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Abstract: Ovarian cancer (OVCA) arises from three cellular origins, namely surface epithelial cells,
germ cells, and stromal cells. More than 85% of OVCAs are EOCs (epithelial ovarian carcinomas),
which are the most lethal gynecological malignancies. Cancer stem/progenitor cells (CSPCs) are
considered to be cancer promoters due to their capacity for unlimited self-renewal and drug resistance.
Androgen receptor (AR) belongs to the nuclear receptor superfamily and can be activated through
binding to its ligand androgens. Studies have reported an association between AR expression and
EOC carcinogenesis, and AR is suggested to be involved in proliferation, migration/invasion, and
stemness. In addition, alternative AR activating signals, including both ligand-dependent and ligand-
independent, are involved in OVCA progression. Although some clinical trials have previously been
conducted to evaluate the effects of anti-androgens in EOC, no significant results have been reported.
In contrast, experimental studies evaluating the effects of anti-androgen or anti-AR reagents in
AR-expressing EOC models have demonstrated positive results for suppressing disease progression.
Since AR is involved in complex signaling pathways and may be expressed at various levels in OVCA,
the aim of this article was to provide an overview of current studies and perspectives regarding the
relevance of androgen/AR roles in OVCA.

Keywords: androgen receptor; ovarian cancer; cancer stem/progenitor cells; microRNA

1. Introduction

Ovarian cancer (OVCA) is among the most lethal gynecological malignancies and has a
variety of cellular origins, histological characteristics, and therapeutic responses [1]. Despite
OVCA comprising only 3% of all cancer incidents, OVCA has an extremely high mortality
rate, representing the fifth leading cause of cancer-associated death in women [2–4]. In
2018, approximately 14,000 OVCA-related deaths were reported in the US, accounting
for 5% of all cancer deaths in women [5]. Several epidemiological factors are thought to
contribute to OVCA development, including hereditary factors, such as family history,
the presence of mutations in the breast-cancer-associated genes BRCA1 and BRCA2, and
age; estrogenic influences, such as early menarche and menopause after 52 years of age;
environmental risk factors; and lifestyle choices, such as exposure to polycyclic aromatic
hydrocarbons (PAH), cigarette smoking, and obesity [6].
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Androgen receptor (AR) was well-characterized as ligand-dependent transcription
factor, which belongs to the nuclear receptor superfamily [7]. Androgen, a steroid hor-
mone, has been suggested to play critical roles in male sexual development and repro-
ductive function and the maintenance of the male phenotype. Androgens are also well-
identified ligands for AR. Moreover, 5α-reductase converts intracellular testosterone into
5α-dihydrotestosterone (DHT), which has a high affinity for AR. Interactions between
androgen and AR promote the dissociation of AR from heat shock proteins, allowing AR
to translocate into the nucleus and bind androgen response elements (AREs) on specific
non-promoter distal enhancer regions and then recruited coactivators to activating target
gene expression [8–10]. This gene transcriptional mechanism is commonly referred to as
“classical transactivation” or “ligand-dependent transactivation”.

AR has also been reported to become activated and translocate into the nucleus
without binding to a ligand, which is referred to as “non-classical transactivation” or
“ligand-independent transactivation” [11–14]. Non-classical AR signaling is known to
involve mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase
(ERK) activation; the activation of mammalian target of rapamycin (mTOR) through the
phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway; and plasma membrane
components, including G-protein-coupled receptors (GPCRs) and sex-hormone-binding
globulin receptor (SHBGR), which modulate intracellular Ca2+ concentration and cyclic
adenosine monophosphate (cAMP) levels, respectively [15–17].

In cancer biological research, AR has been reported to be expressed in many cell types,
and androgen/AR signaling has been found to promote tumorigenesis and metastasis
in several cancer types, including OCVA [18,19]. Accumulating evidence consistently
supports AR overexpression in OVCA. Immunohistochemistry studies have shown that
AR expression is detected in approximately 43.5–86% of epithelial OVCA (EOC) [20–22].
These findings suggest that AR plays a pivotal role in OVCA progression and might
represent a potential therapeutic target for OVCA treatment. Therefore, this review aims to
evaluate the current knowledge associated with androgen/AR signaling in the pathological
progression of OVCA.

2. AR Expression, Genetic Polymorphisms, Function, and Regulation in Human OVCA
2.1. General Description, Classification, and Pathological Features of OVCA

Sex-cord/stromal tumors develop from the stroma or the sex cord. The stroma and sex
cord are tissues that support the ovary and produce the female hormones estrogen and pro-
gesterone. Stromal tumors are a rare tumor type, comprising less than 7% of all OVCAs. Sex-
cord/stromal tumors can be identified at any age but most commonly affect young women
(median age 27 years), causing abnormal vaginal bleeding and pain. Surgery is the pri-
mary treatment option for stromal tumors, and the prognosis is generally favorable [23,24].
Although it is a rare subset of malignant ovarian tumors, Alexiadis et al. (2011) profiled
human nuclear receptors, including AR, in two GCT-derived (granulosa cell tumors (GCTs)
that arise from the stromal cells of the ovary) cell lines, COV434 and KGN. Moreover, their
data showed that AR is the most abundant of the steroid receptors in the GCT, but the role
and functions of AR are still unclear in this study [25].

Ovarian teratoma (OVTC) arises from germ cells and is typically benign. Malignant
teratoma, known as teratocarcinoma, is a minority tumor type (less than 10%) of the
OVTC [26]. OVTC may comprise various tissues, including glandular tissues, multilay-
ered epithelial tissues, hair follicles, bone, teeth, and cartilage, and it occurs in all ages.
The development of OVTC has been attributed to the aberrant meiosis of germinal cells
within the ovary; however, the detailed pathogenesis underlying this tumor type remains
poorly understood [27–31]. OVTC is caused by the abnormal development of pluripotent
germ or embryonic cells, making it a good model for studying the behavior of cancer
stem/progenitor cells (CSPCs) [32].

More than 85% of OVCA are EOCs, which are the most lethal gynecological ma-
lignancies that arise from ovarian surface epithelial cells (OSECs) [1]. The four major
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histological EOC subtypes include serous carcinoma (SC), mucinous carcinoma (MC),
endometrioid carcinoma (EC), and clear cell carcinoma (CCC), which can be identified by
cancer cell morphology [33,34]. The EOC subtypes differ in etiology, malignancy, response
to chemotherapy, and prognosis according to characteristics, including histopathology,
immunohistochemistry, and molecular genetics [35–37]. Generally, high-grade SC (HGSC)
describes histologically aggressive, highly proliferative, and p53 mutation-associated, with
high p16 expression and the loss of BRCA1 expression. HGSC is often initially chemosensi-
tive, followed by the development of resistance and poor prognosis, whereas low-grade SC
(LGSC) is associated with a noninvasive, serum-confined, less proliferative, and KRAS and
BRAF mutation-associated, with generally intermediate chemosensitivity, except metas-
tasis [38–40]. In Taiwan, MC is second populated primary EOC subtype [33,38]. MC has
been reported that accompanied with KRAS mutation (43.6%) and HER2 overexpression
(18.8%) [38,41,42]. It has been reported that MC is sensitive to chemotherapy with favorable
prognosis [38]. EC (Endometrial subtype EOC) is often considered to represent a secondary
neoplasm that arises from endometriosis or a pre-existing borderline adenofibroma [1,43]. It
accounts for about 10% of EOCs and occurs most frequently in women of peri-menopausal
age, and most are found at an early stage [38]. Molecular studies have shown that hered-
itary nonpolyposis colorectal carcinoma is an EC risk factor, and mutations in CTNNB
(β-catenin), PI3CA (PI3K), and PTEN (phosphatase and tensin homolog) have also been
reported to be EC risks. Similar to LGSC, EC is highly sensitive to chemotherapeutic
agents and associated with better prognosis in patients [37,38]. The fourth subtype, CCC, is
associated with atypical endometriosis, occurring with an incidence approximately equal
to that of EC among women in Taiwan [33,38]. Genetic analysis showed that CCC always
bears mutations in ARID1A genes and upregulation of HNF-1 protein [38]. Recent clinical
studies have shown that CCC exhibits poor prognosis and high levels of resistance to
chemotherapy agents, as well as being associated with high mortality [38].

Although EOC represents a heterogeneous disease, decisions regarding standard
therapeutic strategies continue to rely on the diagnosed stage and grade rather than
histological type [44]. The current treatment for newly diagnosed EOC is surgical bulk
reduction, followed by adjuvant chemotherapy [45]. Only 20–30% of EOC patients are
typically diagnosed at an early stage, when the neoplasm bulk removal is curative. The
majority of patients have already progressed to an advanced stage when first diagnosed
with EOC [46]. For early stage EOC, appropriate surgery and chemotherapy can increase
patient survival rates up to 90–95% [47]. However, most advanced-stage patients have
lower survival rates (<30%) during the 5-year period after treatment with surgery and
chemotherapy [48]. The first-line chemotherapy option for treating advanced-stage EOC is
the combination of platinum- and taxan-based adjuvant chemotherapies, to which approxi-
mately 80% of women are responsive [45,49–51]. Unfortunately, 70–80% of advanced-stage
EOC patients relapse after treatment, with particularly high relapse rates observed for SC
(up to 70%) [48,52]. Therefore, these therapeutic strategies for EOC remain controversial.

Some factors had been associated with poor prognosis of EOC, including (1) compli-
cated personal risk factors, such as individual diet, inherited gene mutations, and ages;
(2) a lack of early diagnosis markers; and (3) resistance to chemotherapy. Thus far, several
studies have focused on the relationships between EOC treatments and these factors, both
in vivo and in vitro.

2.2. Biochemical Functions of Androgen/AR Signaling (Classical vs. Non-Classical Androgen/AR Signaling)

The AR protein structure consists of three major functional domains: N-terminal
domain (NTD), DNA-binding domain, and ligand-binding domain. The NTD exerts a
modulatory function during protein–protein interactions, such as those with coactivators
or other transcription factors [18]. The DNA-binding domain is a cysteine-rich region
consisting of two zinc finger structures. These structures are responsible for AR–DNA inter-
actions, which regulate gene expression through binding to AREs at distal enhancer regions
of target genes [9,10]. The ligand-binding domain provides a site for AR–ligand binding,
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which activates AR translocation activity. Classical action of AR is indicated as androgen
acts through binding with AR. The binding of androgen to the AR results in the dissociation
of heat-shock proteins, followed by the translocation of the AR/androgen complex into
the nucleus, where it binds AREs on the DNA [40]. In addition to classical androgen/AR
activation, AR has been documented to function in a rapid, transient activation mode
without binding to a ligand, known as “non-classical action” [11–14]. The non-classical AR
signaling is known to involve MAPK/ERK activation, mTOR activation via the PI3K/Akt
pathway, and the involvement of plasma membrane components, including GPCRs and the
SHBGR, which modulate intracellular Ca2+ concentrations and cAMP levels [12,16,17]. In
addition, another form of AR activation has been observed without ligand binding [15,16],
and these ligand-independent pathways may be correlated with AR phosphorylation or
AR-associated signaling proteins [16,17].

2.3. Associations of Androgen Levels, Gene Polymorphisms, and AR Expressions with OVCA Risks

EOC has been shown to be an androgen-responsive tissue [21,53]. Androgen concentra-
tion associated with risk of OVCA has been reported during earlier clinical studies [54,55].
Cuzick et al. (1983) assessed urinary concentrations of DHEA (dehydroepiandrosterone, a
steroid hormone that serves as a precursor to androgen), androsterone, and etiocholanolone
in 12 patients who developed OVCA from among 1484 total patient samples. They
found that the DHEA, androsterone, and etiocholanolone concentrations were lower
in the 12 OVCA patients when compared with those in an age-matched group [54].
Another study, performed by Helzlsouer et al. (1995), compared the serum levels of
adrenal androgens in 31 patients with OVCA with those in 62 control women matched
for race, age, and menopausal status. The levels of androstenedione (4.5 ± 2.8 versus
3.3 ± 2.1 nmol/L; P = 0.03) were significantly higher in the cancer patients than in the con-
trol subjects [55]. The blood concentrations of testosterone have also been assessed, which
indicated that free testosterone concentrations were associated with the risk of OVCA
(odds ratio (OR) = 0.45, 95% confidence interval (CI) = 0.24–0.86, P = 0.01), specifically
SC (OR = 0.90, 95% CI = 0.75–1.08, P = 0.02), in postmenopausal women [7,56,57] These
findings suggested the involvement of androgen in modulating the development of OVCA
pathogenesis, especially in premenopausal women who had differences in the levels of
DHEA (23.9 ± 15.6 versus 11.4 ± 5.9 nmol/L; P = 0.02) and androstenedione (4.9 ± 2.8
versus 3.4 ± 1.7 nmol/L; P = 0.05), was observed in premenopausal women (n = 13), but
not in postmenopausal women (n = 18).) [7].

Studies showed that AR expression varied across histological EOC subtypes. Recent
studies showed that AR is expressed in all EOC subtypes, but higher expression levels were
observed in SCs than in other EOCs [20,22]. This observation was supported by the study
by Lee et al. (2005), who reported that AR was expressed in 43.7% of primary OVCA sam-
ples, and the highest percentages of AR expression were observed in SC (47.5%) samples
of total cases [14]. Sheach et al. (2009) reported that AR expression scores by immuno-
histochemistry showed no correlation with the International Federation of Gynecology
and Obstetrics (FIGO) stage, residual disease, or preoperative cancer antigen 125 (CA125)
levels, whereas AR expression can be detected specifically in EOC serous subtype [21].
Similarly, a study by de Toledo et al. (2014) found that AR expression tended to be more
prevalent in serous than in non-serous tumors [58]. Furthermore, studies have shown that
the AR-positive SC subtype promotes cancer development through the regulation of the
cell cycle by androgen stimulation [53,59,60]. These studies have implied that AR could
serve as a therapeutic target in OVCA.

AR is the conventional cellular receiver for androgens. The AR gene is composed of
eight exons. Exon 1 contains two polymorphic trinucleotide repeats: a 9–39 CAG repeat
(polyglutamine, polyQ) and a 14–27 GGN repeat (polyglycine, polyG) [18,61]. Many
studies have focused on AR gene polymorphisms, particularly the association between
the polyQ repeat and OVCA risk; however, this association remains controversial [62–69].
Engehausen et al. (2000) evaluated the human AR (hAR) mutations in 38 human OVCA
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cell lines associated with different AR expression patterns, and the results showed no
mutations in the hAR gene. They concluded that mutation screening of hAR might not
provide any information for OVCA risk assessment [70].

3. Androgen/AR Signaling in OVCA Experimental Models
3.1. Androgen/AR Signaling Function in the Gynecological System

Accumulated studies have indicated that androgen or AR activity can affect OVCA
progression and could serve as potential therapeutic targets for the treatment of this
disease. Syed et al. (2001) found that testosterone and DHT significantly stimulated cell
growth in both malignant and normal ovarian cell lines [71]. This androgen-stimulated
growth could be reversed by co-treatment with the anti-androgen 4-hydroxyflutamide [71].
Edmondson et al. (2002) demonstrated that the ovarian surface epithelium is an androgen-
responsive tissue and that androgen treatment increased proliferation and decrease cell
death in eight primary cultures of human ovarian surface epithelium cells [72]. Studies
have also shown that androgen/AR activity was associated with EOC proliferation and
migration/invasion [61,73]. The potential mechanism is that androgen downregulates
expression of transforming growth factor-β (TGF-β) receptor, a potent suppressor of
epithelial cell growth, to promote OVCA cell growth [73,74]. The epidermal growth
factor receptor (EGFR) is overexpressed in 30–98% of EOCs, and the activation of EGFR-
associated signaling cascades has been linked to cell proliferation, migration, and invasion;
angiogenesis; and resistance to cell apoptosis [75].

Androgen-induced EOC proliferation may be partially mediated by enhanced inter-
leukin (IL)-6 and IL-8 expression, which might promote EOC growth via the activation
of the AR gene promoter [76]. Ligr et al. (2011) tested the effects of androgen treatment
on cell invasion in OVCAR-3 and SKOV-3 cell lines, using an in vitro Matrigel invasion
assay, and observed significantly increased invasiveness in cells treated with synthetic
androgen compared with hormone-free cells [77]. Du et al. (2016) identified the mod-
erately aggressive OVCA cells are associated with the overexpression of AR, which is
associated with increased cell migration and invasion, promoting a more aggressive OVCA
phenotype [78]. In a study, Zhu et al. (2016) established AR overexpressing OVCAR-3
and SKOV-3 OVCA cell lines and evaluated their effects on proliferation and migration
in vitro. AR overexpression promoted proliferation and migration in both OVCA cell lines,
as determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)
proliferation, and transwell migration assays [67]. Together, these findings indicated that
AR associated with EOC progression.

3.2. Androgen/AR Signaling in OVCA Stemness

CSPCs are thought to be responsible for cancer phenotypes, including pathogenesis,
metabolism, metastasis, drug resistance, and relapse [79]. Previous studies have identified
CSPCs among primary OVCA cells, and some OVCA cell lines have been reported to exhibit
rare populations of potential cancer stem cells, as identified by specific CSPCs markers, with
unique self-renewal capacity and resistance to chemotherapy [80,81]. Studies have shown
that several glycoproteins, including CD133, CD117, CD24, CD44, aldehyde dehydrogenase
1 (ALDH1), and ATP binding cassette subfamily G member 2 (ABCG2/BCRP), can be used
as CSPC markers in ovarian tissue [82].

Numerous studies have demonstrated that AR regulates progression of cancer stem
cell in various cancer types, including OVCA [83]. A study conducted by Chung et al. (2014),
using OVTC cells, provided evidence that ligand-independent AR functions in CSPCs (e.g.,
CD133+ cells) facilitated OVTC cell growth [83]. Chen et al. (2014) examined EC cells and
showed that AR expression facilitated CSPC progression and the development of cisplatin
resistance in EC cells [84]. Lin et al. (2018) showed that Nanog expression correlated with
AR expression and Nanog promoter transcription can be activated under androgen treat-
ment, which resulted in OVCA cells proliferation, migration, sphere formation, and colony
formation. Based on their findings, the authors indicated that interaction of Nanog with AR
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signaling axis promotes ovarian CSCs characteristics under androgen treatment [85]. These
studies showed that AR expression promotes CSPC self-renewal through both classical
and non-classical signaling pathways. Although previous reports have documented the
potential involvement of AR in cell stemness, little is known regarding the contribution of
AR to EOC subtypes.

Chemoresistance remains a major challenge to cancer chemotherapy. Most patients
respond to chemotherapies during the initial treatment period combined with surgery;
however, many patients exhibit a limited response to chemoreagents and become resistant
to subsequent treatments [44,50]. According to previous studies, CSPCs presented higher
expression and activity of ABC transporters, which are the membrane proteins thought to
be responsible for multidrug resistance (MDR). MDR refers to those mechanisms through
which many cancers develop resistance to chemotherapy drugs, which are major factors
in the failure of various chemotherapy regimens [86]. ABC transporter proteins are trans-
membrane proteins involved in drug efflux that utilize energy-consuming ATP hydrolysis
to export drugs out of cells [87]. They can be divided into ABCB, ABCC, and ABCG
families and play important roles in drug resistance [88]. Some ABC transporters have
been associated with paclitaxel transport, including ABCB1, ABCC2, and ABCG2 [89–91].
Therefore, cancer cells that express higher levels of ABC transporters are more prone to
drug resistance [89–91].

In addition to the role played by AR in OVTC CSPCs, Chung et al. (2019) also showed
that AR regulated the expression of ABCG2, an MDR-associated membrane protein, in SC
cells under paclitaxel treatment conditions through ligand-independent AR translocation
activity. Furthermore, treatment with ASC-J9, an AR degradation enhancer, eliminated the
paclitaxel–AR–ABCG2 axis and enhanced drug sensitivity in OVCA cell lines. Chung et al.
showed that targeting the degradation of AR protein is more beneficial than anti-androgen
to treating AR+ OVCA [92].

4. Current Clinical Trials of Targeting Androgen/AR Therapy in OVCA
4.1. Androgen Ablation Therapy in OVCA

AR has been reported to be differentially expressed across EOC subtypes [20,22],
and studies have shown that androgen/AR activity is associated with OVCA progression
in vivo and in vitro [77,78,93]. Therefore, various anti-androgen pharmacological agents
have been developed as a therapeutic approach for OVCA treatment. Many clinical
androgen ablation applications have been expanded to the treatment of women diagnosed
with OVCAs, including flutamide (a nonsteroidal drug with anti-androgen properties),
bicalutamide (an oral nonsteroidal anti-androgen), and goserelin (a gonadotropin-releasing
hormone agonist that eventually decreased androgen secretion by suppressing the release
of follicle-stimulating hormone from the pituitary gland). These anti-androgen drugs have
been widely used to treat men with prostate cancer, without severe adverse effects [94].

The early clinical reports examining the effects of flutamide, bicalutamide, and gosere-
lin have been conducted in OVCA patients. The phase II clinical trial examining the
use of flutamide in 68 EOC patients treated with platinum-based chemotherapy was re-
ported by Tumolo et al. (1994) [95]. In this study, 32 patients completed oral flutamide
treatment (750 mg/day) for at least 2 months, among which two patients responded to
treatment (one complete response lasted for 44 weeks, and one partial response lasted
for 72 weeks), and nine patients had stable disease for a median of 24 weeks (range:
12–48 weeks). The authors suggested that flutamide treatment in EOC patients with
chemotherapy pretreatment was invalid and associated with side effects. Another phase
II study of flutamide (300 mg/day) in high-grade OVCA patients (stages III and IV) was
reported by Vassilomanolakis et al. (1997) [96]. The results showed that partial response
and disease stabilization were observed in one case (4.3%) that lasted for 3 months and
two cases (8.7%) that lasted for 7 to 8 months among the 23 patients examined.

More recently, a phase II study of bicalutamide (50 mg orally daily) and goserelin
(3.6 mg subcutaneously every 4 weeks) in stages III and IV EOC patients was reported
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by Levine et al. (2007) [97]. A total of 35 patients were enrolled, and the progression-
free survival (PFS) among patients receiving the protocol therapy during second disease
remission (21 patients) was 11.4 months (95% CI, 10.2–12.6 months). The PFS for patients
receiving protocol therapy during their third or fourth disease remission (11 patients)
was 11.9 months (95% CI, 10.8–14.1 months). This report demonstrated that the use of
goserelin and bicalutamide did not appear to prolong PFS in patients with EOC who have
experienced two or more complete disease remissions.

According to these clinical trials, only a few EOC patients were responsive to anti-
androgen therapy combined with other chemotherapies. However, the results of anti-
androgens (flutamide, bicalutamide, and goserelin) that block the androgen/AR signaling
axis in clinical trials have been controversial, and these treatments have been ineffective
for curing most patients of this difficult-to-treat disease [98]. One possible explanation
for the failure of anti-androgen therapy efficacy might be associated with insufficient
patient numbers, heterogeneity among patient demographics or disease characteristics,
and pathological tumor characteristics [98–100]. However, none of these controversial
clinical trials performed any clear dissection of the role played by AR in EOC subtypes,
which likely contributed to the failure to obtain any encouraging clinical results.

4.2. AR Degradation Therapy for OVCA

An AR degradation enhancer, dimethylcurcumin (ASC-J9), has also demonstrated
effective tumor inhibition, including against OVCA. Lin et al. (2018) showed that ASC-J9
inhibitor promoted EOC cell proliferation, migration, and sphere formation in CSPCs
in vitro and in vivo [85]. Thus far, although bench studies and clinical trials of various
androgen/AR axis antagonists and AR degradation enhancers have been studied, the
results remain controversial relative to the treatment of EOC. AR as a target for EOC
therapy remains a critical issue in the field that requires further evaluation. A number of
clinical studies (Table 1) and in vitro studies (Table 2) have addressed the anti-androgen or
anti-AR therapies in EOC patients.

Table 1. Clinical trials of Androgen/ androgen receptor inhibitors in the treatment of ovarian cancer patients.

Study No. of Patients Clinical Trial Treatment Key Findings

Thompson et al. (1991) 62 NR cyproterone acetate 6.8% patients partially
responded.

Tumolo et al. (1994) 32/68 phase II oral flutamide treatment
(750 mg/day)

Combined chemotherapy was
invalid with side effects.

Van der Vange et al. (1995) 33 Phase II flutamide
(500 mg i.m)

1 patients showed stable
disease for 8 months.

Vassilomanolakis et al. (1997) 43 phase II flutamide
(300 mg/day)

Partial response (4.3%) and
disease stabilization (8.7%) in

23 patients.

Levine et al. (2007) 35 phase II
bicalutamide (50 mg/daily)

and goserelin
(3.6 mg/mon)

Failed to prolong PFS in EOC
patients

Rachel et al. (2017) 59 phase II Enzalutamide
(160mg by mouth QD)

Currently recruiting patients
(NCT01974765)

Susana et al. (2020) 42 Phase II abiraterone (1000mg daily) Closured.

Abbreviations: NR: not reported; AR: androgen receptor; EOC: epithelial ovarian cancer; PFS: progression free survival; QD: once daily;
i.m: intramuscular.
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Table 2. Current studies of targeting on androgen/ androgen receptor in ovarian cancer cells.

Study Cell Lines Treatment MOA Key Findings

Park et al. (2016) OVCAR-3 Enzalutamide NR Showed efficacy in the ovarian
cancer with AR expression.

Lin et al. (2018) A2780 and SKOV3 ASC-J9 Suppressing
AR→Nanog axis

AR promotes Nanog expression
which contribute to CSPCs stemness

in EOC cells

Chung et al. (2019) HeyA8, SKOV3ip1,
OVCAR-3 Paclitaxel/ASC-J9 Suppressing

AR→ABCG2 axis
Degradation of AR is effective in

suppressing OCSO subtype.

Addie et al. (2019)
A2780, OV90,

OVCAR3, OVCAR8,
SKOV3, COV362.4

Metformin/enzalutamide AR→PI3K
pathway

Anti-androgen failed to suppress
AR+ EOC cells, implicating an

ligand-independent pathway of AR.

Abbreviations: NR: not reported; AR: androgen receptor; CSPCs: cancer stem/progenitor cells; EOC: epithelial ovarian cancer; OCSC:
ovarian cancer serous carcinoma; MOA: mode of action.

4.3. Potential for the Use of Anti-Androgen/AR and Anti-PARP Combination Therapy for OVCA

Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) represent the first FDA-
approved treatment to apply the concept of synthetic lethality (cell death induced by single
strain break) to the treatment of EOC. Although only 10–15% of patients with high-grade
serous OVCA (HGSOC) harbor germline BRCA1 or BRCA2 mutations, approximately
50% of patients are diagnosed with tumors that exhibit homologous recombination (HR)
deficiencies due to either a germline or somatic mutation in the HR system [101]. The
results of a phase II study showed that patients with germline BRCA1/2-mutated advanced
OVCA who had received three or more chemotherapies had a median PFS of 7 months, a
median overall survival (OS) of 16.6 months, and a 1-year OS rate of 64.4% [102]. Studies
of olaparib to treat women with HGSOC recurrence reported that patients who received
olaparib maintenance treatment showed a longer PFS (median, 8.4 vs. 4.8 months; hazard
ratio, 0.35; 95% confidence interval (CI), 0.25–0.49; P < 0.001) [103,104].

Several studies have reported that treatment with the PARPi olaparib, combined
with enzalutamide and olaparib, demonstrated synergistic effects in prostate cells and
orthotopic xenograft models [105,106]. In both AR-responsive and AR-independent cell
lines, the use of enzalutamide (Xtandi and Astellas) reduced the expression of HR genes,
including BRCA1 [106,107]. In our findings, we indicated that targeting AR eliminated
ABCG2-associated drug resistance, and treatment with the AR degradation enhancer (ASC-
J9) provided a synergistic effect with the first-line chemotherapeutic agent paclitaxel in
SC [92]. Thus, in addition to advocating for further testing of the combination of paclitaxel
and AR inhibitor, targeting AR combined with PARPi may remedy the deficiencies of
PARPi treatment and provide an advanced therapeutic strategy for SC.

5. Conclusions

Although the role played by AR in OVCA has been studied in vitro, providing addi-
tional understanding regarding this relationship, the development of an effective in vivo
model for AR research and combinational therapy for use in preclinical trials for this dis-
ease remains an active and increasingly popular area of investigation. To better understand
the mechanism of AR signaling and to design proper therapies against AR in OVCA, an
increased focus must be placed on identifying the AR activation mechanisms and target
genes that contribute to tumor recurrence, and the development of therapy resistance is
necessary. Advancements in this mechanistic understanding will shed light on potentially
effective combination therapies for patients with the AR+ OVCA subtype. Discerning the
intricacies and crosstalk between AR and the tumor microenvironment may also provide
advantages for OVCA treatment and would not only advance our understanding of the
role played by AR in cancer progression but also identify new treatment strategies through
which AR signaling can be blocked to improve outcomes for women with OVCA. A new
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perspective on combination therapy of AR degradation and chemoreagents is illustrated in
Figure 1.

Figure 1. Illustration of androgen/androgen receptor (AR) signaling in ovarian cancer (OVCA) progression, and potential
benefit of targeting AR for OVCA therapeutics. The androgen/AR signaling, including ligand dependent vs. independent
activation modes that bind on androgen response elements (AREs; including classical and alternative) on promoter region for
target gene expressions. The unique androgen/AR signaling occurring at the cancer stem/progenitor cells (CSPCs) of OVCA,
which enriches CSPC population. Consequently, lead to enriched cancer stemness, chemoresistance, fast growth of cells,
and increase mobility of OVCA. The proposed therapeutics on targeting AR degradation combination with conventional
chemotherapy might acquire therapeutic benefit to improve OVCA progression via suppressing AR+ OVCA cells.
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