Crystal structures of ethyl {2-[4-(4-isopropylphenyl)thiazol-2-yl]phenyl}carbamate and ethyl {2-[4-(3nitrophenyl)thiazol-2-yl]phenyl}carbamate

Elena V. Sukhonosova,^a Sergey A. Sokov,^a Gennady I. Ostapenko,^a Alexander S. Bunev,^a Pavel V. Dorovatovskii,^b Yan V. Zubavichus^b and Victor N. Khrustalev^{c,d}*

^aLaboratory of Functional Heterocyclic Compounds, Togliatti State University, 14 Belorusskaya St., Togliatti 445020, Russian Federation, ^bNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, ^cInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and ^dX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B–334, Moscow 119991, Russian Federation. *Correspondence e-mail: vnkhrustalev@gmail.com

The title compounds, $C_{21}H_{22}N_2O_2S$ (I) and $C_{18}H_{15}N_3O_4S$ (II), are structural analogs of the alkaloid Thiosporine B. Both molecules adopt a near-planar Vshaped conformation, which is consolidated by intramolecular $N-H\cdots N$ and $C-H\cdots O$ hydrogen bonds. The crystal structure of (I) consists of mlecular stacks along the *a* axis, in which the molecules are linked to each other by $\pi(S)\cdots\pi(C)$ interactions. In the crystal of (II), molecules are linked into chains by $C-H\cdots O$ hydrogen bonds and the chains are cross-linked into (100) sheets by $\pi-\pi$ stacking interactions.

1. Chemical context

Marine actinomycetes are prolific producers of biologically active natural products. This unique habitat has led to the abundant chemical diversity of metabolites that provides a foundation for the discovery of promising drug lead compounds. Among all known marine microbial secondary metabolites, over half were produced by actinomycetes (Fenical & Jensen, 2006; Lam et al., 2006; Fu et al., 2011). From this resource, more than 400 new active secondary metabolites have been isolated (Bérdy, 2005; Bull & Stach, 2007; Molinski et al., 2009). Some of them represented by abyssomycin C (Bister et al., 2004), diazepinomicin (Charan et al., 2004), salinosporamide A (Feling et al., 2003) and the marinomycins (Kwon et al., 2006) are potent antibiotics and possess novel structures. A comparatively large class of natural compounds possessing biological activity contains imidazole, thiazole, or oxazole moieties. Studies of biological activity (Zabriskie et al., 1990; Carroll et al., 1996; Taori et al., 2008) as well as a total synthesis of thiazoles containing alkaloids isolated from marine microorganisms are very important directions. In many cases, the substances mentioned above have promising antitumor (Luesch et al., 2001) and antibacterial (Shimanaka et al., 1994; Yun et al., 1994) activities.

In this paper we report a synthetic approach to the preparation of new thiazole derivatives (I) and (II) containing aryl fragments – the structural analogs of alkaloid Thiosporine B (Fu & MacMillan, 2015) – and their investigation by single crystal X-ray diffraction.

Received 9 August 2016 Accepted 13 August 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; Thiosporine B analogs; thiazoles; carbamates; hydrogen bonding.

CCDC references: 1499045; 1499044

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 🔂 ACCESS

2. Structural commentary

Compounds (I), $C_{21}H_{22}N_2O_2S$, and (II), $C_{18}H_{15}N_3O_4S$, have very similar molecular geometries (Figs. 1 and 2), allowing for the different substituents on the benzene rings. Both molecules adopt a near-planar V-shaped conformation, which is consolidated by intramolecular N7–H7···N3 and C8– H8···O1 hydrogen bonds (Tables 1 and 2, Figs. 1 and 2) as well as an intermolecular π – π interactions (see Section 3 below). There exists a small twist of 10.27 (15)° between the central thiazole and 4-benzene rings in (I) only. Surprisingly, the ethyl (phenyl)carbamate substituents (with the exception of some hydrogen atoms of the ethyl fragment) are perfectly coplanar with the thiazole ring in both molecules.

The bond-length distributions within the thiazole rings of (I) and (II) are almost identical, clearly indicating that some degree of delocalization is present. These values are in good agreement with those observed in related structures (Garden *et al.*, 2007; Sen *et al.*, 2013; Bunev *et al.*, 2014; Mague *et al.*,

Figure 1

The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate the intramolecular hydrogen bonds. H atoms are presented as small spheres of arbitrary radius.

Table 1	
Hydrogen-bond geometry (Å, °) for (I).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N7-H7\cdots N3$	0.97 (2)	1.84 (2)	2.682 (3)	144 (2)
$C8-H8\cdots O1$	0.95	2.32	2.954 (3)	124

Fal Hy	ble 2 drog	2 en-bond	l geome	etry (4	Å, °) for	(II).	
2							

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C5-H5\cdots O1^{i}$ $N7-H7\cdots N3$ $C8-H8\cdots O1$	0.95	2.32	3.260 (3)	168
	0.80 (3)	1.98 (3)	2.672 (3)	144 (3)
	0.95	2.32	2.946 (3)	123

Symmetry code: (i) $-x + \frac{3}{2}, y - 1, z - \frac{1}{2}$.

2014; Moreno-Fuquen *et al.*, 2015; AaminaNaaz *et al.*, 2015). The C–S–C angle in (I) [89.70 (12)°] and (II) [89.94 (12)°] is also very close to that in the previously reported analogous structures [89.0 (2)–90.3 (5)°; Nayak *et al.*, 2009; Hua *et al.*, 2014).

3. Supramolecular features

Although the similarity of the molecular geometries and types of intramolecular interactions might lead to similar packing motifs, this is not found in the case of (I) and (II). The intermolecular interactions, namely, π - π interactions and C-H···O hydrogen bonding, combined in a different way, give rise to various packing networks.

In (I), the crystal packing consists of stacks along the *a* axis (Fig. 3), in which the molecules are linked to each other by $\pi(S1)\cdots\pi(C7)$ [1 + x, y, z] interactions at distances of 3.463 (3) Å (Fig. 4). No other directional intermolecular interactions are observed in (I).

The situation in the case of (II) is quite different. The molecules of (II) form chains *via* C5-H5···O1 $(-x + \frac{3}{2}, y - 1, z - \frac{1}{2})$ hydrogen bonds (Table 1, Fig. 5). It should be pointed

Figure 2

The molecular structure of (II). Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate the intramolecular hydrogen bonds. H atoms are presented as small spheres of arbitrary radius.

research communications

The crystal structure of (I). Dashed lines indicate the intramolecular N– $H \cdots N$ and C– $H \cdots O$ hydrogen bonds.

out that the molecules within the chains are coplanar, forming a ribbon-like motif. Further, the ribbons are packed in layers parallel to (100) via π - π stacking interactions (Fig. 6). The distance between the ribbons in the layers is 3.216 (3) Å. Importantly, the ribbons of adjacent layers are not parallel to each other, but disposed at an interplane angle of 39.91 (2)° (Fig. 6). Thus, the crystal of (II) comprises alternating layers, in which molecules are arranged in a different manner.

4. Synthesis and crystallization

A solution of ethyl (2-carbamothioylphenyl)carbamate (2.24 g, 10 mmol) and the appropriately substituted phenacyl bromide (10 mmol) in 95% EtOH (50 ml) was heated for 12 h under reflux. After cooling to room temperature, the solution

Figure 4

A fragment of the stack in (I). Dashed lines indicate the intermolecular $S \cdots C$ interactions within the stack.

The hydrogen-bonded chains of (II). Dashed lines indicate the intramolecular $N-H\cdots N$ and $C-H\cdots O$ and intermolecular $C-H\cdots O$ hydrogen bonds.

was basified with saturated $NaHCO_3$ solution to yield the expected product (I) or (II) (Fig. 7). The reaction mixture was filtered and the isolated solid was washed with water and dried

Figure 6

Crystal structure of (II) demonstrating the mutual arrangement of the hydrogen-bonded chains. Dashed lines indicate the intramolecular N– $H\cdots$ N and C– $H\cdots$ O and intermolecular C– $H\cdots$ O hydrogen bonds.

research communications

in vacuo. The compounds were isolated as pale-yellow crystalline solids in 51% and 74% yield for the *i*-propyl (I) and nitro (II) derivatives, respectively. Single crystals of the products were obtained by slow crystallization from N,N-dimethylformamide solution.

Spectroscopic and physical data for (I): M.p. 379-381 K. FT– IR (ν_{max} , cm⁻¹): 3090, 1982, 1725, 1603, 1544, 1487, 1312, 1240, 1071. ¹H NMR (600 MHz, DMSO- d_6 , 304 K): $\delta = 1.25$ (d, 6H, J = 6.9), 1.33 (t, 3H, J = 7.1), 2.96 (h, 1H, J = 7.2), 4.21 (q, 2H, J = 7.1), 7.19 (t, 1H, J = 7.6), 7.37 (d, 2H, J = 8.2), 7.50 (t, 1H, J = 7.8), 7.92 (d, 1H, J = 7.8), 7.96 (d, 2H, J = 8.1), 8.20 (s, 1H), 8.29 (d, 1H, J = 8.3), 12.02 (s, 1H). Analysis calculated for C₂₁H₂₂N₂O₂S: C, 68.83; H, 6.05; N, 7.64. Found: C, 68.88; H, 5.99; N, 7.67.

Table 3

Experimental details.

Spectroscopic and physical data for (II): M.p. 478–479 K. FT–IR (ν_{max} , cm⁻¹): 3090, 1720, 1600, 1545, 1483, 1352, 1244, 1071. ¹H NMR (600 MHz, DMSO- d_6 , 304 K): $\delta = 1.31$ (t, 3H, J = 7.1), 4.23 (q, 2H, J = 7.1), 7.23 (t, 1H, J = 8.0), 7.49–7.64 (m, 1H), 7.83 (t, 1H, J = 8.0), 7.99 (d, 1H, J = 7.9), 8.28 (d, 1H, J = 7.5), 8.48 (d, 1H, J = 7.9), 8.85 (s, 1H), 11.65 (s, 1H). Analysis calculated for C₁₈H₁₅N₃O₄S: C, 58.53; H, 4.09; N, 11.38. Found: C, 58.59; H, 4.13; N, 11.47.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. X-ray diffraction studies were carried out on the 'Belok' beamline ($\lambda = 0.96990$ Å) of the

	(I)	(II)
Crystal data		
Chemical formula	$C_{21}H_{22}N_2O_2S$	$C_{18}H_{15}N_{3}O_{4}S$
$M_{\rm r}$	366.47	369.39
Crystal system, space group	Orthorhombic, $P2_12_12_1$	Orthorhombic, $Pca2_1$
Temperature (K)	100	100
a, b, c (Å)	5.4534 (11), 17.203 (3), 20.060 (4)	23.840 (5), 9.7401 (19), 7.1403 (14)
$V(A^3)$	1881.9 (6)	1658.0 (6)
Z	4	4
Radiation type	Synchrotron, $\lambda = 0.96990$ Å	Synchrotron, $\lambda = 0.96990$ Å
$\mu (\mathrm{mm}^{-1})$	0.43	0.52
Crystal size (mm)	$0.20 \times 0.15 \times 0.10$	$0.20 \times 0.05 \times 0.03$
Data collection		
Diffractometer	MAR CCD	MAR CCD
Absorption correction	Multi-scan (SCALA; Evans, 2006)	Multi-scan (SCALA; Evans, 2006)
T_{\min}, \hat{T}_{\max}	0.910, 0.950	0.890, 0.980
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13728, 3971, 3052	13537, 3464, 3127
$R_{\rm int}$	0.095	0.073
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.641	0.641
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.123, 0.96	0.037, 0.090, 1.05
No. of reflections	3971	3464
No. of parameters	242	240
No. of restraints	0	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.34, -0.39	0.25, -0.33
Absolute structure	Flack x determined using 997 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 1290 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.01 (4)	0.39 (2)

Computer programs: Automar (MarXperts, 2015), iMosfim (Battye et al., 2011), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

National Research Center 'Kurchatov Institute' (Moscow, Russian Federation) using a MAR CCD detector. For each compound, a total of 360 images were collected using an oscillation range of 1.0° (φ scan mode) and corrected for absorption using the *SCALA* program (Evans, 2006). The data were indexed, integrated and scaled using the utility *i*MOSFLM in the program *CCP4* (Battye *et al.*, 2011).

The hydrogen atoms of the amino groups were localized in difference-Fourier maps and refined in isotropic approximation with the constraint $U_{iso}(H) = 1.2U_{eq}(N)$. The other hydrogen atoms were placed in calculated positions with C-H = 0.95–1.00 Å and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl group and $1.2U_{eq}(C)$ for the other groups.

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 426).

References

- AaminaNaaz, Y., Sathiyaraj, S., Kalaimani, S., Nasar, A. S. & SubbiahPandi, A. (2015). Acta Cryst. E71, 0969–0970.
- Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). *Acta Cryst.* D67, 271–281.
- Bérdy, J. (2005). J. Antibiot. 58, 1-26.
- Bister, B., Bischoff, D., Ströbele, M., Riedlinger, J., Reicke, A., Wolter, F., Bull, A. T., Zähner, H., Fiedler, H. P. & Süssmuth, R. D. (2004). Angew. Chem. Int. Ed. 43, 2574–2576.
- Bull, A. T. & Stach, J. E. (2007). Trends Microbiol. 15, 491-499.
- Bunev, A. S., Rudakova, Y. I., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2014). Acta Cryst. E70, o139.
- Carroll, A. R., Coll, J. C., Bourne, D. L., MacLeod, J. K., Ireland, C. M. & Bowden, B. F. (1996). Aust. J. Chem. 49, 659–667.
- Charan, R. D., Schlingmann, G., Janso, J., Bernan, V., Feng, X. & Carter, G. T. (2004). J. Nat. Prod. 67, 1431–1433.

Evans, P. (2006). Acta Cryst. D62, 72-82.

- Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R. & Fenical, W. (2003). Angew. Chem. Int. Ed. 42, 355–357.
- Fenical, W. & Jensen, P. R. (2006). Nat. Chem. Biol. 2, 666-673.
- Fu, P. & MacMillan, J. B. (2015). J. Nat. Prod. 78, 548-551.
- Fu, P., Wang, S., Hong, K., Li, X., Liu, P., Wang, Y. & Zhu, W. (2011). J. Nat. Prod. 74, 1751–1756.
- Garden, S. J., Corrêa, M. B., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). *Acta Cryst.* C63, o234–o238.
- Hua, G., Du, J., Slawin, A. M. Z. & Woollins, J. D. (2014). J. Org. Chem. 79, 3876–3886.
- Kwon, H. C., Kauffman, C. A., Jensen, P. R. & Fenical, W. (2006). J. Am. Chem. Soc. 128, 1622–1632.
- Lam, K. S. (2006). Curr. Opin. Microbiol. 9, 245-251.
- Luesch, H., Yoshida, W. Y., Moore, R. E., Paul, V. J. & Corbett, T. H. (2001). J. Am. Chem. Soc. 123, 5418–5423.
- Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). *Acta Cryst.* E70, o907–o908.
- MarXperts. (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany.
- Molinski, T. F., Dalisay, D. S., Lievens, S. L. & Saludes, J. P. (2009). *Nat. Rev. Drug Discov.* 8, 69–85.
- Moreno-Fuquen, R., Castillo, J. C., Becerra, D., Camargo, H. & Henao, J. A. (2015). *Acta Cryst.* E**71**, 0882–0883.
- Nayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, 02611–02612.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Şen, F., Dinçer, M., Çukurovalı, A., Yılmaz, İ. (2013). J. Mol. Struct. 1046, 1–8.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shimanaka, K., Kinoshita, N., Iinuma, H., Hamada, M. & Takeuchi, T. (1994). J. Antibiot. 47, 668–674.
- Taori, K., Paul, V. J. & Luesch, H. (2008). J. Am. Chem. Soc. 130, 1806–1807.
- Yun, B. S., Hidaka, T., Furihata, K. & Seto, H. (1994). J. Antibiot. 47, 510–514.
- Zabriskie, T. M., Foster, M. P., Stout, T. Y., Clardy, J. & Ireland, C. M. (1990). J. Am. Chem. Soc. 112, 8080–8084.

Acta Cryst. (2016). E72, 1321-1325 [doi:10.1107/S2056989016013104]

Crystal structures of ethyl {2-[4-(4-isopropylphenyl)thiazol-2-yl]phenyl}carbamate and ethyl {2-[4-(3-nitrophenyl)thiazol-2-yl]phenyl}carbamate

Elena V. Sukhonosova, Sergey A. Sokov, Gennady I. Ostapenko, Alexander S. Bunev, Pavel V. Dorovatovskii, Yan V. Zubavichus and Victor N. Khrustalev

Computing details

For both compounds, data collection: *Automar* (MarXperts, 2015); cell refinement: *iMosflm* (Battye *et al.*, 2011); data reduction: *iMosflm* (Battye *et al.*, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(I) Ethyl {2-[4-(4-isopropylphenyl)thiazol-2-yl]phenyl}carbamate

Crystal data $C_{21}H_{22}N_2O_2S$ $D_{\rm x} = 1.293 {\rm Mg m^{-3}}$ Synchrotron radiation, $\lambda = 0.96990$ Å $M_r = 366.47$ Cell parameters from 500 reflections Orthorhombic, $P2_12_12_1$ a = 5.4534 (11) Å $\theta = 3.5 - 35.0^{\circ}$ $\mu = 0.43 \text{ mm}^{-1}$ b = 17.203 (3) Å T = 100 Kc = 20.060 (4) ÅV = 1881.9 (6) Å³ Prism, colourless Z = 4 $0.20 \times 0.15 \times 0.10 \text{ mm}$ F(000) = 776Data collection MAR CCD 3971 independent reflections diffractometer 3052 reflections with $I > 2\sigma(I)$ phi scan $R_{\rm int} = 0.095$ Absorption correction: multi-scan $\theta_{\rm max} = 38.5^{\circ}, \ \theta_{\rm min} = 3.5^{\circ}$ $h = -6 \rightarrow 6$ (SCALA; Evans, 2006) $k = -20 \rightarrow 21$ $T_{\rm min} = 0.910, \ T_{\rm max} = 0.950$ 13728 measured reflections $l = -25 \rightarrow 25$ Refinement Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.052$ Hydrogen site location: mixed $wR(F^2) = 0.123$ H atoms treated by a mixture of independent S = 0.96and constrained refinement 3971 reflections $w = 1/[\sigma^2(F_o^2) + (0.004P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ 242 parameters 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$ Primary atom site location: difference Fourier $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ map

Extinction correction: SHELXL2014 (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0210 (11) Absolute structure: Flack *x* determined using 997 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.01 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $U_{\rm iso}^*/U_{\rm eq}$ х v Ζ **S**1 0.24911 (12) 0.47012 (3) 0.42460(3)0.03010 (16) **O**1 1.2359 (3) 0.58830 (10) 0.61640 (9) 0.0352(5)O2 1.0633(3)0.47367 (9) 0.64975 (8) 0.0288(4)C2 0.4926(5)0.49392 (14) 0.47800(12)0.0259(6) N3 0.5248 (4) 0.44158 (11) 0.52534 (10) 0.0257(5)0.38088 (13) C4 0.3588 (4) 0.52171 (12) 0.0239(6) C5 0.1972(5)0.38674 (14) 0.47016(13) 0.0287(7)H5 0.0725 0.3498 0.4606 0.034* C6 0.6380(5)0.56568 (14) 0.46990 (13) 0.0268 (6) C7 0.8381(5)0.58484(14)0.51199(12)0.0257(6)N7 0.8934(4)0.53396(11) 0.56480(10)0.0280(5)H7 0.787 (4) 0.4888 (14) 0.5664 (12) 0.034* C8 0.9726 (5) 0.65255 (14) 0.50006 (13) 0.0319(7)H8 1.1061 0.5284 0.038* 0.6655 C9 0.9130 (5) 0.70106 (15) 0.44715 (13) 0.0350(7) Н9 1.0076 0.7465 0.4392 0.042* C10 0.7167(5)0.68374 (15) 0.40576 (14) 0.0367(7)H10 0.6744 0.7174 0.3700 0.044* C11 0.5833(5)0.61661 (14) 0.41741 (13) 0.0329(7)0.039* H11 0.4498 0.6046 0.3888 C12 1.0813 (5) 0.53798 (14) 0.61028 (12) 0.0261(6)C13 1.2512 (5) 0.46609 (14) 0.70045 (13) 0.0332(7)1.2590 0.040* H13A 0.5138 0.7280 H13B 0.040* 1.4134 0.4577 0.6795 C14 1.1827 (5) 0.39723 (15) 0.74298 (13) 0.0364 (8) H14A 1.1701 0.3508 0.7149 0.055* H14B 1.0247 0.4071 0.7646 0.055* H14C 1.3090 0.3891 0.7770 0.055* C15 0.3725 (4) 0.31803 (13) 0.57234 (12) 0.0230(6)C16 0.5701(5)0.31297 (14) 0.61706(12)0.0262(6)H16 0.7017 0.3489 0.6138 0.031* C17 0.5750 (5) 0.25610(13) 0.66585 (13) 0.0265 (6) 0.032* H17 0.7105 0.2544 0.6956 C18 0.3887(5)0.20128 (14) 0.67307 (12) 0.0257(6) C19 0.1953 (5) 0.20502 (14) 0.62699 (13) 0.0279(7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H19	0.0673	0.1676	0.6293	0.033*
C20	0.1868 (4)	0.26245 (13)	0.57785 (13)	0.0249 (6)
H20	0.0526	0.2638	0.5477	0.030*
C21	0.3936 (5)	0.14340 (14)	0.73046 (14)	0.0323 (7)
H21	0.5692	0.1301	0.7391	0.039*
C22	0.2582 (6)	0.06725 (13)	0.71601 (15)	0.0391 (7)
H22A	0.0830	0.0779	0.7101	0.059*
H22B	0.2810	0.0313	0.7534	0.059*
H22C	0.3241	0.0438	0.6752	0.059*
C23	0.2919 (6)	0.18119 (16)	0.79435 (14)	0.0446 (9)
H23A	0.3763	0.2306	0.8024	0.067*
H23B	0.3188	0.1463	0.8323	0.067*
H23C	0.1157	0.1907	0.7891	0.067*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U ¹²	U ¹³	U ²³
S1	0.0324 (3)	0.0306 (3)	0.0273 (3)	0.0019 (3)	-0.0031 (3)	-0.0005 (3)
01	0.0338 (10)	0.0280 (8)	0.0438 (10)	-0.0087 (9)	-0.0062 (9)	0.0005 (8)
O2	0.0354 (10)	0.0240 (8)	0.0269 (9)	-0.0026 (8)	-0.0049 (8)	0.0034 (8)
C2	0.0264 (13)	0.0239 (12)	0.0275 (13)	0.0034 (12)	0.0057 (11)	-0.0012 (10)
N3	0.0304 (12)	0.0215 (9)	0.0252 (11)	-0.0013 (9)	0.0028 (9)	-0.0015 (8)
C4	0.0239 (13)	0.0204 (11)	0.0274 (13)	-0.0015 (11)	0.0020 (11)	-0.0061 (10)
C5	0.0271 (15)	0.0297 (12)	0.0293 (13)	0.0018 (12)	-0.0014 (11)	-0.0068 (11)
C6	0.0330 (15)	0.0250 (12)	0.0224 (13)	0.0036 (11)	0.0037 (11)	0.0001 (10)
C7	0.0312 (14)	0.0207 (11)	0.0253 (13)	0.0032 (11)	0.0040 (11)	0.0013 (10)
N7	0.0304 (12)	0.0245 (10)	0.0292 (11)	-0.0036 (10)	-0.0060 (10)	0.0024 (9)
C8	0.0353 (16)	0.0238 (12)	0.0367 (15)	-0.0024 (12)	0.0019 (13)	-0.0004 (11)
C9	0.0432 (16)	0.0241 (12)	0.0378 (15)	-0.0040 (13)	0.0107 (14)	0.0012 (12)
C10	0.0457 (17)	0.0308 (13)	0.0336 (14)	0.0004 (14)	0.0030 (14)	0.0080 (11)
C11	0.0376 (15)	0.0328 (13)	0.0282 (14)	0.0020 (13)	-0.0008 (13)	0.0019 (12)
C12	0.0275 (14)	0.0236 (12)	0.0274 (13)	0.0015 (12)	0.0010 (11)	-0.0013 (10)
C13	0.0336 (15)	0.0329 (13)	0.0330 (13)	0.0064 (15)	-0.0064 (13)	-0.0056 (11)
C14	0.0428 (18)	0.0380 (14)	0.0284 (14)	0.0119 (13)	-0.0025 (12)	-0.0002 (12)
C15	0.0221 (13)	0.0235 (11)	0.0234 (12)	0.0025 (10)	0.0014 (11)	-0.0056 (10)
C16	0.0252 (14)	0.0251 (12)	0.0283 (13)	-0.0009 (12)	0.0007 (11)	-0.0033 (10)
C17	0.0238 (13)	0.0261 (12)	0.0296 (13)	0.0017 (12)	0.0002 (12)	-0.0023 (11)
C18	0.0222 (13)	0.0224 (11)	0.0325 (14)	0.0026 (12)	0.0028 (12)	-0.0033 (11)
C19	0.0252 (15)	0.0227 (11)	0.0357 (14)	-0.0007 (12)	0.0013 (11)	-0.0035 (11)
C20	0.0233 (13)	0.0248 (11)	0.0267 (12)	0.0007 (10)	0.0006 (11)	-0.0056 (10)
C21	0.0278 (14)	0.0268 (12)	0.0424 (16)	-0.0013 (12)	-0.0010 (13)	0.0044 (12)
C22	0.0382 (16)	0.0303 (13)	0.0489 (16)	-0.0025 (14)	-0.0002 (16)	0.0083 (12)
C23	0.059 (2)	0.0388 (14)	0.0361 (16)	-0.0010 (16)	-0.0014 (15)	0.0080 (12)

Geometric parameters (Å, °)

S1—C5	1.724 (3)	С13—Н13А	0.9900
S1—C2	1.755 (3)	С13—Н13В	0.9900

O1—C12	1.215 (3)	C14—H14A	0.9800
O2—C12	1.364 (3)	C14—H14B	0.9800
O2—C13	1.449 (3)	C14—H14C	0.9800
C2—N3	1.320 (3)	C15—C20	1.397 (3)
C2—C6	1.476 (3)	C15—C16	1.405 (3)
N3—C4	1.384 (3)	C16—C17	1.384 (3)
C4—C5	1.362 (3)	С16—Н16	0.9500
C4—C15	1.485 (3)	C17—C18	1.394 (3)
С5—Н5	0.9500	С17—Н17	0.9500
C6—C11	1.402 (3)	C18—C19	1.404 (4)
C6—C7	1.419 (4)	C18—C21	1.522 (4)
C7—C8	1.397 (3)	C19—C20	1.396 (3)
C7—N7	1.407 (3)	С19—Н19	0.9500
N7—C12	1.374 (3)	С20—Н20	0.9500
N7—H7	0.97 (2)	C21—C22	1.531 (4)
C8—C9	1.389 (4)	C21—C23	1.540 (4)
С8—Н8	0.9500	C21—H21	1.0000
C9—C10	1.387 (4)	C22—H22A	0.9800
С9—Н9	0.9500	C22—H22B	0.9800
C10—C11	1.385 (4)	C22—H22C	0.9800
C10—H10	0.9500	C23—H23A	0.9800
C11—H11	0.9500	C23—H23B	0.9800
C13—C14	1.507 (4)	C23—H23C	0.9800
C5—S1—C2	89.70 (12)	C13—C14—H14A	109.5
C12—O2—C13	115.43 (18)	C13—C14—H14B	109.5
N3—C2—C6	125.3 (2)	H14A—C14—H14B	109.5
N3—C2—S1	112.38 (18)	C13—C14—H14C	109.5
C6—C2—S1	122.31 (19)	H14A—C14—H14C	109.5
C2—N3—C4	112.9 (2)	H14B—C14—H14C	109.5
C5—C4—N3	114.0 (2)	C20—C15—C16	117.6 (2)
C5—C4—C15	127.3 (2)	C20—C15—C4	121.0 (2)
N3—C4—C15	118.7 (2)	C16—C15—C4	121.4 (2)
C4—C5—S1	110.96 (19)	C17—C16—C15	120.7 (2)
C4—C5—H5	124.5	C17—C16—H16	119.7
S1—C5—H5	124.5	C15—C16—H16	119.7
C11—C6—C7	117.7 (2)	C16—C17—C18	122.5 (2)
C11—C6—C2	119.4 (2)	C16—C17—H17	118.7
C7—C6—C2	122.8 (2)	C18—C17—H17	118.7
C8—C7—N7	122.4 (2)	C17—C18—C19	116.6 (2)
C8—C7—C6	119.7 (2)	C17—C18—C21	120.6 (2)
N7—C7—C6	117.9 (2)	C19—C18—C21	122.8 (2)
C12—N7—C7	128.9 (2)	C20—C19—C18	121.5 (2)
C12—N7—H7	117.8 (15)	С20—С19—Н19	119.3
C7—N7—H7	113.2 (15)	С18—С19—Н19	119.3
C9—C8—C7	120.6 (3)	C19—C20—C15	121.1 (2)
С9—С8—Н8	119.7	С19—С20—Н20	119.5
С7—С8—Н8	119.7	C15—C20—H20	119.5

C10-C9-C8	120.6 (2)	C18—C21—C22	1141(2)
C10—C9—H9	119.7	C18 - C21 - C23	110.3(2)
С8—С9—Н9	119.7	C_{22} C_{21} C_{23}	110.2(2)
C11—C10—C9	118.9 (3)	C18—C21—H21	107.3
С11—С10—Н10	120.5	C22—C21—H21	107.3
C9—C10—H10	120.5	C23—C21—H21	107.3
C10—C11—C6	122.4 (3)	C21—C22—H22A	109.5
C10-C11-H11	118.8	C21—C22—H22B	109.5
C6-C11-H11	118.8	H22A—C22—H22B	109.5
01-C12-02	124.7 (2)	C_{21} C_{22} $H_{22}C$	109.5
01 - C12 - N7	128.4(2)	H22A - C22 - H22C	109.5
02-C12-N7	106.9 (2)	H22B— $C22$ — $H22C$	109.5
02-C13-C14	107.0 (2)	C21—C23—H23A	109.5
Ω_{2} C_{13} H_{13} H_{13}	110.3	C21—C23—H23B	109.5
C14—C13—H13A	110.3	H23A—C23—H23B	109.5
02-C13-H13B	110.3	C21—C23—H23C	109.5
C14—C13—H13B	110.3	H23A—C23—H23C	109.5
H13A—C13—H13B	108.6	H_{23B} C_{23} H_{23C}	109.5
	10010		10710
C5—S1—C2—N3	0.05 (19)	C2-C6-C11-C10	-178.1(2)
C5-S1-C2-C6	-179.0(2)	$C_{13} - O_{2} - C_{12} - O_{1}$	-2.2(3)
C6-C2-N3-C4	178.7 (2)	$C_{13} - O_{2} - C_{12} - N_{7}$	178.51 (19)
S1—C2—N3—C4	-0.3(3)	C7—N7—C12—O1	3.2 (4)
C2—N3—C4—C5	0.4 (3)	C7—N7—C12—O2	-177.5 (2)
C2—N3—C4—C15	-179.5 (2)	C12—O2—C13—C14	173.7 (2)
N3—C4—C5—S1	-0.4(3)	C5—C4—C15—C20	-10.5 (4)
C15—C4—C5—S1	179.5 (2)	N3—C4—C15—C20	169.4 (2)
C2—S1—C5—C4	0.19 (19)	C5—C4—C15—C16	170.5 (2)
N3—C2—C6—C11	-179.7 (2)	N3—C4—C15—C16	-9.5 (3)
S1—C2—C6—C11	-0.8 (3)	C20—C15—C16—C17	-1.8(3)
N3—C2—C6—C7	2.3 (4)	C4—C15—C16—C17	177.1 (2)
S1—C2—C6—C7	-178.8 (2)	C15—C16—C17—C18	0.4 (4)
C11—C6—C7—C8	-0.1 (4)	C16—C17—C18—C19	1.5 (4)
C2—C6—C7—C8	177.9 (2)	C16—C17—C18—C21	-175.7 (2)
C11—C6—C7—N7	179.9 (2)	C17—C18—C19—C20	-2.0 (4)
C2—C6—C7—N7	-2.1 (4)	C21—C18—C19—C20	175.1 (2)
C8—C7—N7—C12	-2.8 (4)	C18—C19—C20—C15	0.7 (4)
C6-C7-N7-C12	177.2 (2)	C16—C15—C20—C19	1.3 (3)
N7—C7—C8—C9	179.6 (2)	C4—C15—C20—C19	-177.7 (2)
C6—C7—C8—C9	-0.4 (4)	C17—C18—C21—C22	-153.4 (2)
C7—C8—C9—C10	0.9 (4)	C19—C18—C21—C22	29.5 (3)
C8—C9—C10—C11	-1.0 (4)	C17—C18—C21—C23	82.0 (3)
C9—C10—C11—C6	0.5 (4)	C19—C18—C21—C23	-95.1 (3)
C7—C6—C11—C10	0.0 (4)		~ /

11yurogen-bonu geometry (11,)	Hydrogen-l	bond	geometry	(Å,	9)
--------------------------------	------------	------	----------	-----	----

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N7—H7…N3	0.97 (2)	1.84 (2)	2.682 (3)	144 (2)
С8—Н8…О1	0.95	2.32	2.954 (3)	124

 $D_{\rm x} = 1.480 {\rm Mg} {\rm m}^{-3}$

Needle, colourless

 $0.20\times0.05\times0.03~mm$

 $\theta = 3.7 - 37.0^{\circ}$ $\mu = 0.52 \text{ mm}^{-1}$

T = 100 K

Synchrotron radiation, $\lambda = 0.96990$ Å

Cell parameters from 600 reflections

(II) Ethyl {2-[4-(3-nitrophenyl)thiazol-2-yl]phenyl}carbamate

Crystal data

 $C_{18}H_{15}N_{3}O_{4}S$ $M_{r} = 369.39$ Orthorhombic, $Pca2_{1}$ a = 23.840 (5) Å b = 9.7401 (19) Å c = 7.1403 (14) Å V = 1658.0 (6) Å³ Z = 4F(000) = 768

Data collection

MAR CCD	3464 independent reflections
diffractometer	3127 reflections with $I > 2\sigma(I)$
phi scan	$R_{\rm int} = 0.073$
Absorption correction: multi-scan	$\theta_{\rm max} = 38.5^{\circ}, \ \theta_{\rm min} = 3.7^{\circ}$
(SCALA; Evans, 2006)	$h = -29 \rightarrow 29$
$T_{\min} = 0.890, \ T_{\max} = 0.980$	$k = -12 \rightarrow 12$
13537 measured reflections	$l = -9 \rightarrow 8$

Refinement

Refinement on F^2 H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.037$ $w = 1/[\sigma^2(F_o^2) + (0.0408P)^2]$ $wR(F^2) = 0.090$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.05 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$ 3464 reflections 240 parameters $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$ 1 restraint Extinction correction: SHELXL2014 Primary atom site location: difference Fourier (Sheldrick, 2015), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ map Extinction coefficient: 0.010 (2) Secondary atom site location: difference Fourier Absolute structure: Flack x determined using map Hydrogen site location: mixed 1290 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et* al., 2013) Absolute structure parameter: 0.39 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.82320 (2)	0.08743 (5)	0.40138 (11)	0.01687 (18)
01	0.78056 (7)	0.74689 (17)	0.7251 (3)	0.0221 (5)
O2	0.69969 (7)	0.63003 (18)	0.6617 (3)	0.0183 (4)
03	0.47989 (8)	-0.0296(2)	0.3607 (4)	0.0367 (6)
O4	0.55366 (8)	-0.14517 (18)	0.2763 (3)	0.0279 (5)
C2	0.80673 (11)	0.2564 (2)	0.4636 (4)	0.0148 (5)
N3	0.75204 (10)	0.27926 (18)	0.4676 (3)	0.0155 (5)
C4	0.72122 (10)	0.1639 (2)	0.4202 (4)	0.0152 (5)
C5	0.75302 (11)	0.0509 (2)	0.3800 (4)	0.0172 (5)
Н5	0.7383	-0.0360	0.3449	0.021*
C6	0.85019 (10)	0.3582 (2)	0.5131 (4)	0.0160 (5)
C7	0.83664 (11)	0.4896 (2)	0.5898 (4)	0.0148 (6)
N7	0.77977 (9)	0.5244 (2)	0.6077 (3)	0.0163 (5)
H7	0.7579 (13)	0.467 (3)	0.575 (5)	0.020*
C8	0.88015 (12)	0.5776 (2)	0.6456 (4)	0.0180 (6)
H8	0.8715	0.6643	0.6992	0.022*
C9	0.93587 (11)	0.5388 (3)	0.6230 (4)	0.0192 (6)
Н9	0.9649	0.5992	0.6622	0.023*
C10	0.94981 (12)	0.4124 (2)	0.5438 (4)	0.0196 (6)
H10	0.9880	0.3873	0.5269	0.024*
C11	0.90696 (11)	0.3236 (2)	0.4899 (4)	0.0179 (6)
H11	0.9164	0.2375	0.4360	0.021*
C12	0.75647 (11)	0.6442 (2)	0.6700 (4)	0.0155 (5)
C13	0.66740 (11)	0.7511 (3)	0.7127 (4)	0.0202 (6)
H13A	0.6795	0.8311	0.6371	0.024*
H13B	0.6729	0.7731	0.8468	0.024*
C14	0.60652 (11)	0.7183 (3)	0.6745 (4)	0.0240 (6)
H14A	0.6015	0.6987	0.5409	0.036*
H14B	0.5832	0.7971	0.7096	0.036*
H14C	0.5953	0.6380	0.7482	0.036*
C15	0.65919 (10)	0.1740 (2)	0.4257 (4)	0.0157 (5)
C16	0.62493 (11)	0.0627 (2)	0.3740 (4)	0.0168 (6)
H16	0.6410	-0.0208	0.3311	0.020*
C17	0.56702 (10)	0.0777 (2)	0.3873 (4)	0.0173 (6)
N17	0.53118 (10)	-0.0404 (2)	0.3375 (4)	0.0216 (5)
C18	0.54099 (11)	0.1977 (3)	0.4468 (4)	0.0198 (6)
H18	0.5013	0.2042	0.4547	0.024*
C19	0.57550 (11)	0.3088 (2)	0.4949 (4)	0.0188 (6)
H19	0.5591	0.3927	0.5351	0.023*
C20	0.63338 (11)	0.2970 (2)	0.4843 (4)	0.0179 (6)
H20	0.6561	0.3734	0.5173	0.021*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0182 (3)	0.0103 (3)	0.0221 (4)	0.0010 (2)	-0.0001 (3)	-0.0034 (3)
O1	0.0226 (10)	0.0118 (9)	0.0320 (13)	-0.0024 (7)	-0.0008 (8)	-0.0069 (8)
O2	0.0139 (10)	0.0151 (9)	0.0260 (11)	0.0009 (7)	0.0029 (8)	-0.0035 (8)
O3	0.0206 (11)	0.0298 (11)	0.0596 (19)	-0.0090 (8)	0.0045 (11)	-0.0107 (11)
O4	0.0282 (11)	0.0123 (9)	0.0432 (14)	0.0024 (8)	-0.0086 (10)	-0.0063 (9)
C2	0.0186 (13)	0.0127 (11)	0.0131 (14)	0.0002 (10)	-0.0006 (9)	0.0000 (10)
N3	0.0187 (11)	0.0117 (9)	0.0160 (13)	-0.0007 (8)	0.0000 (9)	-0.0010 (8)
C4	0.0213 (12)	0.0104 (11)	0.0138 (14)	-0.0023 (9)	-0.0019 (11)	0.0003 (10)
C5	0.0206 (12)	0.0128 (10)	0.0181 (15)	-0.0025 (10)	-0.0009 (12)	-0.0018 (11)
C6	0.0199 (14)	0.0119 (12)	0.0161 (15)	0.0011 (10)	-0.0007 (11)	0.0014 (10)
C7	0.0152 (12)	0.0128 (12)	0.0165 (16)	0.0012 (9)	0.0014 (10)	0.0017 (10)
N7	0.0148 (11)	0.0094 (10)	0.0248 (14)	-0.0014 (8)	0.0019 (9)	-0.0050 (9)
C8	0.0219 (14)	0.0105 (12)	0.0215 (16)	-0.0008 (9)	-0.0019 (11)	-0.0002 (11)
C9	0.0185 (13)	0.0152 (12)	0.0240 (16)	-0.0027 (10)	-0.0013 (11)	0.0032 (11)
C10	0.0182 (14)	0.0176 (14)	0.0231 (16)	0.0003 (9)	0.0001 (11)	0.0009 (11)
C11	0.0210 (13)	0.0133 (12)	0.0194 (15)	0.0027 (9)	0.0010 (11)	-0.0001 (10)
C12	0.0184 (13)	0.0104 (11)	0.0177 (14)	0.0003 (10)	0.0004 (11)	0.0026 (10)
C13	0.0188 (13)	0.0136 (13)	0.0282 (17)	0.0063 (10)	0.0021 (12)	-0.0010 (12)
C14	0.0187 (13)	0.0273 (15)	0.0259 (18)	0.0029 (11)	0.0015 (11)	-0.0001 (12)
C15	0.0207 (13)	0.0110 (11)	0.0153 (14)	-0.0008 (9)	-0.0010 (11)	0.0029 (10)
C16	0.0212 (13)	0.0121 (11)	0.0170 (16)	0.0004 (9)	-0.0013 (11)	0.0008 (10)
C17	0.0200 (12)	0.0120 (11)	0.0200 (16)	-0.0050 (9)	-0.0009 (13)	0.0011 (11)
N17	0.0222 (12)	0.0145 (10)	0.0282 (15)	-0.0028 (9)	-0.0037 (10)	0.0005 (10)
C18	0.0199 (13)	0.0179 (13)	0.0215 (17)	-0.0013 (10)	-0.0011 (11)	0.0010 (11)
C19	0.0208 (13)	0.0115 (12)	0.0243 (15)	0.0006 (10)	0.0012 (11)	-0.0019 (11)
C20	0.0211 (13)	0.0133 (12)	0.0192 (14)	-0.0010 (10)	-0.0006 (11)	-0.0009 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—C5	1.717 (3)	С9—Н9	0.9500
S1—C2	1.750 (2)	C10—C11	1.393 (4)
O1—C12	1.218 (3)	C10—H10	0.9500
O2—C12	1.362 (3)	C11—H11	0.9500
O2—C13	1.455 (3)	C13—C14	1.511 (4)
O3—N17	1.239 (3)	C13—H13A	0.9900
O4—N17	1.233 (3)	C13—H13B	0.9900
C2—N3	1.323 (3)	C14—H14A	0.9800
C2—C6	1.477 (3)	C14—H14B	0.9800
N3—C4	1.385 (3)	C14—H14C	0.9800
C4—C5	1.367 (3)	C15—C16	1.406 (3)
C4—C15	1.482 (3)	C15—C20	1.411 (3)
С5—Н5	0.9500	C16—C17	1.391 (3)
C6-C11	1.405 (3)	C16—H16	0.9500
C6—C7	1.429 (3)	C17—C18	1.390 (3)
C7—N7	1.404 (3)	C17—N17	1.477 (3)

C7—C8	1 403 (4)	C18—C19	1 402 (4)
N7-C12	1 367 (3)	C18—H18	0.9500
N7—H7	0.80(3)	C19-C20	1 387 (4)
C8 - C9	1 391 (4)	C19—H19	0.9500
C8—H8	0.9500	C20—H20	0.9500
C9-C10	1 395 (4)	020 1120	0.9500
0)-010	1.555 (4)		
C5—S1—C2	89.94 (12)	O2—C12—N7	107.6 (2)
C12 - 02 - C13	115.65 (18)	02—C13—C14	107.0 (2)
N3-C2-C6	125.0(2)	02—C13—H13A	110.3
N3-C2-S1	112.64 (17)	C14—C13—H13A	110.3
C6-C2-S1	122.34(19)	02-C13-H13B	110.3
$C_2 = N_3 = C_4$	112 41 (19)	C14—C13—H13B	110.3
C_{2} C_{4} N3	112.11(1)	H13A—C13—H13B	108.6
$C_{5} - C_{4} - C_{15}$	117.2(2) 127.8(2)	C13—C14—H14A	109.5
N_{3} C4 C15	127.0(2) 118.0(2)	C13 $-C14$ $-H14B$	109.5
C4-C5-S1	110.0(2) 110.78(18)	H14A - C14 - H14B	109.5
C4 - C5 - H5	124.6	C13 - C14 - H14C	109.5
S1-C5-H5	124.0	$H_{14} = C_{14} = H_{14}C$	109.5
$C_{11} - C_{6} - C_{7}$	124.0 118.6 (2)	$H_{14}R_{-C_{14}}H_{14}C_{-H_{14}}H_{14}C_{-H_{14}}$	109.5
C11 - C6 - C2	110.0(2) 119.1(2)	C16-C15-C20	109.5 118.6 (2)
C7 - C6 - C2	119.1(2) 122.3(2)	C16 C15 C4	110.0(2) 121.4(2)
$V_{-}C_{0}-C_{2}$	122.3(2) 122.7(2)	$C_{10} - C_{15} - C_{4}$	121.4(2) 120.0(2)
$N_{-}C_{-}C_{0}$	122.7(2) 118.0(2)	$C_{20} = C_{15} = C_{4}$	120.0(2)
$R^{$	110.0(2) 110.3(2)	C17 C16 H16	118.3 (2)
$C_{0} = C_{0} = C_{0}$	119.3(2) 128.0(2)	C17 - C10 - 1110 C15 - C16 - H16	120.7
C12 N7 H7	126.9(2)	C18 C17 C16	120.7 123.5(2)
C_{12} N_7 H_7	110(2) 116(2)	C18 C17 N17	123.3(2) 1181(2)
$C = \frac{1}{N} = \frac{1}{N}$	110(2) 120 5 (2)	C16 - C17 - N17	118.1(2)
$C_{9} = C_{8} = C_{7}$	120.3 (2)	04 N17 03	116.4(2) 123.2(2)
C_{2} C_{2} C_{3} C_{2} C_{3} C_{3}	119.0	04 - N17 - 03	123.2(2)
$C^{2} = C^{2} = C^{1}$	119.0	$O_4 = N_1 / = C_1 / C_$	118.0(2)
$C_{8} = C_{9} = C_{10}$	121.0 (2)	$C_{17} C_{18} C_{10}$	118.2(2)
$C_{0} = C_{0} = H_{0}$	119.5	C17 - C18 - C19	117.5 (2)
C10-C9-H9	119.5	C10 C18 H18	121.3
C_{11} C_{10} U_{10}	119.0 (2)	C19 - C18 - H18	121.5
C_{11} C_{10} H_{10}	120.5	C_{20} C_{19} C_{18}	120.3 (2)
	120.3	C20-C19-H19	119.8
C10 - C11 - C0	121.7(2)	C10 C20 C15	119.8
	119.2	C19 - C20 - C13	121.4 (2)
	119.2	C19 - C20 - H20	119.3
01 - C12 - 02	124.5(2)	C15—C20—H20	119.3
01	127.9(2)		
C5-S1-C2-N3	0.4(2)	C2-C6-C11-C10	-1764(3)
C5-S1-C2-C6	178.0(2)	$C_{13} - O_{2} - C_{12} - O_{1}$	3.8 (4)
C6-C2-N3-C4	-1780(2)	$C_{13} - O_{2} - C_{12} - N_{7}$	-1765(2)
S1-C2-N3-C4	-0.4(3)	C7 - N7 - C12 - O1	-0.6(5)
C2 - N3 - C4 - C5	0.2(3)	C7-N7-C12-O2	179 8 (2)
	··- (··)	0, 10, 012 02	···· (=)

C2—N3—C4—C15	177.9 (2)	C12—O2—C13—C14	174.2 (2)
N3—C4—C5—S1	0.1 (3)	C5-C4-C15-C16	-4.7 (5)
C15—C4—C5—S1	-177.3 (2)	N3—C4—C15—C16	178.0 (3)
C2—S1—C5—C4	-0.3 (2)	C5-C4-C15-C20	175.1 (3)
N3—C2—C6—C11	-175.5 (2)	N3—C4—C15—C20	-2.2 (4)
S1—C2—C6—C11	7.2 (4)	C20-C15-C16-C17	-1.5 (4)
N3—C2—C6—C7	6.7 (4)	C4—C15—C16—C17	178.3 (3)
S1—C2—C6—C7	-170.7 (2)	C15—C16—C17—C18	0.8 (4)
C11—C6—C7—N7	178.4 (2)	C15—C16—C17—N17	-178.5 (3)
C2—C6—C7—N7	-3.7 (4)	C18—C17—N17—O4	176.7 (3)
C11—C6—C7—C8	-2.3 (4)	C16—C17—N17—O4	-3.9 (4)
C2—C6—C7—C8	175.6 (2)	C18—C17—N17—O3	-3.9 (4)
C8—C7—N7—C12	3.2 (5)	C16—C17—N17—O3	175.5 (3)
C6-C7-N7-C12	-177.5 (3)	C16—C17—C18—C19	0.3 (4)
N7—C7—C8—C9	-179.3 (3)	N17—C17—C18—C19	179.6 (2)
C6—C7—C8—C9	1.3 (4)	C17—C18—C19—C20	-0.6 (4)
C7—C8—C9—C10	0.4 (4)	C18—C19—C20—C15	-0.1 (4)
C8—C9—C10—C11	-1.1 (4)	C16—C15—C20—C19	1.2 (4)
C9—C10—C11—C6	0.1 (4)	C4—C15—C20—C19	-178.6 (2)
C7—C6—C11—C10	1.6 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5…O1 ⁱ	0.95	2.32	3.260 (3)	168
N7—H7…N3	0.80 (3)	1.98 (3)	2.672 (3)	144 (3)
C8—H8…O1	0.95	2.32	2.946 (3)	123

Symmetry code: (i) -*x*+3/2, *y*-1, *z*-1/2.