced
the meiotic competence of oocytes and resulted in a lack of gap junctions between the
oocytes and cumulus cells [48]. The wide gap junction coupling between oocytes and
granulosa cells greatly increases the effective plasma membrane surface area, and oocytes
can use it to obtain essential nutrients from extracellular sources [49,50], which explained
the improved quality and development ability of oocytes treated by Cx37 (Table 4).

As an extension of the cumulus cells, TZP penetrates ZP to contact the oocytes [51],
and numerous TZPs develop and contribute to the growth of growing oocytes [45]. TZPs
can provide pyruvate, nicotinamide adenine dinucleotide phosphate, and cyclic guano-
sine monophosphate to oocytes [27]. As shown in Figure 1, our experiments showed
that the oocytes treated with EGF, IGF-1, and Cx37 significantly improved the level
of TZP in oocytes, which explained the increased maturation and development ability
of bovine oocytes.

The GSH level in oocytes is an important factor affecting the quality of IVM of oocytes
and subsequent embryonic development [52]. As one kind of antioxidant, GSH content
is used as an effective index to measure the cytoplasm maturity of oocytes [53]. GSH can
regulate intra-cellular redox balance, protecting cells from oxidative damage [52]. ROS can
damage the cell membrane and induce apoptosis, which thereby harms the fertilization
potential of oocytes [54]. As shown in Figure 2, our experiments showed that the treatment
with EGF, IGF-1, and Cx37 significantly improved the GSH and decreased the ROS level
in oocytes, which was due to that that EGF upregulated the expression of antioxidative
enzymes (SOD, CAT, and GSH-Px) to alleviate oxidative injury [55,56].

The expression levels of mitochondrial genes affect the quality, fertilization, and
embryo development of oocytes [57], and have been used to assess the quality of the
oocytes [58]. The ATP-content level is closely associated with the development ability of
oocytes in bovine [54], sheep [59], and mice [60]. As shown in Figure 3, the ATP content
and mRNA expression of ATP6 and ATP8 were significantly improved by the combination
treatment of EGF, IGF-1, and Cx37, and it was due to that that growth factors can increase
the mitochondrial membrane potential of bovine oocytes [61] and the ROS can significantly
decrease the maturation and ATP content of mouse oocytes [60].

As shown in Table 5, the maturation and development ability of oocytes were sig-
nificantly improved by the combination treatment of EGF, IGF-1, and Cx37, which was
due to the increased level of TZP (Figure 1) and GSH, decreased ROS level (Figure 2), and
higher ATP-content level and mRNA expression level (Figure 3). The total cell number per
blastocyst [62–65], IFN-τ expression levels [58,66], and survival rate after vitrification [34]
have been described as good indicators to determine the quality of the embryo. AQP3 is
a transmembrane channel protein that allows the rapid and passive movement of water,
as well as other tiny neutral solutes, across the membrane to improve plasma membrane
permeability and blastocyst cavity formation [67]. CTNNBL1 is the marker of compaction
and trophectoderm differentiation [58]. BAX is a pro-apoptotic protein that leads to cell
death, whereas BCL-2 is an anti-apoptotic protein that promotes cell survival, and the ratio
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of BCL-2 to BAX ratio determines whether a cell survives or undergoes apoptosis [68].
As shown in Figure 4, our experiments showed that EGF, IGF-1, and Cx37 supplemen-
tation significantly increased the total number of cells and the expression levels of IFN-
Tau, CTNNBL1, AQP3, and BCL-2 genes in their IVF blastocysts, and reduced the expres-
sion levels of BAX genes in blastocysts, indicating that the quality of the blastocyst was
improved by the combined treatment of EGF, IGF-1, and Cx37.

5. Conclusions

In conclusion, our results showed that the supplementation of EGF, IGF-1, and Cx37
in IVM medium of bovine oocytes significantly improved their quality and developmental
ability by increasing the TZP, mitochondrial function, and GSH level.
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