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Participatory design (PD) has been used to good success in human-robot interaction (HRI)
but typically remains limited to the early phases of development, with subsequent robot
behaviours then being hardcoded by engineers or utilised in Wizard-of-Oz (WoZ) systems
that rarely achieve autonomy. In this article, we present LEADOR (Led-by-Experts
Automation and Design Of Robots), an end-to-end PD methodology for domain expert
co-design, automation, and evaluation of social robot behaviour. This method starts with
typical PD, working with the domain expert(s) to co-design the interaction specifications
and state and action space of the robot. It then replaces the traditional offline programming
or WoZ phase by an in situ and online teaching phase where the domain expert can live-
program or teach the robot how to behave whilst being embedded in the interaction
context. We point out that this live teaching phase can be best achieved by adding a
learning component to aWoZ setup, which captures implicit knowledge of experts, as they
intuitively respond to the dynamics of the situation. The robot then progressively learns an
appropriate, expert-approved policy, ultimately leading to full autonomy, even in sensitive
and/or ill-defined environments. However, LEADOR is agnostic to the exact technical
approach used to facilitate this learning process. The extensive inclusion of the domain
expert(s) in robot design represents established responsible innovation practice, lending
credibility to the system both during the teaching phase and when operating
autonomously. The combination of this expert inclusion with the focus on in situ
development also means that LEADOR supports a mutual shaping approach to social
robotics. We draw on two previously published, foundational works from which this
(generalisable) methodology has been derived to demonstrate the feasibility and worth of
this approach, provide concrete examples in its application, and identify limitations and
opportunities when applying this framework in new environments.
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1 INTRODUCTION

In the context of robotics research, participatory design (PD)
attempts to empower non-roboticists such that they can shape
the direction of robotics research and actively collaborate in robot
design (Lee et al., 2017). Typically, PD is achieved by researchers
running workshops or focus groups with end users and/or domain
experts. Output may include potential use case scenarios (Jenkins
and Draper, 2015), design guidelines/recommendations (Winkle
et al., 2018), and/or prototype robot behaviours (Azenkot et al.,
2016). Šabanović identified such methods as appropriate for the
pursuit of amutual shaping approach in robot design that is one that
recognises the dynamic interactions between social robots and their
context of use (Šabanović, 2010), an approach that we find
compelling for designing effective and acceptable social robots
efficiently. However, the automation of social robot behaviour,
which requires a significant technical understanding of robotics
and artificial intelligence (AI), is not typically considered during such
activities.

Instead, common methods for the automation of social robot
behaviour include utilisingmodels based on human psychology (e.g.,
Theory ofMind, Lemaignan et al., 2017) or animal behaviour (Arkin
et al., 2001) or attempting to observe and replicate human-human
interaction behaviours (e.g., Sussenbach et al., 2014). This limits the
potential for direct input from domain experts (teachers, therapists,
etc.) who are skilled in the use of social interaction in complex
scenarios. Previous work with such experts has demonstrated that a
lot of the related expertise is intuitive and intangible, making it
difficult to access in a way that can easily inform robot automation
(Winkle et al., 2018). This is somewhat addressed by methods that
capture domain expert operation of a robot directly, for example,
end user programming tools (e.g., Leonardi et al., 2019) or learning
from expert teleoperation of robots (e.g., Sequeira et al., 2016).
However, these methods tend to focus on offline learning/
programming. As such, there is no opportunity for experts to
create an adequate, situated mental model of the capabilities of
the robot, limiting the guarantee of appropriate behaviour when the
robot is eventually deployed to interact with users autonomously.

Instead, we argue that robots should be automated by domain
experts themselves, in real time, and whilst being situated in the
interaction context; and that this automation should be done
through a direct, bi-directional interaction between the expert
and the robot. We refer to this as the teaching phase, where the
robot is taught what to do by the domain expert, regardless of
whether it is, e.g., a machine learning algorithm or an authoring
tool that underpins this interaction. This live, in situ, and
interactive approach allows mutual shaping to occur during
robot automation, as the expert defines the program of the
robot in response to the evolving dynamics of the social
context into which the robot has been deployed.

1.1 Supporting a Mutual Shaping Approach
to Robot Design
Šabanović proposed a mutual shaping approach to social robot
design that is one that recognises the dynamic interactions between
social robots and their context of use, in response to their finding that

most roboticists were taking a technologically deterministic view of
the interaction between robots and society (Šabanović, 2010). Studies
of real-world human-robot interaction (HRI) motivate such an
approach, because they demonstrate how mutual shaping effects
impact robot effectiveness upon deployment in the real world. For
example, the use and acceptance of robots in older adult health
settings has been shown to be affected by situation and context of use
factors such as user age and gender, household type, and the
prompting of its use by others (Chang and Šabanović, 2015; de
Graaf et al., 2015), i.e., factors unrelated to the functionality of the
robot. The pursuit of a mutual shaping approach, primarily through
use of PD and in-the-wild robot evaluation methods, gives the best
possible chance of identifying and accounting for such factors during
the design and development process, such that the robot has
maximum positive impact on its eventual long-term deployment.

To this end, Šabanović describes four key practices that
underpin a mutual shaping approach to support a “socially
robust understanding of technological development that enables
the participation of multiple stakeholders and disciplines”:

1) Evaluating robots in society: HRI studies and robot
evaluations should be conducted “in the wild”, i.e., in the
environments and context of use for which they are ultimately
intended to be deployed (Ros et al., 2011).

2) Studying socio-technological ecologies: Robot design should
be informed by systematic study of the context of use, and
evaluation of robots should consider impact on the socio-
technology ecology into which they have been deployed.

3) Outside-in design: Design constraints should be defined by
empirical social research and the social context of use, rather
than technical capabilities, and evaluation should be based on
user experiences rather than internal measures of technical
capability.

4) Designing with users: Stakeholders (those who will be directly
affected by the deployment and use of the robot) should be
included in identifying robot applications and thinking about
how robots will be used and in designing the robot and its
behaviour(s).

However, as we explain in Section 2, robot development at
present typically represents a discontinuous process, particularly
broken up by the automation of social robot behaviour. It still
tends to heavily rely on technical expertise, executed in research/
development environments rather than the real world, with little
active inclusion of domain experts or other expert stakeholders.
This discontinuity also represents a key hurdle to truly multi-
disciplinary working, a disconnection between those of different
academic backgrounds on the research team, which can result in a
number of practical challenges and frustrations.

1.2 The Led-By-Experts Automation and
Design of Robots Method
The generalisable method that we provide in this work is derived
from two (independently undertaken) foundational works. First
is the educational robot by Senft et al. (2019) for school children,
in which a psychologist taught a robot to support children in an
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educational activity. After the teaching phase with 25 children,
the robot was evaluated in further autonomous interaction with
children, which demonstrated the opportunity of online teaching
as a way to define autonomous robot behaviours.

Second is the robot fitness coach by Winkle et al. (2020). This
work built upon the work by Senft et al. (2019) by integrating the
online teaching method into an end-to-end PD process, whereby
the same professional fitness instructor was involved in the co-
design, automation, and evaluation of a robot fitness coach. This
work also demonstrated the value of online teaching when
compared to expert-designed heuristics as a next best
alternative for defining autonomous robot behaviours with
domain expert involvement. Both studies used a teaching
phase where a domain expert interacted with the robot to
create an interactive behaviour, and in both studies, the
resulting autonomous robot behaviour was evaluated with
success.

From these works, we have derived a five-step, generalisable
method for end-to-end PD of autonomous social robots (Led-by-
Experts Automation and Design Of Robots or LEADOR), depicted
alongside typical PD in Figure 1. The key stages of our approach,
as referenced in the figure, can be summarised as follows:

1) Problem definition: Initial brainstorming, studies of context of
use, and studies with stakeholders.

2) Interaction design: Detailed refinement of robot application
and interaction scenario, and choice/design of robot platform.

3) System specification: Co-design of the action space of the robot,
input space, and teaching interface.

4) Technical implementation: Realisation of the third stage
through technical implementation of underlying architecture
and all sub-components and tools required for the
teaching phase.

5) Real-world deployment: Robot is deployed in the real world,
where a teaching phase is undertaken, led by the domain
expert(s), to create autonomous robot behaviour.

The cornerstone of our method is to facilitate robot
automation through direct interaction between the expert and
the robot, during a “teaching phase”, whereby the domain expert
teaches the robot what to do during real interaction(s) with the
target user. The resultant interaction is depicted in Figure 2.
Regardless of the specifics of the final interaction, the output of

FIGURE 1 | Comparison between a classic participatory design (PD) approach and LEADOR, our proposed end-to-end participatory design approach. Green
activities represent joint work between domain experts, multidisciplinary researchers, and/or engineers; yellow activities are domain expert-led; blue activities are
engineer-led. Compared to typical PD, the two key differences in our approach are the focus on developing a teaching system instead of a final autonomous behaviour in
step 4, and the combining of autonomous action policy definition and deployment in the real world into a single step 5 + 6. In addition, our method reduces the
amount of work that is carried out independently by engineers (i.e., with no domain expert or non-roboticist input).

FIGURE 2 | Three-way interaction between the domain expert, the
robot, and the target user through which the expert teaches the robot during a
teaching phase upon real-world deployment. Robot automation is therefore
happening in the real world, whereas the robot is fully embedded in its
long-term application context. The expert is teaching the robot through bi-
directional communication, as the robot interacts with the target user. The
extent of interaction(s) between the domain expert and target user
should be consistent with what is envisaged for long-term deployment of
the robot and is domain-dependent. People vector created by
studiogstock - www.freepik.com.
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this phase is a robot that can operate autonomously but could also
allow for continued expert-in-the-loop supervision and/or
behaviour correction/additional training.

Through our foundational works, we demonstrate the
flexibility in our method for developing autonomous robots
for different long-term interaction settings. The educational
robot by Senft et al. (2019) was intended for diadic,
unsupervised robot-user interactions, whereas the robot fitness
coach by Winkle et al. (2020) was intended primarily for diadic
robot-user interactions but to be complimented with additional
expert-user interactions/supervision and with additional expert-
robot-user teaching interactions if necessary. LEADOR could also
be used to design robots with other interaction requirements, e.g.,
an autonomous robot to be used in fully triadic expert-robot-user
interactions or to facilitate permanent expert supervision and
validation of autonomous behaviour.

In this paper, we have combined our experiences from these
foundational works to propose an end-to-end PD process,
centred around an in situ teaching phase, that uniquely
delivers on the promises of mutual shaping and PD. We
suggest that this approach is as practical as it is responsible,
because our foundational studies demonstrate that we were able
to create appropriate, intelligent, and autonomous social robot
behaviour for complex application environments in a timely
manner. As detailed in Senft et al. (2015) and Senft et al.
(2019), this teaching phase is achieved by deploying the robot
in the proposed use case and it is initially controlled completely
by a human “teacher”. The teacher can progressively improve the
robot behaviour in situ and generate a mental model of the policy
of the robot. This teaching can continue until the domain expert
is confident that the robot can satisfactorily operate
autonomously. This approach therefore allows non-roboticist,
domain experts to actively participate in creating autonomous
robot behaviour. It also allows for the continual shaping of robot
behaviour, because teaching can be seamlessly (re-)continued at
any time to address any changes in the interaction dynamics,
therefore better supporting a mutual shaping approach. We
suggest that our methodology is particularly appropriate for
use cases, in which difficult-to-automate and/or difficult-to-
explain “intuitive” human domain expertise and experience are
needed to inform personalised interaction and engagement (e.g.,
socially assistive robotics). The result then is an autonomous
robot that has been designed, developed, and evaluated (by a
multi-disciplinary research team) directly in conjunction with
domain experts, within its real-world context of use, that can
intelligently respond to complex social dynamics in ways that
would have otherwise been very difficult to automate.

For clarity, hereafter, we use the term domain expert (or
teacher) to refer to experts in an application domain. For
example, these domain experts could be therapists, shop
owners, or school teachers. These experts interact with the
robot and specify its behaviour in a teaching interaction (even
if no actual machine learning might be involved). On the other
hand, engineers or developers refer to people with technical
expertise in robotics or programming. They are the ones
typically programming a robot behaviour or developing tools
to be used by domain experts. Finally, the target user is the person

a robot would interact with in the application interaction. For
example, such target users could be children during a therapy
session or store customers in a shopping interaction. This
population is expected to interact with the robot at the point
of use, rather than be the ones directly defining the autonomous
robot behaviour.

2 RELATED WORK

2.1 Participatory Design
PD is fundamentally concerned with involving the people who
will use and/or will be affected by a technology in the design of
that technology, with a focus on mutual learning between
participants who typically represent either domain experts
(users) or technology experts (designers) (Simonsen and
Robertson, 2012). Contemporary PD has been concerned with
combining typical, iterative PD practices with evaluation of the
design in use under the concept of sustained PD or design as
“emerging change” (Simonsen et al., 2010; Simonsen et al., 2014).
Originally posed in the context of large-scale information systems
projects, the sustained PD approach presented by Simonsen and
Hertzum (2012) not only emphasises the evaluation of systems by
exposing them to real-situated work practices but also notes
associated challenges regarding management of a stepwise
implementation process and the conducting of realistic, large-
scale PD experiments.

This focus on implementation of the new technology as part of
PD also therefore raises the notion of user participation in that
implementation process. Fleron et al. (2012) demonstrated this in
the context of first designing an electronic whiteboard with
healthcare practitioners, followed by healthcare practitioner-led
implementation of that whiteboard at two emergency
departments. Notably, this work investigated differences in the
experiences between staff who did and did not participate in this
implementation process. Specifically, the participating staff (those
responsible for the system implementation) identified some
difficulties in understanding their role/responsibilities. The non-
participating staff expressed a desire for earlier (pre-deployment)
testing of the system but demonstrated positive “buy-in” of the
system, nonetheless, with the authors positing this linked to reputed
credibility of the system given it was (co-)developed and
implemented by their peers. This points towards not only the
potential benefits but also the challenges when trying to include
end users and/or domain experts in this sustained PD process.

Specifically concerning PD, AI, andmachine learning, Bratteteig
and Verne (2018) note three key challenges when using PD with/
for AI systems. First is that users and designers might struggle to
conceptualise the possibilities and limitation of AI; second is that
(machine learning–based) AI systems develop over time and hence
are difficult to evaluate within a typical PD experimental period;
and third is how to distinguish between “normal” use and training.
Overall, the authors conclude that AI and machine learning can be
part of a PD process, but that AI poses complex challenged that go
beyond the scope of typical PD projects.

From the PD literature then, there is a clear motivation to
explore PD processes that go beyond initial design to also include
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implementation and to understand how best to approach the PD
of machine learning–based AI systems. The notion of using
expert-in-the-loop machine learning for sustained PD that also
includes implementation specifically sits at this exact intersection.
However, whilst many contemporary PD works have described
applications in the development and implementation of
information technology systems, there seem to be very few (if
any) that consider autonomous, social robot design, and
development. Considering literature from the HRI field,
however, a number of (interdisciplinary) HRI researchers have
utilised and drawn from PD in the context of designing robots
and their applications.

Participatory Design in Social Robotics
Here, we identify relevant works utilising PD and other related
methodologies specifically in the context of designing social HRI.
Notably, these works primarily originate from the HRI
community, as opposed to the PD community, but most such
works showcase one (or more) of the following methodologies:

1) Ethnographic/”In-the-Wild” Studies: These typically focus on
understanding situated use and/or emergent behaviour(s) on
deployment of a robot into the real world. Concerning robot
design, such studies are inherently limited to the testing of
prototypes, Wizard-of-Oz (WoZ) systems, or finished
products (e.g., Forlizzi, 2007 and Chang and Šabanović,
2015). However, they might be used to inform initial
design requirements (and their iteration) through
observation of the use case environment and user behaviour.

2) User-Centred Design (UCD): This aims to understand and
incorporate user perspective and needs into robot design.
Typically, researchers set the research agenda based on prior
assumptions regarding the context of use and proposed robot
application (e.g., Louie et al., 2014, Wu et al., 2012, and Beer
et al., 2012).

3) Participatory Design (PD): This encourages participants
(users, stakeholders, etc.) to actively join in decision
making processes which shape robot design and/or the
direction of research. This typically involves participants
having equal authority as the researchers and designers,
with both engaging in a two-way exchange of knowledge
and ideas (e.g., Azenkot et al., 2016 and Björling and Rose,
2019).

Lee et al. give a good overview of the above practices as
employed in social robot and HRI design/research, with a
particular focus on how the shortcomings of 1 and 2 can be
addressed using PD (Lee et al., 2017). The authors use a case study
of social robot PD from their own work to highlight a number of
PD design principles for informing social robot design and
further development of PD methodologies. They particularly
highlight the empowering of PD participants to become active
“robot co-designers” through mutual learning, as introduced
previously, whereby there is a two-way exchange of knowledge
and experience between researchers/designers and expert
stakeholders. Through this process, users learn about, e.g.,
robot capabilities, such that they are better informed to

contribute to discussions on potential applications, whilst the
researchers/designers come to learn more about the realities of
the proposed context of use from the perspective of the users.

Since publication of work of Lee et al., PD methods have been
gaining visibility for the design of social robots, with other
roboticists further refining PD methods and best practice for
their use in social robotics and HRI. As such, PD works relating to
ours can be grouped into two categories:

1) Results-focused publications that utilised PD methods.
2) Methodology-focused publications in which the authors share

or reflect on PD methods for use in social robot/HRI design.

Works on 1) have typically taken the form of researchers
working closely with prospective users and/or other stakeholders
via focus groups, interviews, workshops, etc., with the researchers
then concatenating their results to produce potential use case
scenarios (Jenkins and Draper, 2015), design guidelines/
recommendations (Winkle et al., 2018), and/or prototype
robot behaviours (Azenkot et al., 2016). For example, Azenkot
et al. (2016) used PD to generate specifications for a socially
assistive robot for guiding blind people through a building. The
study of the authors consisted of multiple sessions including
interviews, a group workshop, and individual user-robot
prototyping sessions. The initial interviews were used, in part,
to brief participants about robot capabilities. The group session
was used to develop a conceptual storyboard of robot use,
identifying interactions between the robot guide and the user.

Winkle et al. (2018) conducted a study with therapists,
utilising a novel focus group methodology combined with
follow-up individual interviews to generate an expert-informed
set of design guidelines for informing the design and use of
socially assistive robots in rehabilitative therapies. The topic
guides for each part of the study were designed to help the
researchers to understand typical therapy practice and therapist
best practices for improving patient engagement and to explore
the ideas and opinions of the therapists on the potential role(s)
social robots, which might play in rehabilitation. A key finding of
this work was the extent to which intuitive, instantaneous
behaviour of therapists is driven by situational factors specific
to each individual client, making it difficult, for example, to
extract any clear cut heuristics that might inform
generalisable, autonomous social robot behaviour directly. The
resultant design guidelines therefore suggested that socially
assistive robots require “high-level” personalisation to each
user as well as the ability to adapt, in real time, to, e.g., the
performance of the user and other situational factors. This is one
of the key works that motivates our effort to therefore facilitate
expert-led, in situ robot teaching, to capture this sort of tacit social
intelligence.

A follow up publication by the same authors then comes under
category 2). Specifically, the authors provide more detail on their
focus group methodology, and how it reflects a mutual shaping
approach to social robot design, alongside a general guide in how
it might be applied to other domains (Winkle et al., 2019a). The
method combines elements of PD and UCD and utilises a
demonstration of robot capabilities to support mutual learning
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between the researchers and participants. To evidence how this
method supported mutual shaping in their work and why this was
beneficial, the authors identify specific project-related
considerations as well as new research directions that could
only be identified in conjunction with their domain expert
participants and also note that taking part in a focus group
significantly (positively) impacted on the acceptance of
participants of social robots.

Further, under category 2), Björling and Rose (2019) shared
PD methods that they used in the context of taking an overall
human-centred design approach to co-designing robots for
improved mental health with teens. They present three
method cases that cover novel and creative participatory
techniques such as research design, script-writing and
prototyping, and concluding with a set of PD principles for
guiding design work with vulnerable participants in a human-
centred domain. One of their methods revolved around inviting
teens to act as WoZ robot operators. Specifically, their setup had
one teen teleoperating a robot, whereas another teen recounted a
(pre-scripted) stressful experience. In the second experiment,
they utilised virtual reality (VR) such that one teen interacted,
in an immersive VR environment, with a robot avatar
teleoperated by a teen outside of that VR environment. From
this study, the authors gathered data about the way teens
collaborate and their perceptions of robot roles and
behaviours. To this end, they demonstrated the value in expert
(user) teleoperation of a proposed robot, not only to better
understand both the use case requirements and user needs but
also to generate exemplars of desirable autonomous robot
behaviour. Alves-Oliveira et al. (2017) also demonstrated a
similar use of puppeteering and role-play methods as part of a
co-design study with children.

In summary, the work to date has demonstrated how PD
methods can be used to study a proposed application domain in
an attempt to ensure that researchers thoroughly understand the
context of use and to elicit some expert knowledge for informing
robot design and automation. This goes some way to supporting a
mutual shaping and responsible robotics approach to social robot
development. However, there remains two key disconnects in
delivering truly end-to-end PD and mutual shaping in
development of an autonomous social robot. First, robot
automation is informed but not controlled or developed by
domain experts. Second, there is a disconnection between this
program definition and the real-world interaction requirements
and situational specificities that will likely be crucial to overall
robot success when deployed in real-world interaction.

2.2 Alternative Methods to Capture Domain
Expert Knowledge
One of the key assumptions of PD in the context of robotics
research is that the knowledge of the desired robot behaviour is
held by domain experts and needs to be translated into programs.
Typically, this translation is made by engineers, obtaining a
number of heuristics from the domain experts and
consequently automating the robot. Although widely applied
even in PD research, this method only partially delivers on the

promises of PD, because domains experts are used to inform
robot behaviours but still rely on external actors (the engineers) to
transform their intuition, knowledge, and expertise into actual
code. Furthermore, this process can lead to a number of
communication issues because members from different
communities have different ways of expressing needs and
desires. Nevertheless, there exist a number of alternative
solutions to capture domain expert knowledge that could
support a PD approach to robot automation.

2.2.1 End User Programming Tools
A first solution is to create tools to allow domain experts to create
robot behaviours themselves. The research on end user
development or end user programming explores tools to allow
domain experts or end users to create programs without requiring
coding knowledge. Typical applications are home automation,
application synchronisation (e.g., IFTTT or Microsoft Flow), or
video games development. In addition, end user programming
has seen large interest in robotics, for example, to create
autonomous robot behaviours for both industrial robots
(Paxton et al., 2017; Gao and Huang, 2019) and social robots
(Leonardi et al., 2019; Louie and Nejat, 2020). These authoring
tools are often developed by engineers and then provided to users
to create their own applications without relying on text-based
coding, for example, by using visual or block programming
(Huang and Cakmak, 2017), tangible interfaces (Porfirio et al.,
2021), or augmented reality (Cao et al., 2019).

However, whilst being more friendly for users, such methods
still suffer from two main drawbacks. First, the interface is often
developed by engineers without necessarily following principles
of PD. Second, these methods often see the programming
process as a discrete step leading to a static autonomous
behaviour with limited opportunity to update the robot
behaviour or little focus on testing and evaluating the created
behaviour in real interactions. More precisely, users of these
tools might not be the actual target of the application interaction
and would program robots outside of the real context of use,
forcing the aspiring developers to rely on their internal
simulation of how the interaction should happen. For
example, a shop owner could use an authoring tool to create
a welcoming behaviour for a social robot and test it on
themselves whilst developing the behaviour and then
deploying it on real clients with limited safeguards. In such
process, the developers have to use their best guess to figure out
how people might interact with the robot and often have issues
to infuse the robot with tacit knowledge, such as timing for
actions or proxemics. This disconnect can lead to suboptimal
robot behaviour as the robot will face edge cases in the real
world that the designer might not have anticipated.

2.2.2 Learning From Real-World Interaction(s)
Amethod to address this gap between an offline design phase and
the real world is to mimic the expert whilst they perform the
interaction. Using machine learning, systems can learn from the
experts how robots should behave. For example, Liu et al. (2016)
asked participants to role play an interaction between a
shopkeeper and a client and recorded data about this
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interaction (e.g., location or speech of participants). From these
recordings, Liu et al. learned a model of the shopkeeper,
transferred it to the robot, and evaluated its HRIs. Similarly,
Porfirio et al. (2019) recorded interaction traces between human
actors and formalised them into finite state machine to create a
robot behaviour. Whilst relying on simulated interactions, these
methods provide more opportunities to developers to explore
situations outside of their initial imagination.

One assumption of these methods is that robots should
replicate human behaviour. Consequently, such methods allow
the capture of implicit behaviours such as the timing and
idiosyncrasies of human interactions. However, real-world
interactions with robots might follow social norms different
from ones between humans only. Consequently, learning
directly from human-human interaction also presents
limitations.

WoZ is an interaction paradigm widely used in robotics
(Riek, 2012), whereby a robot is controlled by an expert deciding
on what actions the robot should execute and when. The main
advantage of this paradigm is to ensure that the robot behaviour
is, at all times, appropriate to the current interaction. For this
reason,WoZ has been extensively used in robot-assisted therapy
and exploratory studies to explore how humans react to robots.
Recent research has explored how this interaction can be used to
collect data from real HRI and learn an appropriate robot
behaviour. Knox et al. (2014) proposed the “Learning from
the Wizard” paradigm, whereby a robot would first be
controlled in a WoZ experiment used to acquire the
demonstrations and then machine learning would be applied
offline to define a policy. Sequeira et al. (2016) extended and
applied this Learning from Demonstration (LfD), with an
emphasis on the concept of “restricted-perception WoZ”, in
which the wizard only has access to the same input space as the
learning algorithm, thus reducing the problem of
correspondence between the state and action spaces used by
the wizard and the ones available to the robot controller. Both of
these works could support a PD approach to robot automation,
because they could be used to generate an autonomous robot
action policy based on data from (non-roboticist) domain
expert WoZ interactions in real-world environments.
Nevertheless, the typical WoZ puppeteering setup results in
an absence of interaction between the design/development team
and the robot, which prevents designers from having a realistic
mental model of the robot behaviour and does not allow for any
mutual shaping between the wizard, the robot, and the
contextual environment. Traditionally, LfD separates data
collecting and learning into distinct steps, limiting the
opportunity to know during the teleoperated data collection
process at what point “enough” training data has actually been
collected, because the system can only be evaluated once the
learning process is complete. Similarly, when using end user
programming methods, there is little opportunity to know how
the system would actually behave when deployed in the real
world. This lack of knowledge about the actual robot behaviour
implies that robots have to be deployed to interact in the real
world with limited guaranties or safeguards ensuring their
behaviours are actually efficient in the desired interaction.

2.2.3 Interactive Machine Learning
Interactive Machine Learning (IML) refers to a system learning
online whilst it is being used (Fails and Olsen, 2003; Amershi et al.,
2014). The premise of IML is to empower end users whilst reducing
the iteration time between subsequent improvements of a learning
system.Using IML to create robot behaviours through an interaction
between a designer and an autonomous agent allows for full
utilisation of the teaching skills of the expert. It has been shown
that humans are skilled teachers who can react to the current
performance of a learner and provide information specifically
relevant to them (Bloom, 1984). Similarly, the previous research
showed that this effect also exists, to a certain extent, when teaching
robots. Using Socially Guided Machine Learning (Thomaz and
Breazeal, 2008), a human teacher adapts their teaching strategy to
robot behaviour and thus helps it to learn better. If able to observe
(and correct) the autonomous behaviour of the robot, seeing the
result of the robot behaviour as it progresses, then the expert can
create a model of the knowledge, capabilities, and limitations of the
robot. This understanding of the robot reduces the risk of over-
trusting (both during training and/or autonomous operation) and
introduces the potential for expert evaluation to become part of the
verification and validation process.

3 A BLUEPRINT FOR END-TO-END
PARTICIPATORY DESIGN

We identify the following requirements to extend PD into an end-
to-end methodology that include the co-design of the automated
behaviour of the robot. Such a method needs to allow for the
following:

1) systematic observation and study of the use case environment
in which the robot is to ultimately be deployed;

2) inclusion and empowerment of relevant stakeholders (users
and domain experts) from the initial design phases, such that
the design and application of the robot/interaction scenario is
co-produced by researchers and stakeholders together;

3) (safe and responsible) evaluation of prototypes in the real-
world environment(s) into which the robot is eventually
intended to be deployed;

4) inclusion of relevant stakeholders in creation of autonomous
robot behaviours, which should utilise interaction data
collected in the real world;

5) two-way interaction between the domain expert “teacher” (e.g.,
a therapist) or designer and robot “learner” such that the
teacher can better understand the state of the robot/to what
extent learning “progress” is being made and hence adapt their
teaching appropriately/flag any significant design issues; and

6) inclusion of relevant stakeholders (e.g., parents of a child in
therapy) in (safe) evaluation of autonomous robot behaviours,
as they perform in the real world.

Requirements 1 and 2 can be addressed by the typical PD
methods discussed in Section 2.1.1, and requirements 3 and 6 can
be addressed by carefully designed “in-the-wild” studies. In our
work, we therefore look to specifically tackle requirements 4 and 5
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by demonstrating how robot automation can be approached as an
in situ, triadic interaction between domain expert teacher(s),
robot learner, and target end user(s). With LEADOR, we
showcase how this approach can be integrated into one
continuous, end-to-end PD process that satisfies all of the
above requirements.

Table 1 summarises the key outcomes of and some potential
tools for each stage of LEADOR. Figure 1 shows how these
steps compare to typical PD, as well as who (domain experts
and/or engineers) are involved at each stage. Each stage is
detailed in full below. Table 2 shows how these steps have been
derived from/were represented in our two foundational
studies.

3.1 Step 1: Problem Definition
As noted in Figure 1, Step 1 of our method aligns to best practice
use of PD as previously demonstrated in social robotics. The
purpose of this stage is to generate a thorough understanding of
the use context in which the robot is to be deployed and to invite

stakeholders to influence and shape the proposed application. It
would likely include observations, focus groups, and/or
interviews with a variety of stakeholders.

The focus group methodology presented in Winkle et al.
(2019a) is one appropriate method that could be used for
engaging with stakeholders at this stage because it facilitates
expert establishment of non-roboticists, broad discussion of
the application context (without presentation of a pre-defined
research agenda), participant reflection on the context of use “as
is”, and researcher-led sharing of technical expertise, followed by
detailed consideration and refinement of the research agenda
based on researchers and participants now being equal co-
designers.

3.2 Step 2: Interaction Design
Similarly to Step 1, Step 2 of our method also aligns to best
practice use of PD as previously demonstrated in social robotics.
The purpose of this stage is to define and refine the interaction
scenario(s) that the proposed robot will engage in and hence the

TABLE 1 | Key outcomes of and appropriate tools for each stage of LEADOR.

Outcomes Tools

1. Problem Definition Domain understanding Ethnographic studies, focus groups, brainstorming
2. Interaction Design Interaction scenario, robot selection/design Workshop, role-playing, low-tech prototyping
3. System Specification State-action space for the robot, teaching tools Brainstorming, behaviour prototyping
4. Technical

Implementation
Robot system (sensors and actions), teaching system (authoring tools or learning
algorithm)

Software development, laboratory studies, testing
workshops

5. Real-World Deployment Delivering on the application target, autonomous robot In situ teaching by expert

TABLE 2 | Overview of activities undertaken in the two case studies as exemplars for applying our generalised methodology. See Table 4 for a pictorial “storyboard” of this
process and the co-design activities undertaken for development of the robot fitness coach.

School-based
educational robot

Gym-based
robot fitness coach

Step 1 Decision by researchers based on experience to focus on learning food chain
around an educational game for children of age 8–10

Researchers identified the NHS C25K exercise programme based on research
goals (longitudinal, real-world HRI) but worked with a fitness instructor to
observe typical environment and refine problem definition

Step 2 Decision by researchers to focus on robot-user interaction, with expert only
providing robot commands and oversight of the robot behavior to ensure that
each action is validated by them. Goal is to evaluate the creation of an
autonomous robot

Decision in conjunction with the fitness instructor that the robot would lead
exercise sessions (in which he would minimise interaction with exercisers) but
that he would provide additional support (e.g., health advice, and stretching)
outside of these. Goal is to create and demonstrate an effective, real-world
SAR-based intervention via PD (as responsible robotics)

Step 3 Using SPARC (Senft et al., 2015) as interaction framework, robot state, and
action spaces defined by researchers. Teaching through a GUI on a tablet

Also using SPARC (Senft et al., 2015) the robot state and action spaces as well
as the teaching GUI were all co-designed with the fitness instructor

Step 4 Implementation of all the actions and learning algorithm. Prototype evaluation in
laboratory. Initial pilot study in schools for evaluating the game with the target
population and used as teacher training

Implementation of all the actions and learning algorithm. Fitness instructor
provided all dialogues for robot actions. Prototype evaluation was undertaken
in the laboratory, and in the final study, gym environment, final robot
placement, and system installation details were also decided in conjunction
with the fitness instructor

Step 5 Deployment in two local schools with more than 100 children over multiple
months. Between-subject evaluation with three conditions: a passive robot, a
supervised robot (during the teaching interaction) and an autonomous
unsupervised robot

Deployed in to the university gym for teaching and autonomous evaluation
through delivery of the C25K programme (27 sessions over 9–12 weeks) to 10
participants. Ran a total of 232 exercise sessions of which 151 were used for
teaching the IML system, 32 were used for evaluating the IML system when
allowed to run autonomously and 49 were used to test a heuristic-based
“control” condition (all testing was within-subject)
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functionalities/capabilities that it might require. The robot
platform should also be chosen at this stage. For simplicity,
here, we have equated robot platform choice with robot
platform design. Much current social robotics research utilises
off-the-shelf robot platforms (e.g., Pepper and NAO from
Softbank Robotics), but others focus on the design of new
and/or application-specific platforms. Either can be
appropriate for LEADOR as long as the choice/design is
participatory with stakeholders (for a good example of PD in
design of a novel robot, see the work of Alves-Oliveira et al. (2017)
on designing the YOLO robot).

Focusing then on more specific application of the robot and
the interaction(s) that it should engage in, the methods for PD
might include focus groups similarly as those in Step 1 but could
also include more novel and/or creative PD activities such as
script writing (Björling and Rose, 2019), role playing (including
also stakeholder teleoperation of the robot) (Björling and Rose,
2019; Alves-Oliveira et al., 2017), and accessible, “low-tech”
prototyping (Valencia et al., 2021).

Note that there is an important interaction design decision to
be made here regarding what final deployment of the robot “looks
like” in terms of long-term oversight by/presence of domain
expert(s) (those involved in its co-design or otherwise) and the
role those experts play with regard to the target user. This can be
reflected in the teaching interaction setup, specifically with regard
to the amount of interaction between the domain expert(s) and
target users (see Figure 2). For example, it was decided early on in
the design of fitness coach robot byWinkle et al. (2020) that there
was no intention to ever fully remove the expert presence from
the interaction environment. As an alternative, in the work of
Senft et al. (2019), the intention from the onset was to create a
fully autonomous and independent robot that interacted alone
with the target users. Such decisions regarding the role of domain
experts would ultimately emerge (explicitly or implicitly) in
conjunction with deciding the functionalities of the robot and
the further system specification undertaken in Step 3. However,
this long-term desired role of the domain expert(s) should be
made clear, explicitly, at this stage, such that it can be reflected in
the approach to program definition.

3.3 Step 3: System Specification
As shown in Figure 1, it is at this stage that our method begins to
diverge from the typical PD process, although we continue to
utilise PD methods. This step is concerned with co-design of
system specifities required to 1) deliver the interaction design
resulting from Step 2 and 2) facilitate expert-led teaching phase
on real-world deployment that is fundamental to our method (see
Step 5). In summary, the aim of this step is to co-design the action
space and input space of the robot and the tool(s) that are
required to facilitate the bi-directional teaching interaction
between the domain expert and the robot. There is also some
similarity here to the design process for a WoZ or teleoperated
system, which would also require design of the action space of the
robot and an interface for (non-roboticist) teleoperation of the
robot. The key difference here is the additional requirement to
specify the input space of the robot and the choice of teaching
tools for the move towards autonomy during Step 5.

3.4 Step 4: Technical Implementation
The main development effort for our method lies in producing
the full architecture and tools to allow domain experts to specify
autonomous robot behaviour. We note here that the technical
implementation required is likely to be greater than that required
for a typical WoZ setup and might not be simpler than heuristics-
based robot controller.

Four main components need to be developed during this
phase:

1) Set of high-level actions for the robot;
2) Set of sensory inputs that will be used to drive the future robot

behaviour;
3) A representation of the program which will encode

autonomous behaviour; and
4) Expert tools to specify the mapping between the sensory state

and the actions.

With our method, the program representation could take the
shape of a machine learning algorithm taking inputs from the
expert via the interface and learning a mapping between the
current state of the world when the action was selected and the
action itself (the approach taken in our foundational works).
Alternatively, the representation could allow the expert to encode
a program explicitly, for example, through state machines or
trigger-action programming, whilst allowing the expert to update
the program in real time and to control the robot actions to
ensure that they are constantly appropriate.

A typical automation system would replace the expert tools
with an actual definition of the behaviour making use of the
program representation to map sensors to actions and define fully
an autonomous behaviour. On the other end of the spectrum, a
WoZ setup might not need a representation of the program but
instead would rely on the interface to display relevant sensory
inputs to the wizard (if any) and allow them to select what action
to do.

3.5 Step 5: Real-World Deployment and
Teaching Phase
Undertaking robot automation (and evaluation) in-the-wild is a
key part of LEADOR. To satisfy requirements 5 and 6 as laid out
in the introduction, support a mutual shaping approach to robot
design, and ensure appropriate robot behaviour, the teaching
phase should adhere to the following:

1) It must be undertaken in situ, i.e., in the context of the final
context of use, and with the real target population.

2) It must utilise a domain expert teaching the robot as it delivers
on the application interaction.

3) The expert-robot interaction should be bi-directional, i.e., the
expert should be able to define and/or refine the autonomous
behaviour policy of the robot, whereas the robot informs the
expert about its status.

Requirement 1 ensures that the approach is ecologically valid
and that the information used by the expert for the automation
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are suited to the real challenges and idiosyncrasies of the desired
context of use.

Requirement 2 ensures that people with domain knowledge
can encode that knowledge in the robot. Furthermore, the
presence of the expert should be used to ensure that the robot
is expressing an appropriate behaviour at all times. As the
teaching happens in the real world, with the real users, there
is limited space for trial and error. The expert can be used as a
safeguard to ensure appropriate robot behaviour even in the
initial phases of the teaching.

Requirement 3 ensures that the expert can create a mental
model of the robot behaviour. This point is a key difference to
non-interactive teaching methods such as the ones based on
offline learning (e.g., Sequeira et al., 2016). With the feedback of
the robot on its policy (through suggestions or visual behaviour
representation), the expert can assess the (evolving) capabilities of
the robot and decide what inputs would further improve the
policy of the robot.

Finally, during this real-world deployment, if the robot is
ultimately expected to interact autonomously/unsupervised, then
the expert can use their mental model of the robot behaviour to
decide when enough teaching has been done and when the robot
is ready to interact autonomously. By relying on online teaching,
this decision does not have to be final because the expert could
seamlessly step back into the teacher position when the robot
interacts with sensitive populations or if the robot requires
additional refinement of its policy.

4 FOUNDATIONAL STUDIES

The LEADOR method is primarily derived from two
foundational studies made by the authors, which were
themselves informed by the previous experiences of authors
working with domain experts in the design of social robots.
The first one, presented in Senft et al. (2019), explores a study
with 75 children on how the teaching interaction could be used to
create an autonomous robot behaviour. As shown in Table 2, this
study did not employ PD, the authors (researchers in HRI) did
the early steps by themselves based on their previous related
experiences. The second one, presented in Winkle et al. (2020),
built on the first study by utilising the same teaching approach to
robot automation but incorporating that into an end-to-end PD
process to support mutual shaping. The end goal of each study
was also slightly different, as Senft et al. (2019) aimed to produce a
robot that would ultimately interact with users with little to no
further expert involvement. Winkle et al. (2020) also aimed to
produce an autonomous robot that would primarily interact 1:1
with users, but with no desire to remove the expert, who would
have their own interactions with the users, and/or provide
additional teaching to the robot should they deem it necessary.

4.1 Study 1: Evaluating the Teaching
Interaction
The goal of this first study was to evaluate if the teaching
interaction could be used to create autonomous social

behaviours (Senft et al., 2019). This study was designed by the
authors, who had experience designing robots for the application
domain but did not involve external stakeholders such as
teachers.

During the problem definition phase, researchers decided to
contextualize the work in robot tutoring for children and explore
questions such as how robots can provide appropriate comments
to children (both in term of context and time) to stimulate
learning. This work was based on experience and knowledge
from the researchers about educational robotics.

During the interaction design phase, researchers decided to
focus the application interaction around an educational game
where children could move animals on a screen and understand
food nets. This part included an initial prototype of the game. As
the goal was to explore how autonomous behaviours could be
created, the teacher was not involved in the game activity, and
only the robot was interacting with the child. The robot used was
a NAO robot from Softbank Robotics.

In the system specification, the state and action spaces of the
interaction were selected. Examples of state include game-related
component (e.g., distance between animal) and social dynamics
elements (e.g., timing since last action of each agents). The actions
of the robot were divided into five categories: encouragements,
congratulations, hints, drawing attention, and reminding rules.
The teacher-robot interaction used SPARC (Senft et al., 2015).

In the technical implementation phase, the learning algorithm
was developed, tested, and interfaced with the other elements of
the system. The teaching interface was also created in such a way
as to allow the teacher to select actions for the robot to execute
and receive suggestions from the robot. At this stage, initial
prototypes were tested in laboratory studies and schools.

In the real-world deployment, authors evaluated the system in
two different schools with 75 children. The study adopted a
between-participant design and explored three conditions: a
passive robot, a supervised robot (referring to the teaching
interaction), and an autonomous robot (where the teacher was
removed from the interaction and the learning algorithm
disabled).

Results from the study showed that the teaching interaction
allowed the teacher to provide demonstrations to the robot to
support learning in the real world. The teacher used the teaching
interaction to create a mental model of the robot behaviour.
When deployed to interact autonomously, the robot enacted a
policy presenting similarities with the one used by the teacher in
the teaching phase: the frequency of actions was similar and the
robot captured relation and timing between specific events and
actions (e.g., a congratulation action should normally be executed
around 2 s after an eating event from the actions of a child).
Overall, this study demonstrated that human can teach robot
social policy from in situ guidance.

4.2 Study 2: Teaching Interaction as
Participatory Design
The goal of this study was to use the teaching interaction
approach to facilitate creation of a fully expert-informed/
expert-in-the-loop autonomous socially assistive robot-based
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intervention for the real world. The fundamental activity to be
delivered by robot, the NHS C25K programme, was selected by
the researchers based on this research goal, but all study
implementation details were decided and designed in
conjunction with a domain expert (fitness instructor)
throughout. Given the end-to-end and constant expert
involvement for this study, there was seamless progression and
some overlap between the problem definition, interaction design,
and system specification phases, as we present them for
LEADOR. A number of co-design activities were undertaken
(over a total of six sessions totalling approximately 12.5 h), which
ultimately covered all of these key phases, sometimes in parallel,
allowing for iteration of the overall study design.

Problem definition was achieved by researchers working with
the fitness instructor to 1) understand how a programme like
C25K would be delivered by a (human) fitness instructor and 2)
explore the potential role a social robot might take in supporting
such an intervention. This involved the researchers visiting the
university gym and undertaking mock exercise sessions with the
instructor, and the instructor visiting the robotics laboratory to
see demonstrations of the proposed robot platform and a
presentation by the researchers on their previous works and
project goals. The robot used was a Pepper robot from
Softbank Robotics.

For the interaction design, the researchers and fitness
instructor agreed that exercise sessions would be led by the
robot and primarily represent robot-user interactions, with the
fitness instructor supervising from a distance and only interacting
to ensure safety (e.g., in the case of over exertion). As this study
also aimed to test (within-subject) the appropriateness of
resultant autonomous behaviours, it was decided to
purposefully leave the details of the role of the fitness
instructor somewhat ambiguous to exercising participants. The
instructor was not hidden away during the interaction, and it was
clear he was supervising the overall study, but exercisers were not
aware of the extent to which he was or was not engaging in
teaching interactions with the robot during sessions. As noted in
Section 3, deciding on what long-term deployment should “look
like” in terms of robot-user-expert interactions is a key design
requirement at this stage. For the robot fitness coach, we
imagined a “far future” scenario, where one of our robot
fitness coaches would be installed next to every treadmill on a
gym floor, supervised by one human fitness instructor. That
instructor would ensure the physical safety of exercisers and
still play a role in their motivation and engagement as human-
human interaction is known to do. This type of interaction with
one expert, multiple robots, and multiple target users is a
common goal in many assistive robot applications where some
tasks could be automated, but there is a desire to keep an expert
presence to, e.g., maintain important human-human interactions
and ensure user safety.

The system specification represented somewhat of a
“negotiation” between the researchers and the fitness
instructor, as he identified the kind of high level action and
inputs he felt the robot ought to have, and the researchers
identified how feasible that might be for technical
implementation. The state space consisted of static and

dynamic features that were designed to capture exerciser
engagement, task performance, and motivation/personality, all
identified by the fitness instructor as being relevant to his
decisions in undertaking fitness instruction himself and hence
teaching the robot how best to interact with a particular
participant. The action space was divided into two categories:
task actions and social supporting actions. The task actions were
fundamentally set by the C25K programme (i.e., when to run or
walk and for how long at a time). The social supporting actions
were then broken down into eight sub-categories covering time
reminders, social interaction, performance feedback, praise,
checking on the user, robot animation, and two proxemics-
related actions (leaning towards/away from the user).
Importantly, system specification for this study also included
co-designing the GUI that would facilitate the bi-directional
teaching interaction (also utilising SPARC, Senft et al., 2015)
between the robot and the fitness instructor with the fitness
instructor himself.

The technical implementation phase essentially mirrored
that of Study 1: the learning algorithm was developed, tested,
and interfaced with the other elements of the system. The
teaching interface was also finalised based on the co-design
activities described previously and similarly allowed the fitness
instructor to select actions for the robot and to respond to its
suggestions. Initial prototypes of both the robot and the GUI
were tested in the laboratory studies and the final gym
environment.

In the real-world deployment, researchers evaluated the
system in a university gym with 10 participants recruited to
undertake the 27-session C25K programme over a maximum of
12 weeks. The study adopted a within-subject design and
explored three conditions: a supervised robot (referring to the
teaching interaction), an autonomous robot (where the fitness
instructor was still in position but allowed all learner-suggested
actions to auto-execute), and a heuristic-based autonomous
robot; a “control” condition for comparing the “teaching
interaction as PD” approach to, representing a “next best”
alternative for generating expert-informed autonomous
behaviour.

Results from the study again demonstrated the feasibility of
SPARC and IML for generating autonomous socially assistive
robot behaviour suggested that the expert-robot teaching
interaction approach can have a positive impact on robot
acceptability (by the domain expert and targets users) and that
the teaching approach yields better autonomous behaviour that
expert informed heuristics as a “next best” alternative for expert-
informed autonomous behaviour creation.

4.3 Evidence of Mutual Shaping
Typical PD facilitates mutual shaping as it allows non-roboticist,
domain experts to shape research goals, design guidelines, and
evaluate robot prototypes, etc. Here, we reflect on observations of
mutual shaping effects in our foundational works, specifically
resulting from our teaching approach to robot automation.

During our first study, we observed evidences of mutual
shaping and the teacher creating a mental model of the robot.
For example, our teacher realised with experience that children
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tended have issues with some aspect of the game (i.e., what food a
dragonfly eats). Consequently, she changed her strategy to
provide additional examples and support for this aspect of the
game. Similarly, the teacher also found that the robot was not
initiating some actions often and consequently used these actions
more frequently towards the end of the teaching phase to ensure
that the robot would exhibit enough of these actions. This exactly
evidences the notion that human teachers can tailor their
teaching to the progress of a (robot) learner (Bloom, 1984;
Thomaz and Breazeal, 2008).

In the second study, we were able to demonstrate mutual
shaping in the way the fitness instructor used the robot differently
for different participants and/or at different stages of the C25K
programme. The longitudinal nature of this study, combined with
our approach in supplementing the diadic robot-user interactions
with expert-user interactions, meant that the fitness instructor got
to know exercise styles/needs of each user and could tailor the
behaviour of the robot accordingly. This resulted in the
autonomous robot similarly producing behaviour that varied
across participants. Similarly, as the programme progressed,
the fitness instructor could tailor the behaviour of the robot to
reflect the changing exercise demands (e.g., using fewer actions
when the periods of running were longer). The flexibility of our
approach was also demonstrated when, in response to this
increase in intensity, the fitness instructor requested that we
add a robot-led cool-down period to the end of each exercise
session. This was relatively simple to implement from a technical
perspective (an additional “walk” instruction at the end of each
session plan) but represented a new part of the session for which
there existed no previous training data. As we made this change
within the teaching phase (before the switch to autonomous
operation), the instructor was able to address this, such that
the robot was able to successfully and appropriately support this
new cool-down phase when running autonomously.

We also saw an interesting, emergent synergy in the way that
the fitness instructor utilised and worked alongside the robot
coach. Towards the end of the study, as exercise sessions
became more demanding, the fitness instructor took more
time at the end of each session to undertake stretching
exercises with each participant. This leads to small amounts
of overlap between each participant, at which point the fitness
instructor would start the next participant warming up with the
robot, whilst he finished stretching with the previous
participant. We find this to be compelling evidence of the
way domain experts will change their practice and/or the
way they utilise technological tools deployed into their
workplace, particularly when they can be confident in their
expectations of how that technology will perform, as is
particularly fostered by our approach.

4.4 Interactive Machine Learning for the
Teaching Interaction: Opportunities and
Limitations
As noted previously, both of our foundational studies utilised
IML via the SPARC paradigm to facilitate the teaching
interaction. From a technical perspective, our foundational

studies demonstrate the feasibility and relative effectiveness (in
terms of teaching time) of this approach. Fundamentally,
LEADOR is agnostic with regard to the specific computational
approach to facilitating the teaching interaction, but we find IML
to be a particularly compelling solution, in line with the overall
aims of the method, as it makes for an intuitive bi-directional
teaching interaction for the domain expert. Specifically, through
one single interface, they can see what the robot intends to do
(and potentially why) before that action is executed, improving
their understanding of the learning progress of the robot, and
instantiate teaching exemplars in real time, informed by that
understanding as well as the instantaneous requirements of the
application task.

However, here, we draw attention to one key limitation
regarding expert-robot interactions and assessment when
using IML. An important element of mutual shaping not
considered here is if/how/to what extent the suggestions
made by the learning robots may have influenced the domain
experts. For example, had the learning robots not been making
suggestions, such that the robot was entirely controlled/
teleoperated by the experts, would the action distribution and
timing of actions remained the same? Further, if the experts did
not have the ability to actively reject suggestions (indicating that
the learner was not producing appropriate robot behaviour),
then would they still have post hoc identified those actions as
being inappropriate?

This is particularly interesting given the high number of suggested
actions still being rejected at the end of the training phase, in both of
our foundational studies, immediately followed by seemingly
appropriate robot behaviour that was positively evaluated by the
experts themselves during autonomous operation. Success of our
approach inherently assumes that the domain expert/system
“teacher” would provide a “correct” and fairly consistent response;
i.e., that they 1) can correctly assess the quality of each action
suggested by the robot and make an informed about whether this
action should be executed and 2) are always able to ensure that
required robot actions are executed in a timely fashion.With SPARC,
these robot suggestions are themainmeans to help the expert create a
mental model of the robot behaviour. Consequently, whilst our
results demonstrate that the IML does fundamentally “work” for
automating robot behaviour and that our domain experts did
construct a mental model of the behaviour of the robots, there
remains an open question regarding how the robot could improve the
transparency of its behaviour to actively support mental model
creation for the teacher.

5 DISCUSSION

5.1 A Flexible and Effective Method for
Automating Social Robots
We suggest that LEADOR can be used to design robots for a variety
of interaction settings, in terms of the required autonomy and the
nature of expert-robot-user interactions long-term. We propose two
axes to describe the different types of interaction that might be
desired, based on the application (Figure 3). A first axis describes the
extent to which the domain expert(s) and user(s) are expected to
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interact long term, as a supplement to the robot-user interaction(s).
The second axis reflects the autonomy of the robot, from full
supervision (teleoperation) to full autonomy. These two axes are
independent as, for example, cases exist where the expert might be
continuously interacting with the target users, whilst continuing or
not to supervise and/or improve the autonomous behaviour of the
robot long term. In addition, these axes do not represent a discrete
space, as the teaching interaction element of LEADOR specifically
makes it possible to move along either axis at any point during real-
world deployment.

The robots developed in our foundational studies demonstrate
this flexibility and exist in slightly different spaces on these axes.
The educational robot by Senft et al. (2019) is an example of an
autonomous robot operating without the expert, and the teaching
interaction represented a typical Wizard-of-Oz setup, i.e., there
was no interaction. The robot fitness coach byWinkle et al. (2020)
is closer to an autonomous robot operating side by side with the
domain expert, and the teaching interaction utilised some
interactions between the expert and the users (although this
was undertaken outside of direct teleoperation).

The two foundational studies also demonstrate and evaluate
different, complimentary elements of the effectiveness of
LEADOR for designing social robots. More specifically, Senft
et al. (2019) fundamentally demonstrated the practical feasibility
of the teaching interaction for creating appropriate autonomous
behaviour. After a teaching phase with 25 children, the robot was
deployed autonomously and without expert supervision. It
displayed a similar policy to when it was supervised, for
example, capturing connections between some events and
actions with appropriate timing. However, it was not using a

PD approach from the onset, if LEADOR had been applied, then
teachers would have been involved more thoroughly in the game
design and the interface development.

WhilstWinkle et al. (2020) again demonstrated similarity between
supervised and autonomous behaviour, this work also specifically
demonstrated that the teaching interaction resulted in a better
autonomous robot than an expert-informed heuristic based
alternative. In addition, the work specifically explored to what
extent the overall LEADOR could support mutual shaping and
influence robot acceptability. To this end, as shown in Figure 4,
the significant co-design work undertaken by the domain expert
seems likely to have contributed to the high level of ownership he
seemed to feel towards the system, and the way in which he
conceptualised the robot, throughout, as an independent agentic
colleague he was training. When asked whether he perceived Pepper
as more of a tool or a colleague, the fitness instructor commented “It
was definitely more of a colleague than a tool [. . .] I like to think her
maybe early bugs or quirks definitely gave her a bit more of a
personality that maybe I held on to”. In addition, when evaluating
the performance of the robot, the instructor also reflected on the
difference between how the robot might behave in comparison to
himself: “Pepper’s suggestions might not be what *I* would say in that
exact same situation; however, it does not mean that what was said or
suggested was wrong”. This gives credibility to the suggestion that
LEADOR can be used to create robots that do not simply attempt to
imitate or replicate the domain expert directly but instead play a
distinct but complimentary role alongside that domain expert in
delivering an assistive intervention.

The feedback of the fitness instructor also suggested that the use
of the robot did not prevent him from still developing a working
relationship with the exercisers or from having a positive impact on
their motivation, as he “did care about their progress and their
health”. This appears to be true on the side of the exerciser, too,
because their evaluations suggested they perceived the fitness
instructor and the robot as playing distinct but complimentary
roles in their undertaking of and engagement with the prescribed
exercise programme: “Pepper was a good instructor and positively
motivated my runs. The role of Don [the fitness instructor] assisted
this in that having him there meant I could follow the robot’s
instructions safe in the knowledge that there was some support
there should anything go wrong!”

In summary, the fitness coach robot example therefore
demonstrates the end-to-end PD element of LEADOR, how
this seemingly contributes to robot acceptability by both
domain experts and target users, and can successfully facilitate
meaningful triadic (domain expert-robot-user) interactions in
human-centred domains where there might be a desire to reduce
domain expert workload without ever removing them from the
interaction completely. As such, Winkle et al. (2020) might be
seen as a first attempt to fully implement LEADOR ahead of
refinement for presentation as a generalisable methodology.

5.2 Supporting “Responsible by Design”
Robotics
The Foundation for Responsible Robotics (FRR) defines responsible
robotics as “the responsible design, development, use,

FIGURE 3 | Two-dimensional representation for visualising the different
types of long-term expert-robot-user interactions that a social robot might be
designed for, all of which LEADOR can facilitate. Note that this is not a discrete
space, and LEADOR specifically makes it possible to move along these
axes upon real-world deployment. People vector created by studiogstock -
www.freepik.com.
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implementation, and regulation of robotics in society”1. Concerning
research and development, the FRR demonstrates a significant
overlap with the goals of mutual shaping and, hence, our goals in
proposing LEADOR: “Responsible robotics starts before the robot
has been constructed. Ethical decision-making begins in the R&D
phase. This includes the kind of research practices that are employed,
ensuring that a diverse set of viewpoints are represented in the
development of the technology, using methods of development and
production that are sustainable, and taking into consideration the
impact that the technology will have on all stakeholders to mitigate
harm preemptively rather than after the fact.”

A significant number of attempts to more formally define the
ethical design and development have taken the form of published
principles of AI and robotics 2, many of which similarly identify the
importance of engaging (non-roboticist) users and domain experts in
robot design and evaluation processes. Arguably, one of the more
practical resources is the British standard BS8611-2016 Guide to the
Ethical Design and Application of Robots and Robotic Systems (BSI,
2016), which explicitly identifies ethical risks posed by robots,
mitigating strategies and suggested methods for verification and
validation. Notably, the standard suggests that a number of the
identified ethical hazards might be verified and validated through
expert guidance and user validation. Through LEADOR, such

guidance and validation is inherently “built-in” to the design and
development process. On the basis of this, we posit that, in supporting
a mutual shaping approach to robot development, and specifically by
“opening up” robot automation to non-roboticists (such that they can
contribute to robot design and automation but also better understand
robot capabilities and limitations), LEADOR also represents a
concrete implementation of a responsible robotics approach and
offers a practical way to create social robots with expert guidance
and user validation being inherent to the development process.
Consequently, whilst the program is evaluated by its designers,
these designers are the domain experts and thus the best persons
to assess whether the robot behaviour is successful or not.

5.3 Future Development
5.3.1 Inclusion of Application Targets in Design,
Automation, and Evaluation
A key limitation in both of our foundational works was the lack of
including target users during the design processes. This is partly
because both of these works are concerned in the development of
robots that would be assisting the domain expert practitioners (i.e., a
teaching assistant and a fitness instructor), and so, it made sense to
focus on working with such experts as co-designers of the system.
However, as discussed in the introduction, inclusion of all
stakeholders is a key aim of mutual shaping approaches to robot
design/development.

A desire to include target users in the design and evaluation of the
robot would raise the interesting question of how target users, who

FIGURE 4 | Pictorial representations of the participatory design activities and final teaching setup undertaken in application of our method to the robot fitness coach
by Winkle et al. (2020), as per Table 2 with reference to Steps 1–5 of our method as per Figure 1.

1https://responsiblerobotics.org/
2http://alanwinfield.blogspot.com/2019/04/an-updated-round-up-of-ethical.html
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are expecting to beneficiaries of the interaction, could design the
robot. In a number of situations where the robot is expected to
provide support or additional knowledge, including target users in the
co-design of the action state, for example, could be either complex or
negate the perception of the robot as an agent. This also overlaps with
discussions in contemporary PD works regarding the “legitimacy” of
different PD participants and specifically with the idea of participants
learning from the researchers as a pre-requisite for becoming such
(Ehn, 2008). In the first instance, however, as an obvious extension to
LEADOR, target users could certainly be included in preliminary
testing of those actions designed with a domain expert.

5.3.2 Alternative Teaching/Learning Interactions
The method presented in this paper focused on a teaching phase
where a domain expert teaches the robot how to interact with a target
user, with the target user unaware of the extent to which the expert is
involved in the robot behaviour. It abstracts away the type of learning
used as each situation has different constraints and requires variations
on the teaching interaction and learning algorithm. Consequently,
LEADOR might not be applicable directly to every situation. Future
work should explore the applicability of LEADOR with other
interaction designs not explored in our foundational studies and
explore combination with other methodologies to extend this
applicability whilst maintaining the key tenets regarding expert
involvement and in situ robot design, teaching, and testing.

Whilst situations such as therapy or education require the
expert and target user to be different persons, a large number of
other domains relax this constraint. For example, an elderly at
home could have a robot carer and teach the robot how to support
them in their daily activity. In this case, the target user is the
person knowing best their needs and as such would be the perfect
expert. LEADOR would be highly applicable to this situation as
the target users could be involved early in the design process, help
specify the state and action spaces and tools that they would need,
and finally teach in situ their robot how to interact whilst
benefiting from the interaction themselves.

Alternatively, building on the previously noted limitation
regarding target user inclusion, applications where the robot is to
playmore of a peer role, rather than an expert authoritymight be best
achieved by having one target user teach the robot how to interact
with another target user. This might be particularly appropriate for,
e.g., allowing teenagers to automate companion robots that support
themental health of teenagers (Björling and Rose, 2019). This raises a
number of interesting research questions regarding how the teaching
interaction might impact on the teacher’s (self-)understanding of the
application domain, representing another aspect of mutual shaping
that could be considered in more detail in future works.

An alternative, exciting teaching interaction is having the teaching
phase being open and transparent to the target user. Teaching robots
could be similar to how adult teach children to interact, by providing
explicit feedback guideline openly in the social environment. This
situation raises a number of open questions such as to what extent
having the expert providing feedback to the robot could impact the
ascribed agency of the robot or how could the target user be included
in telling the robot how best to help them. We have good evidence
from our work (Winkle et al., 2020) that such open interaction would
not “break the illusion” of the robot being an independent (credible)

social agent. Further, previous work suggests that robot users value
the human developers “behind” the robot, because it is their “genuine
intentions” that underlie the social and assistive behaviours of robot
(Winkle et al., 2019b). In sensitive application environments such as
the previously mentioned teenage mental health support, such
openness may indeed be crucial to robot effectiveness and
acceptability (Björling et al., 2020).

However, these alternative teacher/learner configurations
need to account for the existing practical constraints of using
reinforcement learning (RL) in human-robot interaction. Indeed,
in the context of HRI, RL faces two main issues: 1) the large
number of data points required to improve the policy (which have
to come from real-world interaction) and 2) the risks posed by the
RL “exploration” in the real HRI, where the RL algorithm might
suggest actions that are inappropriate in a given context.

In our two studies, the domain expert also acted as a “gate keeper”
for the suggestions of the robot and as a general safety net, able to
intervene if the autonomous robot behaviour was inappropriate.
Likewise, when applying LEADOR in other scenarios, adequate
safeguarding needs to be in place, until further research on RL
can provide adequate safety guarantees. Alternatively, the expert
could serve early on to help create an initial safe and effective
policy by providing a high amount of guidance. Then, in the
second phase, the expert could revert only to the “gate keeper”
role, working as a safeguard to ensure that the policy of the robot has a
minimum efficacy whilst letting the robot self-improve. Finally, when
the robot reaches a sufficient expertise in the interaction, it could be
left to fine-tune its policy with less supervision.

6 CONCLUSION

In this article, we present LEADOR, a method for end-to-end PD
of autonomous social robots that supports a mutual shaping
approach to social robotics. This general method is derived from
two independent foundational studies and represents a
culmination of the experiences of authors working with
domain experts in the development of autonomous socially
assistive robots. We describe the activities undertaken in those
studies to demonstrate how the method has been derived and
give tangible examples of how it might be applied. Together, we
suggest that these foundational studies also demonstrate both the
feasibility and the value of the approach, because both resulted in
acceptable, autonomous, and effective socially assistive robots
successfully utilised in complex real-world environments.

The first key contribution of LEADOR is to make robot
automation participatory, such that non-roboticist, domain experts
can contribute directly to generating autonomous robot behaviours.
This particularity compliments more typical use of PD, e.g.,
generating the initial robot design guidelines or evaluation robot
prototypes. We achieve this expert-led automation by utilising a
teaching interaction, whereby the domain expert(s) can directly define
and refine the autonomous behaviour of the robot through a teaching
interface. Both of our foundational studies utilised IML and the
SPARC paradigm (Senft et al., 2015), which we suggest is particularly
well suited to the overall method goals; therefore, we particularly
reflect on this approach and its benefits, challenges, and limitations.
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However, whilst we refer to this as a teaching interaction, because the
domain expert is “teaching” the robot how to behave, our method is
agnostic as to the specific technical approach taken (e.g., machine
learning and authoring) to facilitate it.

The second key contribution of our LEADOR is to facilitate a
mutual shaping approach throughout robot development. This is
achieved, first, by the increased domain expert participation in robot
automation as described above. In addition, however, our
integration of the teaching interaction into real-world robot
deployment means that this automation of robot behaviour can
actually be informed by and reflect the complex and nuanced
realities of the real-world context, capturing the tacit and
intuitive responses of the expert to real-world social dynamics.
Given that teaching can be re-convened at any time, themethod also
facilitates the updating of robot behaviours in response to these
evolving dynamics or new emerging dynamics, i.e., observation of
mutual shaping effects. More generally, the in situ robot deployment
and expert teaching role maximise the opportunity to identify and
understand suchmutual shaping effects to better evaluate the overall
impact and efficacy of the robot for the proposed application.

In facilitating end-to-end PD and mutual shaping, we also
suggest that our method inherently supports responsible robotics,
by design. Specifically, it allows for a diverse set of viewpoints to
be represented in the development of the technology and for
preemptive consideration of the impact that technology will have
on stakeholders. Finally, on a practical level, we also suggest our
method can better facilitate multi-disciplinary working because it
systematically combines PD and technical development such that
non-roboticist researchers and stakeholders are no longer
excluded from any stage of the development process.

In summary, we suggest that LEADOR is an all-around effective
approach for creating socially intelligent robots, as practical as it is
responsible in facilitating the creation of expert-informed, intuitive
social behaviours. We identify a number of areas for potential future
development, which we hope will be of interest to other roboticists in
refining the method further and working further towards
democratisation of robot design and development.
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