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Abstract
Background: In this paper, it is proposed an optimization approach for producing reduced
alphabets for peptide classification, using a Genetic Algorithm. The classification task is performed
by a multi-classifier system where each classifier (Linear or Radial Basis function Support Vector
Machines) is trained using features extracted by different reduced alphabets. Each alphabet is
constructed by a Genetic Algorithm whose objective function is the maximization of the area under
the ROC-curve obtained in several classification problems.

Results: The new approach has been tested in three peptide classification problems: HIV-protease,
recognition of T-cell epitopes and prediction of peptides that bind human leukocyte antigens. The
tests demonstrate that the idea of training a pool classifiers by reduced alphabets, created using a
Genetic Algorithm, allows an improvement over other state-of-the-art feature extraction methods.

Conclusion: The validity of the novel strategy for creating reduced alphabets is demonstrated by
the performance improvement obtained by the proposed approach with respect to other reduced
alphabets-based methods in the tested problems.

Background
In the literature several feature extraction approaches [1]
have been proposed for the representation of peptides (e.g
orthonormal encoding, n-grams, ...); some of them have
been used for building ensembles of classifiers based on
the perturbation of features (i.e. each classifier is trained
using a different feature set). Nanni and Lumini in [2]
proposed to build an ensemble of classifiers where each
classifier is trained using a different physicochemical
property of the amino acids, the selection of the best phys-
icochemical properties to be combined is performed by
Sequential Forward Floating Selection [3]; the same fea-
ture extraction is also used in [4] to train a machine learn-
ing approach for protein subcellular localization. A
system for the recognition of T-cell epitopes is presented

in [5] based on the combination of two Support Vector
Machines (SVM). The first SVM is trained using the infor-
mation on amino acid positions, while the second SVM is
trained using information extracted from the sparse indi-
cator vector and the BLOSUM50 matrix.

In particular, in [6] it is proposed an ensemble of SVM
classifiers where each classifier is trained using a different
N-peptide composition with reduced amino acid alpha-
bets for larger values of N. The authors report that the
ensemble of SVMs outperforms a stand-alone SVM
trained using the well-known 2-peptide composition with
the standard amino acid alphabet. In [6] the reduced
alphabets are obtained in the following way: the 20-letter
amino acid alphabet is reduced to smaller alphabets
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based on correlations indicated by the BLOSUM50 simi-
larity matrix, i.e. amino acid pairs with high similarity
scores are grouped together. The most correlated amino
acids naturally form groups which have similar physio-
chemical properties (e.g. Hydrophobic residues, espe-
cially (LVIM) and (FYW), are conserved in many reduced
alphabets, as they are the polar (ST), (EDNQ) and (KR)
groups [7]). In Figure 1 the schemes, from [7], for reduc-
ing amino acid alphabet based on the BLOSUM50 matrix
derived by grouping and averaging the similarity matrix
elements are reported.

The complete group of reduced alphabets studied in [6] in
addition to those delineated in Figure 1 are the following:

3 letters, [(LASGVTIPMC), (EKRDNQH), (FYW)];

5 letters, [(LVIMC), (ASGTP), (FYW), (EDNQ), (KRH)];

6 letters, [(LVIM), (ASGT), (PHC), (FYW), (EDNQ),
(KR)];

12 letters, [(LVIM), (C), (A), (G), (ST), (P), (FY), (W),
(EQ), (DN), (KR), (H)];

and 18 letters, [(LM), (VI), (C), (A), (G), (S), (T), (P), (F),
(Y), (W), (E), (D), (N), (Q), (K), (R), (H)].

In this work an alternative way for building reduced
alphabets is studied based on the use of Genetic Algo-
rithm (GA) for grouping the amino-acids. The objective
function of the Genetic Algorithm is the maximization of
the area under the Receiver Operating Characteristic curve
[5] for a given classification problem. In this way, several
alphabets are created for a given value of their size. A dif-
ferent SVM [8] is trained on each feature set (each
extracted from a different alphabet), finally this pool of
classifiers is combined by the mean rule.

The approach proposed in this paper has been tested in
three case studies: HIV-protease (two different datasets);
recognition of T-cell epitopes; prediction of peptides that
bind human leukocyte antigens.

AIDS is a grave, often mortal, disease of the immune sys-
tem transmitted through HIV, therefore it is important to
understand how HIV works. Some of the more successful
drugs are HIV-1 protease inhibitors; in order to discover
efficient HIV-1 protease inhibitors several automatic
approaches have been developed aimed at obtaining a
good understanding of the protease specificity (i.e., which
peptides are cleaved by the HIV-1 protease and which are
not). The standard paradigm for protease-peptide interac-
tions is the "lock" and "key" model, where a sequence of
amino acids fit as a "key" to the active site in the protease.
The active site pockets of the protease are denoted by S
which correspond to residues P in the peptide P =
P4P3P2P1P1'P2'P3'P4', where Pi is an amino-acid belonging
to Σ (Σ = {A,C,D....V,W,Y}). If the amino acids in P (the
"key") fit the positions in S (the "lock"), then the protease
cleaves the octamer between positions P1 and P1'.

Several works that try to solve the HIV-1 protease specifi-
city problem by applying techniques from machine learn-
ing have been published [9-13]. Some methods based on
a standard feed-forward multilayer perceptron are pre-
sented in [14,15]. In [9] it is shown that HIV-1 protease
cleavage is a linear problem and that the best classifier for
this problem is the Linear SVM. The interested reader can
see [16] for a good review.

Antigenic peptides degraded from foreign or host proteins
can bind to major histocompatibility complex (MHC)
molecules. The major role MHC plays is to present the
binding antigenic peptides to T-cell receptors (TCRs).
Only when the TCRs recognize the antigen, the T-cell
clone will be activated, and the cellular immune will hap-
pen. However, not all the MHC-peptide complexes can be
recognized by TCRs. Those portions of short binding pep-
tides, which can be recognized, are called T-cell epitopes
[17]. Deciphering the patterns of peptides that elicit a
MHC restricted T-cell response [5] is critical for vaccine
development. Broadly, the methods developed to study
the interaction between peptide and MHC are based on:
structural information [18]; mathematical approaches
including binding motifs [19]; quantitative matrices [20];
Artificial Neural Networks [21,22]; Support Vector
Machines [23,5].

The prediction of peptides that bind multiple Human
Leukocyte Antigen (HLA) molecules is crucial in the
designing of vaccines that are useful to a broader popula-
tion [24]. Several works have been developed for identifi-
cation of HLA binding peptides, they include Support

Schemes for reducing amino acid alphabetFigure 1
Schemes for reducing amino acid alphabet.
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Vector Machines [25], Artificial Neural Networks [24],
Hidden Markov Models [26]. These methods use the
interaction (contact amino-acids) between peptides and
HLA molecule to extract the features used to train the clas-
sifiers.

All the tests reported in this work have been conducted on
5 datasets: 2 HIV datasets (HIV1 and HIV2), a Peptide
dataset for the recognition of T-cell epitopes (PEP) and
two Vaccine Datasets (VAC1 and VAC2); please, see the
Dataset sub-section of the Methods for a detailed descrip-
tion.

The GA optimization to find the best reduced alphabets is
performed on two classification problems: HIV-protease
(first dataset) and recognition of T-cell epitopes. Finally,
these reduced alphabets are used in a second HIV dataset
and in a third problem (the prediction of peptides that
bind human leukocyte antigens); the experimental results
demonstrate that, even if the reduced alphabets are not
obtained on the same dataset, the performance in the
HIV-protease and in the prediction of peptides that bind
human leukocyte antigens improves with respect to that
obtained by the state-of-the-art reduced alphabets-based
feature extraction method.

Experimental results show that the novel multi-classifier
approach outperforms the standard 2-peptide composi-
tion and the method proposed in [6] for all the three con-
sidered problems, demonstrating that the proposed
method for producing reduced alphabets for peptide clas-
sification can be successfully applied to several bioinfor-
matics problems.

Results and Discussion
Among the independent dataset tests, sub-sampling test
(e.g., 5 or 10-fold sub-sampling), and jackknife test,
which are often used for examining the accuracy of a sta-
tistical prediction method, the jackknife test is deemed the
most rigorous and objective as analyzed by a comprehen-
sive review [27] and has been increasingly adopted by
leading investigators to test the power of various predic-
tion methods [28]. Anyway, in this work, due to compu-
tational issue, the testing results have been obtained using
a 10-fold cross validation.

The fitness function of the Genetic Algorithm is the maxi-
mization of the Area Under the ROC-curve (AUC) using a
leave one out on the training set for each dataset. The
ROC-curve is a two-dimensional measure of classification
performance that plots the probability of classifying cor-
rectly the positive examples against the rate of incorrectly
classifying negative examples. AUC is also used for com-
paring classification performance; according to [29], AUC
is preferred to accuracy (error rate), since it is statistically

consistent and more discriminating than the accuracy
measure. In fact, researchers are often interested in rank-
ing of data samples rather than mere positive/negative
classification results. Moreover, if class distribution is
skewed or unbalanced, a classifier can still receive a high
accuracy by simply classifying all data samples in the
dominant class [30].

In the HIV datasets and in the Peptide dataset Linear SVM
is used as stand-alone classifier, in the Vaccine datasets
Radial Basis Function SVM is used. Notice that in both
cases the parameters for SVM have not been optimized
and they have been set to their default values (C = 1 and
Gamma = 1). No parameter optimization has been per-
formed in each dataset, since the aim of this work was to
propose a generic method that could work well in several
problems.

Tables 1 and 2 report the results of the proposed approach
compared with a Baseline approach obtained considering
the reduced alphabets yet proposed in the literature [6].
Several alphabets have been tested with different size S
and N-peptide composition (see Section Methods): for
the Baseline approach they refer to the reduced alphabets
studied in [6] (see section 2), for the novel approach to
the optimized alphabets. Notice that when the size S of
the alphabet is 20 no reduction is carried out and all the
approaches have the same performance (denoted by ") of
Baseline. In the following, the novel approach will be
denoted by GA(K)Set where K is the number of computa-
tion runs of the GA optimization (see Section Methods)
and Set is the training set considered for the GA optimiza-
tion. Possible values of Set are H = HIV1, P = PEP, HP =
HIV1+PEP which means that alphabets are built consider-
ing both the datasets (the objective function of GA is the
maximization of sum of two AUCs obtained in HIV1 and
in PEP). The last two columns of Tables 1 and 2 denote
the performance of the ensembles obtained by the fusion
among the whole set ((N = 1, S = 20); (N = 2,S = 20); (N
= 2,S = 8); (N = 1,S = 8); (N = 2,S = 4); (N = 1,S = 4)) of 6
alphabets (FUS1) and among the last 5 alphabets ((N =
2,S = 20); (N = 2,S = 8); (N = 1,S = 8); (N = 2,S = 4); (N =
1,S = 4)) (FUS2) by the sum rule.

In the last rows of Tables 1 and 2 other tests varying the
parameters of the Genetic Algorithm (see Section Meth-
ods) are reported: GA*(K) denotes a variation of GA(K)
where the number of chromosomes used by GA is D = 25
(instead of 10) and the number of generation steps is E =
10 (instead of 5).

From the analysis of the experimental results reported in
Tables 1 and 2 for the datasets HIV1 and PEP, the follow-
ing observations may be made:
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- the method proposed in [6] outperforms the well known
2-peptide composition (N = 2, S = 20) in the PEP dataset
but not in the HIV1 dataset;

- the new method outperforms both 2-peptide composi-
tion and [6] when K ≥ 5.

- the performance of GA(K)HP is lower than GA(K)H, any-
way it outperforms the standard 2-peptide composition
and the method proposed in [6] in both the datasets.

- GA(5)H and GA(5)P work better than GA*(5)H and
GA*(5)P in the HIV1 and PEP datasets, respectively; this
behavior is probably due to the fact that GA*(5) is more
overfitted on the validation set used to create the alpha-
bets.

The groups of reduced alphabets generated by different
runs of the Genetic Algorithm are not always the same,
due to the stochasticity of the generation approach; any-
way this cannot be considered a drawback since it permits
to create an ensemble based on the perturbation of fea-
tures. In the following a sample of reduced alphabets
obtained by GA(1)HP is reported:

N = 2, S = 8, [(C), (EPQVW), (Y), (AFHILM), (DN), (),
(RT), (KS)];

N = 1, S = 8, [(), (C), (GLNPQR), (ADHK), (EFIY), (T),
(MV), (SW)];

N = 2, S = 4, [(DQY), (EFILPTV), (AGKMNRW), (CHS)];

N = 1, S = 4, [(GIN), (CKRSV), (AEFMPWY), (DHLQT)].

The variation among the alphabets obtained in different
runs of the Genetic algorithm have been studied using the
average Jaccard coefficient. The Jaccard coefficient [31] is
a measure of the degree of similarity between two cluster-
ings (i.e. two alphabets A and B) that is maximized if all
the couples of patterns which belong to the same group in
A, belong to the same group also in B:

JAC = SS/(SS + SD)

where SS is the number of couples of amino acids that in
both alphabets are grouped together and SD is the
number of couples of amino acids that belong to the same
group in one alphabet but not in the other. Table 3 reports
the average Jaccard coefficient evaluated on 10 alphabets
obtained by GA(1)HP, these results show that the alpha-
bets are quite stable.

In Figures 2, 3 the graphs showing the AUC gained by the
GA(5)HP approach and the Baseline approach on all the 5
tested datasets are reported. GA(5)HP outperforms the
approaches obtained with the other N-peptide composi-
tion based feature extractions also in the datasets not used
for the optimization of the reduced alphabets; these tests
are a further demonstration of the importance of building
an ensemble of classifiers perturbing the feature set. The

Table 2: AUC obtained in the PEP dataset.

PEP (AUC) N = 1, S = 20 N = 2, S = 20 N = 2, S = 8 N = 1, S = 8 N = 2, S = 4 N = 1, S = 4 FUS1 FUS2

Baseline 0.855 0.887 0.795 0.830 0.906 0.890 0.908 0.890
GA(5)H " " 0.914 0.842 0.897 0.782 0.916 0.910
GA(1)P " " 0.859 0.855 0.914 0.823 0.930 0.919
GA(5)P " " 0.938 0.836 0.940 0.846 0.924 0.949
GA(15)P " " 0.925 0.891 0.937 0.841 0.933 0.924
GA(5)HP " " 0.928 0.785 0.844 0.812 0.934 0.944
GA*(5)P " " 0.945 0.865 0.951 0.871 0.911 0.917

Table 1: AUC obtained in the HIV1 dataset.

HIV1 (AUC) N = 1, S = 20 N = 2, S = 20 N = 2, S = 8 N = 1, S = 8 N = 2, S = 4 N = 1, S = 4 FUS1 FUS2

Baseline 0.942 0.956 0.889 0.829 0.858 0.687 0.949 0.933
GA(1)H " " 0.894 0.871 0.878 0.820 0.938 0.940
GA(5)H " " 0.973 0.932 0.966 0.943 0.973 0.977
GA(15)H " " 0.980 0.909 0.957 0.889 0.953 0.965
GA(5)P " " 0.943 0.868 0.887 0.701 0.959 0.962
GA(5)HP " " 0.948 0.905 0.929 0.902 0.941 0.959
GA*(5)H " " 0.982 0.927 0.954 0.929 0.963 0.969
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error bars in Figure 2, 3, representing the standard devia-
tion of the mean, show that GA(5)HP is slightly more sta-
ble than Baseline.

In Table 4 the error rates related to the approaches com-
pared above are reported. Even if AUC is a more robust
measure for comparing classifiers, it could be interesting
to compare methods also in term of accuracy/error rate.
The results of the new approach in terms of error rate are
not as good as in terms of AUC, anyway it should be noted
that the new ensemble has not been optimized to mini-
mize the error rate.

Finally, in order to confirm the benefit of the novel alpha-
bet generation with respect to the Baseline approach, the
DET curve has been plotted. The DET curve [32] is a two-
dimensional measure of classification performance that
plots the probability of false acceptation against the rate
of false rejection. In Figure 4 the DET curve obtained by
FUS2 is plotted varying the alphabets (Baseline and
GA(5)HP) for VAC1 dataset. In Figure 5 the DET curve
obtained by FUS1 for VAC2 dataset is plotted.

Conclusion
In this paper, it is proposed a new algorithm which uses a
series of Support Vector Machines in conjunction with a
set of reduce alphabets of the amino-acids to obtain a
novel multi-classifier based on the perturbation of fea-
tures, where each classifier is trained using a different
reduced alphabet. The reduced alphabets are generated
using a novel approach based on Genetic Algorithm
whose objective function is the maximization of the AUC
obtained in several classification problems. The alphabets
creation problem can be viewed as a clusterization prob-
lem: the Genetic Algorithm is suited for this purpose since
it does not need a vectorial representation of the amino-
acid and permits an ad-hoc search based on an appropri-
ate fitness function; therefore the resulting alphabets are
optimized for the considered classification problem. Of
course, several other meta-heuristic approaches (e.g. Par-
ticle Swarm Optimization, Ants Systems, ...) could be
tested for the same aim.

The validity of the novel strategy for the generation of
reduced alphabets is demonstrated by the performance
improvement obtained by the proposed approach with
respect to another reduced alphabets-based method in the
tested problems. The importance of the encoding based
on reduced alphabets goes over the performance of the
proposed approach, and can be related to the possibility
of creating an ensemble based on methods that use differ-
ent feature extractions. In the literature [1], it has been
clearly shown that the fusion of classifiers based on differ-
ent feature encodings permits to obtain a large error
reduction with respect to the performance of a stand-
alone method.

Methods
Datasets
The tests have been conducted on the following 5 data-
sets:

HIV datasets
The two datasets contains octamer protein sequences,
each of which needs to be classified as an HIV protease
cleavable site or uncleavable site. HIV1 [9,2] contains 362
octamer protein sequences (114 cleavable and 248
uncleavable), while HIV2 [33] (which includes HIV1)
contains 1625 octamer protein sequences (374 cleavable
and 1251 uncleavable).

Peptide dataset (PEP)
This dataset contains 203 synthetic peptides and it is the
same used in [23,2]. Peptides were synthesized by the
simultaneous-multiplepeptide-synthesis methods and
characterized using HPLC and mass spectrometry.

Vaccine Datasets
The datasets employed in [24-26] are used, performing
blind testing on five HLA-A2 and seven HLA-A3 mole-
cules. The predictive accuracy of peptide binding is tested
separately to HLA-A2 (VAC1) and HLA-A3 (VAC2) vari-
ants. VAC1 contains 3041 samples (664 belong to the
class Binders), while VAC2 contains 2216 samples (680
belong to the class Binders).

Alphabets creation
In the N-peptide composition for each value of N, the cor-
responding feature vector contains the fraction of each
possible N-length substring in the sequence. Therefore the
feature vector refers to amino acid composition for N = 1
and dipeptide composition for N = 2. The number of
dimensions in the feature vector corresponding to n-pep-
tide composition is 20N. An example of 2-grams is shown
in Figure 6 (from [3]).

The main problem is that for large values of N the dimen-
sion of the feature set is unfeasible, for this reason in [6]

Table 3: Average Jaccard coefficient evaluated on 10 alphabets 
with different N and S.

Alphabets AVG(JAC)

N S (size)

1 8 0.79
2 8 0.78
1 4 0.65
2 4 0.66
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reduced amino acid alphabets are used for training the
classifiers with a N-peptide composition (N>2). In [6] the
authors propose their method for extracting features from
proteins, in this paper the features are extracted from pep-
tides (each pattern is less than 10 amino-acids), hence a
N-peptide composition with N>2 is not useful. The result-
ing reduced alphabets are used for building an ensemble

of classifiers based on the perturbation of the feature set
[3].

In this work, an alternative way for the construction of
reduced alphabets is studied, based on a Genetic Algo-
rithm for grouping amino-acids. The objective function of
the Genetic Algorithm is the maximization of the AUC for
a given classification problem. K different alphabets are

Comparison, in the HIV datasets, between the new GA(5)HP approach and the Baseline approach on all the 5 tested datasetsFigure 2
Comparison, in the HIV datasets, between the new GA(5)HP approach and the Baseline approach on all the 5 tested datasets. 
The Error bars represent the standard deviation of the mean.
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Comparison, in the other datasets, between the new GA(5)HP approach and the Baseline approach on all the 5 tested datasetsFigure 3
Comparison, in the other datasets, between the new GA(5)HP approach and the Baseline approach on all the 5 tested datasets. 
The Error bars represent the standard deviation of the mean.
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created for each value of the size S of the reduced alpha-
bets and for a given value of N. The ith reduced alphabet is
built considering the previous reduced alphabets of the
same size S and of the same value of N. Simply, for the cal-
culation of the objective function of the ith iteration of GA
the scores obtained by the ith reduced alphabet are com-
bined by the mean rule with the scores obtained by the
previous i-1 reduced alphabets. The mean rule selects as
final score (score(s,c)) the mean score of a pool of K clas-
sifiers.

where simj(s,c) is the similarity of the pattern s to the class
c, obtained by the jth classifier. The block-diagram of the
proposed system is shown in Figure 7.

Table 5 reports the amino acid alphabet sizes and the
resulting feature vector dimensions used for the peptide
compositions tested in this paper.

Genetic algorithm
Genetic Algorithms (Implemented as in GAOT MATLAB
TOOLBOX) are a class of optimization methods inspired
by the process of the natural evolution [34]. These algo-
rithms operate iteratively on a population of chromo-
somes, each of which represents a candidate solution to
the problem.

score ,c
K

sim ,cj

j K

( ) ( )s s=
= …
∑1

1

DET-curve for FUS1 on the VAC2 datasetFigure 5
DET-curve for FUS1 on the VAC2 dataset.

Table 4: Error Rate in the 5 datasets.

Error Rate N = 1, S = 20 N = 2, S = 20 N = 2, S = 8 N = 1, S = 8 N = 2, S = 4 N = 1, S = 4 FUS1 FUS2

HIV1 Baseline 0.133 0.105 0.187 0.295 0.211 0.339 0.153 0.156
GA(5)HP 0.133 0.105 0.117 0.165 0.117 0.21 0.105 0.100

HIV2 Baseline 0.145 0.054 0.107 0.219 0.179 0.219 0.153 0.157
GA(5)HP 0.145 0.054 0.137 0.24 0.208 0.24 0.147 0.149

PEP Baseline 0.215 0.17 0.225 0.215 0.215 0.215 0.175 0.175
GA(5)HP 0.215 0.17 0.120 0.15 0.15 0.15 0.15 0.15

VAC1 Baseline 0.120 0.12 0.114 0.15 0.14 0.16 0.131 0.129
GA(5)HP 0.120 0.12 0.108 0.188 0.187 0.188 0.107 0.110

VAC2 Baseline 0.210 0.17 0.173 0.3 0.285 0.311 0.285 0.275
GA(5)HP 0.210 0.17 0.17 0.31 0.2515 0.310 0.15 0.15

DET-curve for FUS2 on the VAC1 datasetFigure 4
DET-curve for FUS2 on the VAC1 dataset.
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In the encoding scheme, the chromosome C is a string
whose length is 20 (the number of amino-acids). Each
value in the chromosome specifies at which group a given
amino-acid belongs. Notice that it is not checked if a
group is empty, therefore in a reduced alphabet of dimen-
sion S it is possible that some groups are empty.

The initial population is a randomly generated set of chro-
mosomes, then a fixed number E (in this paper E = 5) of
generation steps is performed by the application of the
following basic operators: selection, crossover and muta-
tion.

Selection
The selection strategy is cross generational. Assuming a
population of size D (in this paper D = 10), the offspring
doubles the size of the population and the best D individ-
uals from the combined parent-offspring population are
retained.

Crossover
Uniform crossover is used, the crossover probability is
fixed to 0.96 in the experiments.

Mutation
The mutation probability is 0.02.
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