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Abstract: Structurama is a program for inferring population structure. Specifically, the program calculates the posterior probability of 
assigning individuals to different populations. The program takes as input a file containing the allelic information at some number of 
loci sampled from a collection of individuals. After reading a data file into computer memory, Structurama uses a Gibbs algorithm to 
sample assignments of individuals to populations. The program implements four different models: The number of populations can be 
considered fixed or a random variable with a Dirichlet process prior; moreover, the genotypes of the individuals in the analysis can be 
considered to come from a single population (no admixture) or as coming from several different populations (admixture). The output 
is a file of partitions of individuals to populations that were sampled by the Markov chain Monte Carlo algorithm. The partitions are 
sampled in proportion to their posterior probabilities. The program implements a number of ways to summarize the sampled partitions, 
including calculation of the ‘mean’ partition—a partition of the individuals to populations that minimizes the squared distance to the 
sampled partitions.
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Introduction
Natural populations of organisms often exhibit some 
degree of population subdivision. Identifying this 
population structure is important for several reasons. 
Practically speaking, undetected population structure 
can adversely affect statistical tests for the pres-
ence of natural selection1 or of genetic association.2 
Population structure is also known to affect the evo-
lutionary dynamics of alleles in populations; under-
standing patterns of population subdivision, then, is 
often a first step in learning about the evolutionary 
forces affecting a species.

Identifying population structure is a difficult 
problem that has motivated a variety of statisti-
cal and computational approaches. Here, we focus 
only on Bayesian methods for inferring population 
structure.3–8 Pritchard et  al8 proposed a widely-used 
Bayesian method for inferring population structure. 
The simplest variant of the Pritchard et  al8 method 
assumes a fixed number of populations, K, and a 
Dirichlet prior probability distribution on the allele 
frequencies for each population. The method allows 
one to assign individuals to populations by calculating 
the posterior probability that an individual is assigned 
to each of the K populations.

Like many of the other methods that have been 
proposed, the Bayesian one proposed by Pritchard 
et  al8 assumes a fixed number of populations. 
Determining the correct number of populations for 
a particular set of observations is itself a difficult 
problem. With some reluctance, Pritchard et al8 sug-
gested determining the number of populations by 
approximating the marginal likelihoods of the data 
when the number of populations varies. In short, 
one performs repeated analyses with different num-
bers of populations; the number of populations that 
results in the maximum marginal likelihood for the 
data is chosen as the optimal value for the analysis. 
In a simulation study, Evanno et al9 found that the 
method based upon marginal likelihoods performs 
poorly. (The poor performance may be related to the 
instability of the harmonic mean estimator of the 
marginal likelihood; see.10)

More recently, Pella and Masuda7 proposed a 
Bayesian method for determining population struc-
ture in which the number of populations is a random 
variable. Structurama implements the methods of 

Pritchard et  al8 and Pella and Masuda;7 also see.11 
The program also implements a hierarchical variant of 
the Dirichlet Process prior model.12 We use this model 
to account for admixture when the number of popu-
lations is considered a random variable. Structurama 
also implements a novel method for summarizing the 
results of a Bayesian analysis of population structure 
using the mean partition.

Approach
Pella and Masuda7 assume that the assignment of 
individuals to populations and the number of pop-
ulations follow a Dirichlet process prior.13,14 Like 
Pritchard et  al8 Pella and Masuda7 assume Hardy-
Weinberg equilibirum of allele frequencies within 
a population, linkage equilibrium of the loci, and a 
Dirichlet prior probability distribution for the allele 
frequencies within a population. Their application 
of a Dirichlet process prior to the problem, however, 
is original. The Dirichlet process prior has been 
described extensively elsewhere,13–15 and effective 
Markov chain Monte Carlo methods for sampling 
under this model have been described by Neal.15 
Here, we will provide an intuitive explanation of the 
Dirichlet process prior, which is sometimes referred 
to as the ‘Chinese Restaurant Table Process’.16,17 
One imagines a (presumably very large) Chinese 
restaurant with a countably infinite number of tables. 
Patrons enter the restaurant one at a time (there are a 
total of n patrons that will enter the restuarant). The 
first patron enters and sits at some table (this with 
probability one). The number of occupied tables is 
now K = 1. The next patron can either sit at the same 
table as the first or sit at a new table. This patron sits 
at the same table as the first person with probability 
1/(1 + α) or at an unoccupied table with probability 
α/(1 + α). If the patron sits at an unoccupied table, 
the number of occupied tables will increase by one, 
and K = 2. The process continues, with the kth patron 
that enters the restaurant sitting at table i, which 
is already occupied by ηi people, with probability  
ηi /(k + α) or at an unoccupied table with probability 
α/(k + α). 

Under the Dirichlet process prior, one can calculate 
the probability of a particular configuration of patrons 
at tables, and importantly, this probability does not 
depend upon the order in which the patrons enter 
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the restaurant. The joint probability of the assignment 
of individuals to tables and the number tables is
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The parameter α determines the tendency of patrons 
to sit at the same table. If α is small, then patrons are 
more likely to sit at the same table. In fact, the prob-
ability that patron i and patron j find themselves sit-
ting at the same table is
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Finally, the probability that a total of K tables are 
occupied by patrons is
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where naK is the absolute value of the Stirling number 
of the first kind.

In the context of determining population struc-
ture, populations are equivalent to the ‘tables’ of the 
Chinese restaurant example. Moreover, all of the 
individuals in a particular population share a common 
set of allele frequencies. These allele frequencies are 
drawn from a flat Dirichlet prior probability distri-
bution. (It is unfortunate that ‘Dirichlet’ is used to 
name two very different probability distributions: the 
Dirichlet probability distribution on allele frequen-
cies and the Dirichlet process prior describing how 
individuals are grouped into populations.)

We also implemented a hierarchical version of 
the Dirichlet process prior model12 that allows us to 
accommodate admixture while treating the number 
of populations as a random variable. The hierarchi-
cal Dirichlet process prior has not been applied to 
the problem of assigning individuals to populations. 
Under the hierarchical Dirichlet process prior, there 
are n restaurants—one for each individual—and the 
alleles for the ith individual are only seated at tables 
in the ith restaurant. The tables are then assigned 
to different populations, which themselves have an 
independent DPP model. [Teh et al12 describe this as 
the ‘Chinese restaurant franchise’, with the franchise 
allowing the sharing of data elements across groups.] 

An individual with no admixture would have the 
alleles assigned to only one table in its restaurant, 
whereas an admixed individual would have its alleles 
assigned to more than one restaurant table, and these 
tables would be assigned to multiple populations in 
the franchise.

We consider the assignment of individuals to pop-
ulations to be a partition, where a partition is a divi-
sion of a set into nonempty and disjoint sets which 
completely cover the set. Structurama implements 
Algorithm 3 of Neal15 to sample partitions using a 
Gibbs sampling method when there is no admixture. 
We use a similar algorithm, described by Teh et al12 
for performing MCMC under the hierarchical Dirich-
let procoess model (for a model with admixture). 
Partitions of individuals among populations are 
sampled in proportion to their posterior probabilities. 
The end result is a file with sampled partitions. Part 
of a sample of n = 10 individuals among populations 
might look like the following:

MCMC cycle Individuals
1 2 3 4 5 6 7 8 9 10

1 1 1 2 1 3 3 1 2 2 2
2 1 1 2 1 3 3 1 1 2 2
3 1 2 1 1 3 3 1 2 2 2
4 1 1 2 1 1 1 1 1 1 2
5 1 2 2 1 1 1 1 2 1 2

where partitions are labeled according to the restricted 
growth function notation of Stanton and White.18 The 
first sample taken from the Markov chain has three 
populations, with individuals 1, 2, 4, and 7  grouped 
together into one population, individuals 3, 8, 9, 
and 10  grouped together into a second population, 
and individuals 5 and 6 grouped together into a third 
population.

Although the meaning of any single partition 
is unambiguous, it can be difficult to describe fea-
tures in common among a set of partitions. How can 
one summarize features in common for a collec-
tion of partitions? One approach is simply to assign 
each population an index in computer memory. 
Instead of reporting the restricted growth func-
tion notation for a partition, one simply reports the 
index for each individual. The problem with this 
approach is that if the MCMC works properly, the 
labels should switch. That is, the MCMC algorithm 
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should visit the following two partitions equally 
often (they imply equivalent groupings of indi-
viduals into populations): (1,1,1,1,1,2,2,2,2,2) and 
(2,2,2,2,2,1,1,1,1,1). When the number of populations 
is fixed, this problem is more theoretical than practi-
cal because MCMC fails to visit equivalent labelings 
of the partitions. However, when the number of pop-
ulations is a random variable, it is no longer suficient 
to use an arbitrary index for populations; the mean-
ing of an index can change over the course of the 
Markov chain. Structurama summarizes the results 
on partitions using a number of methods. Perhaps 
the most notable is the use of the mean partition. 
We define the mean partition as the partition of indi-
viduals to populations which minimizes the sum of 
the squared distances to the sampled partitions. We 
use Gusfield’s19 distance on partitions. The partition 
distance is the minimum number of individuals that 
need to be removed from two partitions to make the 
induced partitions identical. Structurama also calcu-
lates the posterior probability of grouping each of 
the 2

n( )  pairs of individuals together into the same 
population.

Program Details
Structurama takes as input a text file containing the 
allelic information for the sampled loci for each 
individual. The file format is a structured one, in the 
style of the Nexus format used by many phylogeny 
programs.20 The following illustrates the file format 
for a study of impala.21,22

Note that this input file has n  =  216  individuals 
each of which has L  =  8 loci. The allele labels are 
arbitrary.

After the data has been read into computer mem-
ory (using the execute command), the user specifies 
the details of the model using the model command. 
Here the user has four choices:

model numpops=,number. admixture=no
model numpops=,number. admixture=yes
model numpops=rv admixture=no
model numpops=rv admixture=yes
The first two commands specify the models 

described by Pritchard et al.8 The third model speci-
fies the Dirichlet process prior model without admix-
ture described by Pella and Masuda7 and Huelsenbeck 
and Andolfatto.11 The final model is unique to 
Structurama and specifies the hierarchical Dirichlet 
process prior model.12 The user also can specify a 
hierarchical prior for the parameters of the Dirichlet 
process model.

Once the user has specified the model, the 
Markov chain Monte Carlo analysis is performed 
using the mcmc command. The MCMC algorithm 
samples partitions in proportion to their posterior 
probabilities. The sampled partitions are saved to 
a file in the restricted growth function notation for 
partitions.18 The user can summarize the results of 
the MCMC analysis using one of several commands. 
The posterior probabilities of individuals being 
assigned to the same population are obtained using 

#NEXUS
begin data;
dimensions nind=216 nloci=8;
info
ka117 (177,183) (122,124) (71,72) (61,61) (77,78) (54,62) (148,150) (105,107),
ka118 (181,185) (124,126) (72,72) (61,61) (77,78) (58,62) (146,146) (105,105),
ka119 (181,181) (126,128) (72,72) (60,61) (79,79) (57,62) (148,162) (105,105),
.
.
.
sa359 (179,187) (128,128) (73,73) (61,61) (80,80) (59,59) (140,140) (106,107),
sa360 (?, ?) (128,132) (72,73) (61,61) (?, ?) (57,60) (140,140) (108,108),
sa1077 (179,187) (?, ?) (72,73) (61,61) (80,81) (56,57) (140,146) (107,107)
;
end;
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the showtogetherness command. The posterior 
probability distribution for the number of popu-
lations is obtained using the shownumpops com-
mand. Finally, the mean partition is obtained using 
the showmeanpart command.

Program Availability
Structurama is available for download from www.
structurama.org.
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