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Abstract

The increased transcription of the Cyp6g1 gene of Drosophila melanogaster, and consequent resistance to insecticides such
as DDT, is a widely cited example of adaptation mediated by cis-regulatory change. A fragment of an Accord transposable
element inserted upstream of the Cyp6g1 gene is causally associated with resistance and has spread to high frequencies in
populations around the world since the 1940s. Here we report the existence of a natural allelic series at this locus of D.
melanogaster, involving copy number variation of Cyp6g1, and two additional transposable element insertions (a P and an
HMS-Beagle). We provide evidence that this genetic variation underpins phenotypic variation, as the more derived the allele,
the greater the level of DDT resistance. Tracking the spatial and temporal patterns of allele frequency changes indicates that
the multiple steps of the allelic series are adaptive. Further, a DDT association study shows that the most resistant allele,
Cyp6g1-[BP], is greatly enriched in the top 5% of the phenotypic distribution and accounts for ,16% of the underlying
phenotypic variation in resistance to DDT. In contrast, copy number variation for another candidate resistance gene,
Cyp12d1, is not associated with resistance. Thus the Cyp6g1 locus is a major contributor to DDT resistance in field
populations, and evolution at this locus features multiple adaptive steps occurring in rapid succession.
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Introduction

The genetic basis of adaptation remains one of the central

unresolved issues within evolutionary biology. From a genome-

wide perspective, recent studies of Drosophila and bacteria suggest

that a large proportion of nucleotide fixations in these genomes are

adaptive, although their individual effects on fitness are typically

small [1–5]. From the perspective of an individual adaptive trait,

the number of genetic variants that contribute to the trait needs to

be quantified, and for each variant, its phenotypic effect estimated,

including any pleiotropic fitness costs [6,7]. Ultimately a complete

understanding of the genetics of adaptation requires the synthesis

of both perspectives. Currently however there are few examples of

adaptive traits in which the genetic basis is understood at a high

resolution. In bacteria the best examples come from chemostat

experiments [8]. In eukaryotes, the predominant examples come

from Quantitative Trait Loci (QTL) studies, which suffer from

biases, notably that genes of small effect will generally not be

identified. Another bias is that a single Quantitative Trait Locus

may result from multiple allelic substitutions and hence QTL

studies by themselves could underestimate the number of changes

in a bout of adaptive evolution. Here we use insecticide resistance

as a model adaptive trait in a eukaryote organism. It offers an

opportunity to view an adaptive response to a change in a single

environmental component and it occurs on a timescale that allows

multiple genetic changes to be observed.

Historically, insecticide resistance has provided a good model

for adaptation because a novel selective agent is applied to large

natural populations. A key insight provided by many insecticide

resistance studies is the frequency of parallel mutation. Often,

exactly the same mutations arise independently in a gene or in

orthologous genes, as adaptive responses to insecticide selection.

For example, at the Resistance to dieldrin (Rdl) locus, a single A302S

substitution has independently occurred across a diverse array of

insect species. In the case of Tribolium casteneum, this mutation has

occurred multiple times in different geographically defined

populations [9,10]. Similarly, the L1014F mutation in the para

voltage gate sodium channel, the molecular target of pyrethroids

and Dichloro-Diphenyl-Trichloroethane (DDT), has arisen inde-

pendently in numerous species [11]. Such parallel evolution is not

restricted to the target molecules of insecticides, but is also seen in

detoxifying enzymes, one example being the G137D change in the
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Resistance to organophosphate (Rop1) esterase locus in Lucilia cuprina and

Musca domestica [12]. Parallel evolution is one manifestation of the

limits to adaptation, because it suggests that there are a limited

number of alternatives. Or more precisely, if there are alternatives,

they are harder to reach via mutation, provide less of a benefit, or

impose greater fitness costs.

The Cyp6g1 locus of Drosophila melanogaster and Drosophila simulans

provides another example of parallel evolution. In D. melanogaster

the insertion of transposable element sequence into the 59

regulatory region correlates with increased transcription of the

Cyp6g1 gene that encodes a cytochrome P450 enzyme capable of

metabolising multiple insecticides, most notably DDT [13,14].

The 491 bp insertion is derived from the long terminal repeat

(LTR) of an Accord transposable element (TE), and lies 287 bp

from the transcription start site [13]. Transgenic studies have

demonstrated that the 491 bp Accord insertion can drive expression

of a GFP reporter gene in detoxification tissues [15], implicating

the insertion as the mutation that causes resistance and thereby

providing a robust example of cis-regulatory adaptation [16].

Furthermore the Accord insertion is not found in flies collected

before 1940 but is found at high frequency (32–100%) in 34

contemporary populations around the world, and its presence

correlates with resistance [17]. In D.simulans, a 4,803 bp Doc

element, a non-LTR TE, has inserted about 200 bp upstream of

the putative transcription start site. This insertion correlates with a

two-fold increase in transcription and appears to have recently

swept to high frequency in a Californian population. Direct

evidence of a phenotypic effect of the Doc insertion is equivocal,

but the large window of reduced nucleotide variation around

D.simulans Cyp6g1 is consistent with insecticide based selection [18].

DDT resistance in Drosophila is an engaging case study of

adaptive evolution, partly because the results of genetic mapping

studies have reached different conclusions about the basis of

resistance. Most early research, including the classic studies of J.F.

Crow, indicated that DDT resistance was polygenic with genes

contributing to DDT resistance distributed among all three major

chromosomes [19–22]. In contrast, work by Kikkawa in 1964

showed that the resistance in the Hikone-R strain was due to a

single dominant locus, which mapped to 64.5 cM on chromosome

II [23]. This was subsequently identified as Cyp6g1 [24]. Since the

identification of Cyp6g1 as a resistance locus, researchers have

identified the molecular mechanism of the upregulation [15],

looked for selective sweeps centred at this locus [17], and have

contended that other loci also play important roles in DDT

resistance [25]. Other than Cyp6g1, two additional loci have been

implicated in DDT resistance, and both are also cytochrome P450

genes. CYP6A2 has DDTase activity that has been shown to be

reliant on three amino acid substitutions that distinguish a lab

resistant strain from susceptible strains [26]. The other locus,

Cyp12d1, is highly inducible by DDT [27]. Its overexpression in

flies using transgenic techniques increases DDT resistance [28],

and the locus exhibits high frequency copy number variation in

natural populations. However Cyp6g1 is the only locus shown to

have alleles that contribute to variation in DDT resistance in field

populations of D. melanogaster.

We, and others [29,30], have found copy number variation and

extra alleles at the Cyp6g1 locus of D. melanogaster. This casts a new

light on the nature of the resistance mutations, the phenotypic

contribution to DDT resistance and the adaptive significance of

Cyp6g1 variation. The aims of the research reported here are to: (i)

characterise this molecular variation, focussing on additional

transposable element insertions in the locus and gene copy number

variation, (ii) determine if this molecular variation correlates with

phenotypic variation in the form of DDT dosage-mortality

relationships, (iii) assess whether the variation is adaptive by

analysing the genotypic frequencies of this newly described

variation in historical and contemporary populations of D.

melanogaster and (iv) quantify the contribution that Cyp6g1 locus

variation makes to overall DDT resistance in a natural population.

Results

Characterisation of Cyp6g1 copy number variation (CNV)
and TE insertion complexity in the RK146 strain

We sequenced Cyp6g1 from seven D. melanogaster isochromoso-

mal lines (chr.II), which revealed that six lines had double peaks on

their sequence chromatograms. Since the isochromosomal lines

should only have one allele for genes on the second chromosome

we inferred that there must be CNV for Cyp6g1. We confirmed this

by determining that both alternate states of sequence variants were

passed to all individuals in the next generation (data not shown).

To determine the details of this CNV we initially characterized the

Cyp6g1 loci in a single isochromosomal line (RK146). In situ

hybridisation of a Cyp6g1 probe to polytene chromosomes

indicated that the copies of Cyp6g1 were within the same

cytological band (Figure S1). Assuming that these were arrayed

in a direct tandem manner, we performed a PCR and identified

one breakpoint of the locus duplication, adjacent to the previously

identified Accord LTR.

To ascertain the other breakpoint associated with this CNV,

inverse PCR was performed. Unexpectedly this revealed a ,7 kb

insertion of an HMS-Beagle TE within another Accord insertion.

Notably the size of the HMS-Beagle insertion means that it would

not have been detected using the Accord spanning PCR assays of

previous studies, thus the copy lacking HMS-Beagle is presumably

the locus scored previously [13,17,31].

To determine the extent of Cyp6g1 CNV we generated a model

of the locus using Southern blots that we tested using PCR. A

primer located within the HMS-Beagle sequence was used in

combination with primers within Cyp6g1 and the resulting

amplicons were cloned and sequenced. The longest amplicon

was 12.5 kb and spans the distance between the HMS-Beagle

Author Summary

The study of insecticide resistance has greatly enriched our
understanding of the genetic basis of adaptation, because
it represents some of the most intense selection pressures
acting on any natural population of eukaryote. Thus it can
inform us about the limits of natural selection, both in
terms of the number and type of mutations that can arise
and also in terms of the rate at which these spread
throughout populations. Fifty years ago, studies in
Drosophila melanogaster indicated that many genes
contributed to DDT resistance. Subsequent research into
the Hikone-R strain indicated much of the resistance in this
particular strain could be attributed to a single gene
known as Cyp6g1. Here we show that there have been
successive DDT resistance mutations occurring at the
Cyp6g1 locus. They include an increase in gene copy
number and the insertion of transposable elements into
the regulatory regions of the Cyp6g1 gene. These
mutations have swept to high frequencies in natural
populations since World War II, when insecticides were first
used. D. melanogaster is not a pest and has not been
targeted by insecticides, and yet profound changes are
occurring within its genome in response to man-made
chemicals in the environment.

Adaptive Walk at Cyp6g1
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element in the first copy (hereafter called Cyp6g1-a) and the

beginning of the second full copy of Cyp6g1 (hereafter referred to as

Cyp6g1-b Figure 1A). A similar approach, using a primer within

Accord was used to amplify all of Cyp6g1-b. In this case the HMS-

Beagle insertion was used to advantage as it prevented amplification

of Cyp6g1-a. Table S1 shows the differences between Cyp6g1-a and

Cyp6g1-b, none of which alter the predicted amino acid sequence.

Aside from these two full-length copies of Cyp6g1 a repeat unit

that contains a fusion of partial copies of both Cyp6g1 and Cyp6g2

was identified. Cyp6g1 and Cyp6g2 are transcribed from opposite

strands and are arranged in a convergent orientation. The repeat

unit starts at ,codon 323 of Cyp6g1 and continues to about codon

73 of Cyp6g2. The repeat unit can be seen in Southern blots as a

2.7 kb fragment common to different restriction enzyme digests

(Figure S2). It is also demonstrated by the multiple digests of the

A-D amplicon clone shown in Figure 1B, where this structure is

inferred by the consistent 2.7 kb size difference between different

restriction enzyme digests.

While we are confident that the structure shown in Figure 1

occurs in the RK146 strain, it remains a formal possibility that

there are Cyp6g1 associated elements outside this region.

Strain comparisons reveal an allelic progression
Previously a partial P element had been identified nested

within the Accord element upstream of Cyp6g1 [17,31]. We

designed PCR assays to score flies for this partial P insertion, the

Accord insertion, the HMS-Beagle insertion and the presence of the

gene duplication. We could not develop a co-dominant assay for

the duplication i.e. we could identify lines carrying the

duplication with a PCR bridging a breakpoint but we could not

develop an assay that uniquely amplified the single copy allele

and not the double copy alleles. Therefore we performed PCR

assays on isochromosomal lines, highly inbred lines and F1

crosses to a known genotype (Table S2 for details). These assays

revealed even more variation; specifically alleles derived from the

partial P-element insertion where most of that P-element had

been removed leaving small scrambled portions of the terminal

repeats (Figure S3). Thus we describe six alleles (M, A, AA, BA,

BP, BPD) defined on the basis of this molecular variation

(Figure 2). The facts that the two full length copies both have an

Accord LTR insertion, some TEs are nested, and that all lines

containing the P-element insertion also have the HMS-Beagle

insertion, suggests an order to the molecular events at this locus,

which is indicated in Figure 2.

Geographic and temporal patterns of allelic variation
We conducted three surveys of Cyp6g1 alleles in D. melanogaster

populations: a survey from historical samples, a survey of lines

from contemporary global populations, and a survey of wild males

collected on the east coast of Australia (Figure 3). These studies

included a re-analysis of lines scored for the Accord element in

earlier studies to determine whether the lines had the duplicated

locus or had other variants not originally described [13,18].

Consistent with previous studies, the ancestral Cyp6g1-[M] allele is

rare in most contemporary populations except for the population

from Malawi, Africa [17,18]. The historic samples show that the

M allele was more frequent in the 1950–1980 samples and was the

only allele observed among the lines established in the 1930s

(Figure 3A). Surprisingly the Cyp6g1-[A] allele, which was the

presumed state of previous studies, is not observed in three

population surveys. Most flies in Europe, Asia, and the USA have

Cyp6g1 duplicated and are of the Cyp6g1-[AA] or Cyp6g1-[BA] class.

A re-analysis of 13 lines collected before 1966 that had been

classified as having the Accord insertion [13], found that all

contained the Cyp6g1 duplication and 11 also carried the ‘‘HMS-

Beagle’’ insertion (Table S2). The latter includes Hikone-R, which

is derived from flies collected in Japan in 1952 [32], and which was

the DDT resistant strain that was initially used to map resistance

to the map position where Cyp6g1 resides [21,24].

Our survey of 190 alleles from historic and contemporary global

populations found the Cyp6g1-[BP] allele only in current

Australian populations (Figure 3A). The BP allele is not seen in

Figure 1. The molecular structure of the Cyp6g1 locus. (A) The region encompassed by five overlapping PCR primer sets (E-H, A-B, A-D, C-D, E-
G) that have been cloned are shown. Cyp6g1 exons are represented as black boxes above the line, Cyp6g2 exons as dark grey boxes below the line.
The HMS-Beagle element and the Accord element sequences are represented as an empty box and as light grey boxes above the line respectively. (B)
The complex structure of the locus is demonstrated by restriction digests (EcoRI; E, EcoRI-SacI; E/S and EcoRI-HindIII; E/H) of a plasmid containing the
12.5 kb A-D PCR product. The restriction sites for each digest are shown as lines drawn to scale with the locus structure. The 3.5 kb EcoRI-EcoR1
plasmid band is seen in all lanes. The sum of the molecular weights of the remaining fragments is shown at the bottom of each lane. The sums differ
by intervals of 2.7 kb, which corresponds to the repeat unit represented in the top of the figure. * indicates 3.5 kb vector band. Sequences of E-H, A-B,
C-F and E-G are lodged in Genbank with accessions HM214801, HM214799, HM214802 and HM214800 respectively.
doi:10.1371/journal.pgen.1000998.g001
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any population before 1980 (n = 39), they are not seen in the non-

Australian flies surveyed by us in 2002–2005 (n = 51), and Catania

et al reports them at a frequency of 10/683 in a worldwide

sample[17]. However the sample from Australia represented in

Figure 3A shows that they are at a frequency of 40/100, which is

highly significantly different from the Catania et al study

(p,0.0001) and our own survey of non-Australian alleles (p = 0).

Our third survey, which was of ,40 males caught in each of eight

populations, specifically addressed the frequency of the BP allele in

Australia. The BP allele frequency ranged from 29–80% with the

highest being in the most northerly populations (Figure 3B). This

level of population differentiation between Australian and other

populations is highly unusual in D. melanogaster and suggests

positive selection has recently driven the BP allele to these high

frequencies [33–35].

We identified two types of Cyp6g1-[BPD] alleles. Both were

extremely rare being observed a combined total of three times; all

from northern Australia. Because of their rarity we have not

considered them further in this manuscript except to record their

sequence in Figure S3.

Allelic variation at Cyp6g1 determines DDT resistance
phenotype

For genetic variation to be adaptive it needs to contribute to

phenotypic variance. So we asked whether the molecular variation

described above contributes to DDT resistance – the phenotype

originally attributed to this locus. To answer this, DDT resistance

was calculated by contact assay [24] on four day old adults of 19

isochromosomal lines and 3 inbred lines, most of which were

derived from Australian populations (Table S2 and Table S3).

Males and females were assayed separately for at least five strains

of each genotype: M, AA, BA and BP. Figure 4 shows that M strain

males are on average 7 fold less resistant than AA strain males. For

females there is 10 fold difference (see Table S3 for more details).

Furthermore, with each new Cyp6g1 allele there is an increase in

resistance level. There is about a 50% increase from AA to BA flies

although this is only significant in the case of males. The males of

the BP strains are on average 40 fold more resistant than the M

strains and the females are 80 fold more resistant. The fact that the

Cyp6g1 allelic classes strongly correlate with resistance, despite the

diverse genetic background of the strains assayed, suggests Cyp6g1

is a major determining factor of the DDT resistance phenotype in

these lines.

Transcription of Cyp6g1 genotypes
Transgenic studies have previously shown that the Accord LTR

can act as a tissue specific enhancer of gene expression [15]. To

test whether transcription levels correlate with the remaining steps

in the allelic series, we analysed Cyp6g1 expression in 18 of the lines

analysed for DDT resistance. The tissue and cell types where

DDT detoxification occurs are currently unknown, but we chose

to analyse the adult midgut and adult Malpighian tubules because

a UAS-Cyp6g1 transgene confers resistance when over-expressed in

these tissues using the Accord LTR Gal4 driver [28]. Furthermore,

RNAi knockdown of Cyp6g1 in the tubules increases susceptibility

of flies to DDT [36]. We found a positive and significant

correlation between DDT resistance and transcription levels

among the 18 lines assayed for both the midgut and the tubules

(Spearmans rank; midgut = 0.62, p,0.02, tubule = 0.52,

p,0.05). However when the 18 lines are grouped by allelic class,

as shown in Figure 5, significant differences in transcription levels

are observed for only some of the steps in the allelic progression. In

the midgut, the derived alleles clearly exhibit higher gene

expression than Cyp6g1-[M]; with AA having a 2.6 fold increase

(P = 0.036, one tailed t-test) and BA and BP both showing a 5 fold

increase. There is also a significant 2-fold increase of BA over AA

(P = 0.0006, one tailed t-test). In tubule, only the step between M

and AA results in a significant increase in transcription (P = 0.04,

one tailed t-test; Figure 5B), and all three derived alleles exhibited

,3 fold increases in gene expression.

Cyp6g1 genotype determines resistance in field
populations

There is a formal possibility that some other background genetic

factor is by chance correlated with Cyp6g1 allele and that it

contributes to the phenotypic trend shown among the lines we

analysed for DDT resistance. This is unlikely, partly because most

isochromosomal lines were generated in such a way that 100% of

Figure 2. The six alleles of Cyp6g1. (A) The alleles are arranged from
top to bottom in the order in which they arose. The M allele has a single
copy of Cyp6g1 and lacks TE insertions. The A allele is single copy with
an Accord insertion, the AA allele has two full length copies each with an
Accord insertion. The BA allele has two full-length copies with the
proximal copy containing HMS-Beagle. The BP allele has two full-length
copies with the a copy containing HMS-Beagle and the b copy
containing the P insertion. All of the lines assayed that have a P-
element sequence in the Accord also have the HMS-Beagle insertion and
so the BP class probably arose from the BA allele. The heterogeneous
BPD class contains various low frequency variants that have scrambled
P terminal repeats (Figure S3). PCR primers are shown as arrows and are
named with a single letter. Note that primer L anneals to the HMS-
Beagle sequence whereas primers H and I flank the transposable
element insertion sites. (B) A gel demonstrating the diagnostic PCRs is
shown on the right.
doi:10.1371/journal.pgen.1000998.g002
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the X chromosome material and 75% of the third chromosome

material would be derived from the Prl/CyO stock (Table S2).

Nevertheless we decided to take a quantitative genetics association

study approach to confirm and quantify the role of the most

derived high frequency allele, Cyp6g1-[BP], in a field population.

The population for our association study consisted of 7500 non-

virgin females that derived from 750 females caught in the field

two generations earlier. A subset of our population was used to

determine a dosage mortality curve that allowed an estimation of

the population LC5 and LC95 values (i.e. the most susceptible 5%

and most resistance 5% of the population to DDT exposure). The

mortality of flies on a probit scale was close to linear to the log of

the dose of DDT indicating that the underlying phenotype

approximates a normal distribution (Figure 6A). Based on this we

chose 2 mg/scintillation vial ( = 0.05 mg/cm2) of DDT to be the

exposure that would only kill the individuals from the susceptible

tail of the distribution and 120 mg/scintillation vial ( = 3.2 mg/cm2)

to be the exposure to kill all but the most resistant individuals.

Four replicates of 500 flies were then exposed to the lower dose of

DDT and five replicates of 500 were exposed to the high dose of

DDT. Nearly exactly 95% of the flies died (all but 124/2500) on

the 120 mg treatment and close to 7% of flies died on the 2 mg

treatment (133/2000). All the flies that survived the high dose and

all those that died on the low dose, were genotyped for Cyp6g1

allele status. These were compared to 86 field caught males and to

random samples of flies that lived on the low dose or died on the

high dose. The BP allele is greatly enriched above field frequency

among survivors of the high dose but was depleted among those

that died at the low dose (Figure 6). Thus the association study

confirmed the inbred and isochromosomal line analysis. Trend

tests give a very significant association between BP and survival at

LC95 (Cochrane Armitage test, chi square 42, p,,0.0001; [37]).

In fact flies homozygous for the BP allele are twelve times more

likely to survive than non BP homozygotes.

For comparison we also genotyped the same flies for a CNV at

another candidate DDT resistance locus, Cyp12d1, which is on

chromosome 2 approximately 1 Mb away from Cyp6g1. The assay

we used bridged the breakpoints of the distal and proximal copies

of this locus, which is thus not a codominant assay and therefore

individuals either heterozygous or homozygous for the duplication

were not discriminated (Flybase release FB2010_01). Therefore a

262 test comparing the presence and absence of the Cyp12d1

duplication in resistant and susceptible flies was used which

showed there is no correlation with the duplication of this locus

Figure 3. Temporal and geographic changes in Cyp6g1 allele frequencies. (A) Lines established between the 1930s and the present. Flies
were typed using the PCR assays described in Figure 2. (B) The frequency of the BP allele was scored in .40 flies from each of eight locations along
the east coast of Australia. The populations are from Cape Tribulation (CT1, CT2), Gladstone/Alstonville (G/A), Maryborough (M), Rainbow Beach (RB),
Coffs Harbour (CH), Wollongong (W), Bega (B). Error bars in both (A,B) represent the 95% binomial confidence interval.
doi:10.1371/journal.pgen.1000998.g003
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and resistance or susceptibility (Fishers exact test P = 0.60,

Figure 6).

These data can also be used to quantify the contribution of

Cyp6g1 alleles to DDT resistance. Table 1 shows the survivorship

of individuals partitioned by Cyp6g1-[BP] genotype. Heterozygotes

are less than midway between the two homozygotes indicating this

allele is slightly recessive at this dose (Figure S4). To calculate the

contribution of this allele in the population, this recessiveness

(k = 20.63), the survivorship difference between the two homozy-

gotes (2a = 0.18), and the population frequency of Cyp6g1-[BP]

(p = 0.28), need to be taken into account. Thus the average allelic

effect of Cyp6g1-[BP] is to increase survivorship of a genotype by

6.5% ([38] equation 4.10b). The additive genetic variance

attributable to this allele is 0.0017 ([38] equation 4.12a) and

therefore the heritability on the observed scale, at an LC95 dose,

attributable to this allele, is 3.7%. For a threshold trait such as this,

we are observing binary phenotypes; alive or dead at a particular

dose. However, as illustrated by the dose response relationship in

Figure 6A, we can assume that there is a normal distribution

underlying the DDT resistance trait across doses. Thus the

heritability on the observed scale can be converted to an estimate

of the heritability on the underlying scale and that indicates that

approximately 16.5% of the ‘liability’ to survive is explained by the

Cyp6g1-[BP] allele ([38] equation 25.8b). We have not calculated

the variance of all genetic factors influencing DDT resistance, and

thus do not know the heritability of the trait as a whole, but

whatever that heritability is (it has to be between 0.16 and 1), the

Cyp6g1-[BP] allele makes a major contribution to phenotypic

variation in this population.

Discussion

An allelic succession at the Cyp6g1 locus increases DDT
resistance

Recently, others have identified CNV at the Cyp6g1 locus using

genome-wide tiling arrays [29,30]. In the study of Emerson et al.

the resolution of CNV boundaries is such that repeats containing a

fusion of partial Cyp6g1 and Cyp6g2 genes were identified. Not only

has the present work determined that the CNV represents at least

two full-length copies of Cyp6g1, it has also established the way in

which this locus has evolved. Furthermore, we have shown how

this contributes to increasing DDT resistance using two separate

approaches. Firstly we showed that the LC50 to DDT increases

with the allelic progression in a set of 19 isochromosomal and 3

inbred lines (M,, AA, BA ,, BP). Secondly we performed an

Figure 4. DDT resistance correlates with Cyp6g1 allelic class. The
resistance of lines isochromosomal for their second chromosome are
shown grouped on the x-axis by Cyp6g1 alleles (M, AA, BA, BP). The error
bars represent the standard errors of the mean LC50 of the lines.
Significant differences with preceding classes are indicated e.g.
BA vs. BP females (One-tailed t-test: ***** p = 0.0005, **** p = 0.002,
*** p = 0.003, ** p = 0.019, * p = 0.044). Shaded bars represent data from
males, solid bars from females.
doi:10.1371/journal.pgen.1000998.g004

Figure 5. Cyp6g1 transcription in adult midgut and malphigian tubule. Derived alleles exhibit higher gene expression than Cyp6g1[M]. (A)
The allelic progression results in increased gene expression in the midgut with AA having a 2.6 fold increase (p = 0.036, one tailed t-test) over M and
BA and BP both showing a 5 fold increase. There is also a significant 2 fold increase of BA over AA (p = 0.0006, one tailed t-test). In contrast, only the
step between M and AA results in a significant increase in transcription (p = 0.04, one tailed t-test) in adult tubule (B), and all three derived alleles
exhibited ,3 fold increases in gene expression.
doi:10.1371/journal.pgen.1000998.g005
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association study that clearly demonstrates that the BP allele makes

a major contribution to the phenotypic variance in a single

population where it is at high frequency.

The allelic succession is adaptive
D. melanogaster is not a pest and is generally not targeted by

insecticide application. Could it be that variation we detect with

our DDT assays is non-adaptive? As discussed in more detail

below we present historical and geographic surveys of Cyp6g1

allelic variation that clearly demonstrate that at least two of the

steps have been adaptive (the world-wide spread of the Accord

bearing alleles and the spread of the BP alleles within Australia).

Further support for adaptive change at this locus could come in

the form of patterns in the patterns of polymorphism and fixation

that support selective sweep models. In fact others have shown

evidence for a selective sweep at the Cyp6g1 locus [17,18],

although they have not shown that there have been recurrent

sweeps at this locus. The data presented here shows that an

adaptive walk has occurred at the Cyp6g1 locus. Although not a

classic adaptive walk, where evolution is conceived in coding

sequence space [39], the allelic succession that we describe is

explained as a sequential process where each new allele is derived

directly from that preceding it. In the following we discuss each

proposed step in this allelic succession.

The first step: insertion of partial Accord element
The first step of the walk would seem to have been the insertion

of the Accord LTR into the Cyp6g1 promoter. As we did not detect

the A allele (single copy Cyp6g1 with Accord LTR) in our sample,

and thus cannot determine its phenotypic effect, the identification

of the AA allele, in which both Cyp6g1 and the Accord LTR are

duplicated, indicates that this insertion most likely occurred at or

before the duplication event. A question that arises from the failure

to detect the single copy A allele, is deciding which molecular

variant, the partial Accord TE insertion or the CNV, was the first

target of natural selection. A recent study using transgenic reporter

genes showed that the Accord LTR acts as an enhancer increasing

transcription in tissues consistent with the Cyp6g1 changes

observed in ‘Accord flies’ [15]. This suggests the Accord insertion

itself could cause the up-regulation and be the target of selection.

The second step: gene duplication
We propose that the second step was the duplication event

producing two copies of Cyp6g1. Sequence analysis of cDNA from

RK146 (not shown) indicates two full-length copies of Cyp6g1 are

transcribed in adult flies, indicating that the duplication acts to

increase transcriptional output. It is possible that the Accord

insertion and the duplication happened from the one complex

event. Thus a minimum of one selective sweep is required to

explain the rapid change in frequency of the AA alleles.

Alternatively it is possible that there have been two adaptive

steps, one that is the Accord insertion and the other the generation

of the CNV. In that scenario the A allele may never have reached

high frequencies before being replaced by the AA allele. Whichever

the case, the net result is a 7–10 fold increase in resistance

phenotype in comparison to the ancestral M allele (Figure 4).

The third step: HMS-Beagle insertion
The third step in the walk involved the insertion of the HMS-

Beagle insertion into the Accord LTR that lies proximal to Cyp6g1-a.

From the DDT resistance data it is hard to determine whether the

Figure 6. Population analysis of DDT resistance. A DDT association study was conducted on 7500 females derived from a single population. (A)
A dosage mortality analysis was undertaken to a identify dose that would kill the 5% of individual that were most susceptible to DDT and the dose
that would kill all except the 5% of individuals that were most resistant to DDT. (B) The top three graphs show the allele frequencies of Cyp6g1-[BP]
among the individuals that died on 2 ug of DDT (frequency of 0.15), among an unscreened field population sample (frequency of 0.31), and among
the survivors of 120 ug of DDT (frequency of 0.58), respectively. Thus there is a strong association between DDT resistance and Cyp6g1-[BP]. The
bottom three graphs show the frequency of a Cyp12d1 copy number variant among the same three groups (Cyp12d1 D/2 = 0.81, 0.87 and 0.86)
showing that it is not associated with field resistance. Note that flies carrying the Cyp12d1 duplication are denoted as D/2, whereas flies homozygous
for a single copy are denoted as u/u. Error bars represent standard errors of the mean of biological replicates.
doi:10.1371/journal.pgen.1000998.g006

Table 1. Survivorship/mortality of Cyp6g1-BP genotypes on
120 mg of DDT.

Not-BP/Not-BP Not-BP/BP BP/BP

Total Alive 27 52 45

Sample from Dead 72 51 10

Total Dead (estimated) 1286 911 179

doi:10.1371/journal.pgen.1000998.t001
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AARBA step is adaptive, as the increase in DDT resistance

phenotype is only significant for males in our current data set. Our

population surveys confirm previous results, which suggest that the

Accord alleles (which we now know as A, AA and BA alleles) were

either absent or at low frequencies pre-DDT. They also show that

both AA and BA alleles began to spread at the same time, and have

now spread globally. Among the lines carrying the BA allele is

Hikone-R, which was the DDT resistant strain that was initially

used to map Cyp6g1-based resistance [21,24]. Hikone-R was

collected in Japan in 1952 and although the AA and BA alleles may

have existed for some time before the 1950’s, historic fly

collections show they have only reached high frequencies recently

(Figure 3). These results concur with previously reported skews in

the polymorphism frequency spectrum around Cyp6g1, which

suggests recent strong positive selection [17,40].

The fourth step: partial P-element insertion
The fourth step in the walk is the insertion of a partial P-element

into the Accord LTR that lies proximal to Cyp6g1-b. Since all flies

that carry a P-element insertion also contain an HMS-Beagle

element upstream of Cyp6g1-a we infer the insertion would have

occurred in a Cyp6g1-[BA] background. This results in a significant

increase in DDT resistance phenotype over AA and BA alleles with

BP males 6 and 3 fold more resistant respectively. BP females are 8

and 5 fold more resistant than their AA and BA counterparts.

Furthermore the association study shows a highly significant

association between the BP allele and DDT resistance.

Curiously, the robust association between the BP allele and the

DDT resistance phenotype is not reflected in our transcriptional

analysis. This may be because the P-element insertion may simply

be a marker in linkage disequilibrium with the causal variant –

which could be an amino acid change in an uncharacterised copy

of Cyp6g1. Another possibility is that the BP allele gives resistance

by altering the transcript abundance in tissues that have not been

assayed here. The possibility that there is tissue specific variation in

transcript levels is illustrated by the observed differences in

expression between Malpighian tubules and midgut. Thus it is

possible, for instance, that Cyp6g1 transcription is higher in the

head, fat body or reproductive tissues in BP lines.

Regardless of the exact details of the molecular mechanism of

resistance we have no doubt that the fourth step is adaptive, as

analysis of eight Australian populations suggests the Cyp6g1-[BP]

variant has recently and rapidly increased to be the most frequent

allele in Australia. Thus Australian flies are very different from

other parts of the world where BP alleles were recorded in only 10

out of 683 lines [17]. The lack of BP alleles in fly lines established

from Papua New Guinea and Australia in the 1980s (Figure 4A)

supports this selection model as do reports that the P-element

transposable element itself was only detected in Australia in the

late 1970’s [41].

Neither drift nor population bottlenecks can satisfactorily

account for the high frequency of BP alleles in Australia. We

conducted three independent surveys of contemporary Australian

populations (our original survey, a survey of east Australian clinal

samples and the association study collection) sampling from

multiple locations spanning the east coast of Australia. Thus a

local bottleneck (i.e. from a single collection site) could not explain

the data. Similarly D. melanogaster populations from the east coast of

Australia exhibit extensive gene flow and share the same diversity

as non-African populations [35,42], indicating populations are not

isolated. There has also been enough time since their introduction

to Australia for the establishment of strong latitudinal clines that

parallel those found in other parts of the globe [43–45].

Furthermore the flies used here to survey allele frequency across

the east coast of Australia have been previously characterized for

many other loci and are consistent with other Australian surveys,

ruling out the possibility that our samples are somehow biased,

non-representative or corrupted[43]. Finally if the P element did

not enter Australia until the 1970’s [41] then the BP alleles of

Cyp6g1 must have entered into established populations. There is no

way that genetic drift could explain the frequencies of BP alleles,

rather the BP alleles must have spread through these populations

with positive selection. This raises the interesting proposition that

the BP alleles may increase in frequency in other parts of the world

in the future.

It is worth noting that DDT has been banned from use in most

of the world including Australia since the 1980s [46] and yet we

are postulating that the BP allele has risen to high frequency in

Australian populations since then. Notwithstanding the possibility

that DDT still persists in the environment, we also note that it is

well established that Cyp6g1 upregulation provides resistance to a

number of insecticides and other chemicals [13,24]. Thus DDT

resistance may be considered as a phenotypic marker of this allelic

variation rather than the actual selective agent.

Further steps: more CNV and TE sequence deletion
Our population surveys also identified two different Cyp6g1-

[BPD] alleles, formed by imprecise excision of the P-element

insertion. These alleles are at low frequency, and we have not

characterised their contribution to DDT resistance. Their

formation questions the stability of the locus structure that we

have defined. Over evolutionary time we would expect this

structure to be simplified. For instance if the BPD alleles have the

same phenotype as their BP parent, it may indicate that only

discrete functional DNA sequences need be preserved, with the

rest free to be deleted. Opposing this simplification is the instability

introduced by the gene duplications, which may increase the rate

of copy number variation by molecular slippage. We have shown

that in the RK146 strain there are at least two full-length copies of

Cyp6g1, but in light of the above it is possible that even more copies

exist in other strains.

Precedence for allelic succession
Allelic succession, the process whereby different adaptive alleles

are substituted sequentially, has also been characterised in several

studies of insecticides resistance. In Culex pipiens mosquitoes, alleles

at the Ester ‘super-locus’ (so called because some alleles contain

CNV of more than one gene) confer organophosphate (OP)

resistance. Ester1 and Ester4 both result in the overproduction of an

insecticide metabolising esterase [47]. Ester1 was first detected in

1972, while Ester4 appeared over a decade later. Despite a

moderately lower level of OP resistance Ester4 has replaced Ester1

due to a lower overall fitness cost [48]. In a second Culex example,

the resistance allele of the target of OP insecticides, Ace1R, also

confers a fitness cost, but this cost seems to have been reduced

through gene duplication by the creation of a permanent

heterozygous allele, consisting of a copy each of the susceptible

and resistant alleles [49]. Allelic succession in both these cases

appears to be driven by selection removing a fitness cost

introduced with the preceding resistance allele.

Two previous studies have associated fitness costs with Cyp6g1

upregulation. A study in which males were selected for reduced

competitive mating success indicated that Cyp6g1 was significantly

upregulated [50]. In contrast, females seem to carry no cost for a

range of fitness traits [51]. It would be worthwhile revisiting these

earlier experiments in light of the complex variation we have

shown to exist for Cyp6g1. However it is not necessary to invoke

fitness costs, as the data shown in Figure 4 suggests that the allelic
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succession occurring at Cyp6g1 is driven by selection for ever-

greater resistance.

Concluding remarks
Cyp6g1 has become a highly cited example of adaptive evolution

[52–54]. Cyp6g1 resistance alleles are not only selected, in parallel,

in sibling species, we show that they have also been repeatedly

selected, in series, in D. melanogaster. These results are pertinent to a

long-standing evolutionary debate concerning the number of steps

that have to occur to move a species to a new adaptive optimum

[6,55]. Support for a model requiring only a moderate number of

steps includes mapping experiments, where the number of loci that

contribute to a given adaptive trait are calculated, and their

relative phenotypic effects apportioned. However, as recently

described by the careful dissection of a morphological trait that

differs between species, mapping experiments may hide the

number of steps that have occurred at a single locus over

evolutionary time [56]. Here we have described at least four steps

at a single locus that have occurred within 70 years. The intense

selection of insecticides has provided the opportunity to see the

adaptive process at a resolution invisible in many other examples

of adaptation.

Materials and Methods

Fly stocks
The stocks used for the DDT toxicology experiment were made

isochromosomal for the II chromosome by backcrossing to Prl/CyO

flies (Bloomington Stock 3079). For stock list see Table S2.

Polytene chromosomes
Probes were made using the PCR DIG Probe Synthesis kit of

Roche Boehringer Mannheim (version# 2003). The primers: 59-

CAGCCTAGAGAATCCCAACG-39 and 59GCCATGGCCAC-

TATGTTCTT-39 were used to amplify exon 3 and exon 4 from a

Cyp6g1 subclone. The chromosomes were prepared following the

method of Phillips et al [57].

Long PCR
Roche Expand High Fidelity PCR system was used to generate all

PCR products greater than 2.5 kb following the manufacturers

protocol except with the following cycling parameters: 94uC 2 mins,

10 cycles of 94uC 15s, 62uC* 30s, 68uC 10 mins, 30 cycles of 94uC
15s, 56uC 30s, 68uC 10# mins, and a final 60 min extension at 68uC.

* A touchdown cycle, with the annealing temperature decreasing by

0.5uC per cycle. # Extension time increases 10 s per cycle. Primers

used (refer Figure 2) listed 59-39: A CGTCTTAGAAAGAAACAG-

GAAACTG, BB ACATTTGGGAGATGCCTTTG, CC ATTAAA-

CACAACCGGCTTTCTCG, DD GTCTCACCACCCAGGAA-

AGA, E CTTTTTGTGTGCTATGGTTTAGTTAG, F GGG-

TGCAACAGAGTTTCAGGTA, G TTTCAGCCAGTTGGA-

CATTG. PCR products were gel purified and cloned using the

TOPO XL PCR Cloning Kit (Invitrogen) following manufacturers

instructions.

Inverse PCR
125 ng of RK146 genomic DNA was digested with EcoR1 in a

total volume of 100 uL, then 5 uL of the digest was diluted to

100 uL in a ligation reaction mix, left overnight at 14uC. This

allowed linear EcoR1 fragments to circularise. PCR’s using

primers 59-GATCCGCGGCTGAAGGACGA-39 and 59-

TGCGGCGACCACCACAAAGA-39 were conducted with the

30 cycles of: 94uC for 30 s, 62uC for 30 s and 68uC for 2minutes.

A nested PCR was then performed using a new reverse primer (59-

TGCCAGTGCCCTCAGCATTATCTTATC-39) and the origi-

nal forward primer (59-GATCCGCGGCTGAAGGACGA-39).

The product was cloned into pGEM-T easy and sequenced.

Allele scoring
DNA was prepared from single flies. Diagnostic assays to detect

TE insertions and the Cyp6g1 gene duplication used standard PCR

conditions with the following cycling parameters: 94uC 2 mins, 30

cycles of 94uC 15 s, *uC 30 s, 72uC # mins. Reactions used the

following primers (refer Figure 2) listed 59-39: H
GAAAGCCGGTTGTGTTTAATTAT, II CTTTTTGTGT-

GCTATGGTTTAGTTAG, J CGAGTACGAGAGCGTGGA-

G, K ATTAAACACAACCGGCTTTCTCG, L TGCGAT-

CATCTGCACTTCTC. Annealing temperatures, *, and exten-

sion times, #, for each primer pair: HI 57uC 2 mins, JK 56uC
1 min, LI 58uC 45 secs.

DDT resistance assays
4 day old non-virgin male and female flies were treated

separately. DDT was coated on the inside of glass scintillation vials

by applying 200 ml of acetone containing varying concentrations

of DDT and rolling the vial until the acetone had evaporated. 20

flies per vial were used with the vials plugged with cotton soaked in

5% sucrose. Mortality was scored after 24 h. LC50 estimation was

performed using PriProbit[58], using five concentrations and three

replicates per concentration.

Analysis of gene expression
Midguts and Tubules were dissected separately from 4 day old

adult males, 5 strains per genotype, and pooled in groups of 6–10

tissues, for 3 biological replicates per strain. mRNA was extracted in

200 ul Trizol and 60 ul chloroform. After being pelleted all the

extracted RNA from each sample was used in cDNA synthesis, and

cDNA was reverse transcribed and quantified according to standard

procedures. For quantitative PCR (qPCR), samples were split and

amplified with Cyp6g1 primers, using Rpl11 as a reference gene.

DDT association study
750 isofemale lines were established from field caught females.

At the F2, 10 4–8 day non-virgin females were collected from each

line, in essence recapitulating the extant genetic variation of this

population. Our experimental design involved comparing the two

tails of the DDT resistance phenotype distribution. To this end a

subset of the F2 flies were used to determine a dosage mortality

curve for the population and allow estimation of the population

LC5 and LC95 values (2 mg and 190 mg respectively). The large

95% confidence interval for the LC95 estimate suggested a dose of

190 mg would be inaccurate, so instead we used a dose of 120 mg, a

dose slightly higher than the highest dose used in the DMC assay

(112.5 mg) which had ,92% mortality. These doses were scaled,

by internal surface area, to allow exposure of 500 individuals in

2 L Schott bottles, which were stoppered by cotton wool wrapped

around a 10 ml disposable pipette. After exposure for 24 hours a

vacuum pump was attached to the pipette to remove the flies into

separate dead and alive cohorts. For the LC5, all dead flies (133 in

total) and an equivalent number of surviving flies were assayed.

For the LC95 all surviving flies (124) and an equivalent number of

dead flies were assayed. Flies were assayed using the HI primer

pair to detect Accord/P-element status as described above.

Determination of the Cyp12d1 duplication genotype status (u/u

or D/2) of these flies utilised a four primer PCR reaction using

the same general PCR conditions described above. Primers used

were; Rout TCCTAAGAATTCCCACCATCAC, Rin GGTC-

Adaptive Walk at Cyp6g1

PLoS Genetics | www.plosgenetics.org 9 June 2010 | Volume 6 | Issue 6 | e1000998



CATCATCCCTACCATTT, Fout GGCCATTACGTTCCC-

CTTC and Fin GGTCTCGGAAAATGAGCAAC. The Rin/

Fout and Rout/Fin primer pairs amplify products from both single

copy and duplicated Cyp12d1 loci 767 bp 933 bp in length

respectively. The pair Rout/Fout is specific to the presence of the

gene duplication, and gives a product of 389 bp.

Supporting Information

Figure S1 CNV at Cyp6g1 is limited to one cytological band. In

situ hybridisation of a DIG labelled Cyp6g1 probe to a polytene

chromosome spread of the RK146 strain. The probe was created

from exon 3, intron 3 and part of exon 4 of Cyp6g1. The inset

magnifies the hybridisation, on chromosome arm 2R, and

indicates the presence of the Cyp6g1 gene duplication within the

one cytological band.

Found at: doi:10.1371/journal.pgen.1000998.s001 (1.43 MB

PDF)

Figure S2 Southern Blot analysis of Cyp6g1. A Southern blot of

RK146 genomic DNA probed with a PCR product derived from

exon 3 and exon 4 of Cyp6g1 (flanked with primers cgagtacga-

gagcgtggag and acatttgggagatgcctttg). Note that the repeat

structure of the locus is indicated by the probe hybridizing to

bands of the same size in DNA cut with different enzymes. A

2.7 kb band, seen in SacI, HpaI and EcoRV digests corresponds

to the size of the repeat consisting of partial Cyp6g1/Cyp6g2

sequences (Figure 1). The large 11.4 kb band in AflII, EcoR1 and

PstI fragments reflects the distance between the two full length

sequences. Note that the ,8 kb band in AflII, EcoR1 and PstI

suggest that there may be a third copy of this sequence. B. The

probe binding sites (thick black blocks below the locus model) are

shown with respect to the restriction enzyme map and our locus

model (upper right). Approximate migration of the molecular

weight markers are shown on the left.

Found at: doi:10.1371/journal.pgen.1000998.s002 (1.27 MB

PDF)

Figure S3 The sequence composition of the BP delta lines. The

top sequence is a fragment of the Accord insertion (from position

297 of AY131284). The second sequence shows the partial P

element insertion (in green) previously described within the Accord

sequence (BP lines; [31]). The duplicated 8 bp target sites are

shown in purple. Pder1 and Pder2 are sequences from two BP-

delta lines (N89 and Mb59) collected in Australia. The 31 bp

terminal repeat of the canonical P-element is shown at the bottom

and is annotated (with cyan, italics and underlining) to reflect the

sequences observed in the P-derived alleles. The sequence marked

in cyan in Pder1 and Pder2 is the reverse complement of the

sequence marked cyan in the terminal repeat.

Found at: doi:10.1371/journal.pgen.1000998.s003 (0.03 MB

PDF)

Figure S4 Quantifying Cyp6g1 BP’s contribution to high level

resistance. The percentage survival at 120 ug for each genotype is

plotted allowing for the calculation of the allelic affect for Cyp6g1,

a = 0.09. The survivorship of the Cyp6g1 BP heterozygote is less

than that expected (indicated by the point in red), so is recessive

(k = 20.63). This leads to a modified affect of a= 0.07. This allows

calculation of the narrow sense heritability for Cyp6g1 BP of 3.7%

on the observed scale, or 16.5% on the underlying liability scale.

Error bars represent standard error of mean of 5 biological

replicates of 500 flies each.

Found at: doi:10.1371/journal.pgen.1000998.s004 (0.32 MB

PDF)

Table S1 Differences between two Cyp6g1 copies in the RK146

strain. Site refers to co-ordinates in gDNA relative to predicted

transcription start site.

Found at: doi:10.1371/journal.pgen.1000998.s005 (0.22 MB

PDF)

Table S2 Fly stocks used in this study. Shows the name, origin,

date of collection, supplier, degree of inbreeding and Cyp6g1 allele

type of the fly lines used in this study.

Found at: doi:10.1371/journal.pgen.1000998.s006 (0.05 MB

XLS)

Table S3 LD50 of inbred and isochromosomal lines.

Found at: doi:10.1371/journal.pgen.1000998.s007 (0.04 MB

PDF)
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