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Abstract: Research on the neurobiology of cancer, which lies at the border of neuroscience and
oncology, has elucidated the mechanisms and pathways that enable the nervous system to modulate
processes associated with cancer initiation and progression. This research has also shown that
several drugs which modulate interactions between the nervous system and the tumor micro- and
macroenvironments significantly reduced the progression of cancer in animal models. Encouraging
results were also provided by prospective clinical trials investigating the effect of drugs that reduce
adrenergic signaling on the course of cancer in oncological patients. Moreover, it has been shown
that reducing adrenergic signaling might also reduce the incidence of cancer in animal models, as
well as in humans. However, even if many experimental and clinical findings have confirmed the
preventive and therapeutic potential of drugs that reduce the stimulatory effect of the nervous system
on processes related to cancer initiation and progression, several questions remain unanswered.
Therefore, the aim of this review is to critically evaluate the efficiency of these drugs and to discuss
questions that need to be answered before their introduction into conventional cancer treatment
and prevention.

Keywords: β-blockers; adrenergic; antibodies against nerve growth factor; aspirin; cancer; electro-
ceuticals; local anesthetics; metformin; neurobiology of cancer; propranolol

1. Introduction

Data accumulated in the last few decades have clearly shown that the nervous system
plays a significant role in cancer initiation and progression. These data are based on
combined neuroscientific and oncological research that has created the basis for a new
scientific concept, the so-called neurobiology of cancer [1]. This research elucidates the
mechanisms and pathways participating in interactions between the nervous system
and cancer.

Experimental and clinical studies have shown that drugs that modulate the transmis-
sion of signals between the nervous system and the tumor micro- and macroenvironments
efficiently suppress cancer initiation and progression. These data indicate that pharma-
cological approaches based on findings of the neurobiology of cancer might be utilized
in the treatment of cancer patients as well as in cancer prevention for individuals with
an increased cancer risk. However, there are several questions that need to be answered
before introducing these new treatments into oncology. The following sections are focused
on drugs that are approved for the treatment of non-cancerous diseases, as well as exper-
imental drugs, that, via modulation of nervous system-related signaling and functions,
could affect carcinogenesis and cancer growth.

2. Propranolol

An important role in modulating carcinogenesis and cancer progression is played by
the autonomic division of the nervous system, especially the sympathoadrenal system [2,3].
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The sympathoadrenal system consists of sympathetic nerves releasing norepinephrine into
innervated tissues and the adrenal medulla, releasing into the bloodstream epinephrine and,
in lesser amounts, norepinephrine [4]. Epinephrine and norepinephrine exert their effects
via binding on adrenergic receptors expressed by target cells. These receptors are divided
into α and β types and further subdivided into several subtypes [5]. Sympathoadrenal
system signaling mediated via the β2 subtype of adrenergic receptors plays a central
role in processes related to cancer development and progression [2,6]. However, it is
necessary to note that activation of other subtypes of α and β adrenergic receptors might
also affect cancer [7–12]. Epinephrine and norepinephrine might affect cancer initiation
and progression via activation of one or more of the intracytoplasmic signaling cascades
implicated in cancer, such as Ras/MAPK, PI3K/Akt, and JAK/STAT [2,13].

It has been shown that β-adrenergic signaling affects DNA mutations and repair
in animal models of cancer and in in vitro experiments on human cancer cells [14–17].
It has also been shown to activate oncogene-related signaling [18–20], sensitize cells to
carcinogens [21,22], increase stemness [23], promote cancer-related inflammation [24],
increase the proliferation of cancer cells [25–27], participate in the altered energetics of
cancer cells [13,28], promote neovascularization of cancer tissue and increase the activity of
matrix metalloproteinases [29–32], rearrange lymphatic vessels within and around tumor
tissue [33], increase both the stiffness [34] and migration of cancer cells [26,35,36], and
potentiate the development of metastases [37–40]. The majority of these effects might be
significantly reduced by antagonists of β2-adrenergic receptors. The most frequently used
antagonist of the β2-adrenergic receptor in research on cancer neurobiology is propranolol
(Figure 1).

Propranolol is a non-selective β blocker [41]. However, it is necessary to note that even
if propranolol blocks both β1- and β2-adrenergic receptors, experiments comparing the
effects of propranolol treatment with the effects of selective antagonists of β1-adrenergic
receptors clearly showed that the effects of propranolol on cancer induction and progression
are mediated by the reduction of β2-adrenergic signaling. Effects similar to those of
propranolol might also be induced by the administration of a selective antagonist of β2-
adrenergic receptors, such as the experimental compound ICI-118,551.

There are several reasons that propranolol is the most often used β blocker in the
investigation of neurobiology of cancer: (a) it was the first β blocker effectively used in
the treatment of coronary artery disease and hypertension and therefore has been used in
clinical practice for a long time [41]; (b) its pharmacological properties have been described
in detail [42]; (c) there have been several retrospective studies involving patients treated
with propranolol that have investigated the effect of β blockers on cancer incidence and
progression [43–51]; (d) propranolol is readily available, inexpensive, and easily applicable
in animal experiments; (e) as a clinically approved drug, off-label propranolol use by cancer
patients in clinical trials is highly likely to be considered acceptable by the approving
authorities of these studies.

2.1. Propranolol and Cancer Incidence

The reduction of cancer incidence by propranolol has been demonstrated in both
animal and clinical studies. In animal models, propranolol reduces the incidence of several
cancer types, including prostate, pancreas, and tongue [7,53,54]. Data from our laboratory
have shown that propranolol treatment also reduced the development of chemically in-
duced mammary carcinoma in rats [55]. Similar effects were also found in retrospective
clinical studies showing that long-term treatment of non-cancerous diseases by propranolol
before cancer diagnosis reduced the incidence of head and neck, esophagus, stomach, liver,
colon, and prostate cancers [43,56–58]. However, it is necessary to note that published data
from retrospective studies showing a reduction in cancer incidence in patients treated by
propranolol might also reflect a suppressive effect of this β blocker on already present
dormant cancer, as it has been shown that propranolol significantly inhibits processes
associated with cancer growth [59]. It is also necessary to note that several studies have
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been published that did not find any effect of β blockers on cancer incidence, or even found
a slight increase in cancer risk [60–62]. However, these studies usually did not differentiate
between the effects of different β blockers and, therefore, propranolol’s effect on cancer
incidence cannot be appropriately evaluated in these studies [63–65]. Moreover, another
factor that might potentially influence the interpretation of data related to propranolol’s
effect on cancer incidence might be the control group of subjects used. In the case that the
control group of patients includes individuals with normal blood pressure, then the effect
of propranolol on cancer incidence might be distorted, as it is known that hypertension
itself can increase the risk of cancer [66–68].
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Figure 1. Experimental and clinical studies have shown that propranolol affects all hallmarks of
cancer defined by Hanahan and Weinberg [52]. Even if these studies created a basis for potentially
employing propranolol in cancer treatment and prevention, further studies are necessary to determine
its efficacy in various human cancers.

Propranolol’s effect of reducing cancer incidence might be especially important for
those individuals whose increased cancer risk results from long-term, exaggerated sympa-
thoadrenal tone and consequently increased adrenergic signaling. For example, patients
with polycystic ovary syndrome, obesity, some subtypes of hypertension, or those smok-
ing combustible or electronic cigarettes containing nicotine represent individuals with
increased cancer risks that might be related, at least partially, to increased activity of the
sympathoadrenal system [6,69,70]. However, it is necessary to note that in individuals with
exaggerated sympathoadrenal activity, the effect of propranolol might be less pronounced
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than in those with sympathoadrenal activity within the range of normal physiological
values. Therefore, assessment of sympathoadrenal activity by determining heart rate
variability may allow for a more appropriate assessment of propranolol’s effect on cancer
incidence and progression.

Propranolol might also be potentially effective in cancer prevention for individuals
accidentally exposed to carcinogens. However, further studies are necessary to assess
whether propranolol might be used for cancer prevention. If this beneficial effect of
propranolol is confirmed, then it will have several important consequences. For example,
it will then be necessary to consider whether or not it is more appropriate to preferentially
treat hypertensive patients with an increased cancer risk with propranolol, if possible.

2.2. Propranolol and Cancer Progression

Recently, propranolol has been routinely used for the treatment of problematic pro-
liferating infantile hemangioma. Several mechanisms that could underlie propranolol’s
effect on infantile hemangioma were proposed, including its inhibitory effect on angio-
genesis, promotion of apoptosis in capillary endothelial cells, inhibition of vasodilatation
and potentiation of vasoconstriction, and modulation of the renin-angiotensin system (for
review, see [71]). However, even though infantile hemangioma is a benign tumor, some of
the proposed mechanisms of action of propranolol might also be involved in inhibiting the
progression of malignant tumors.

In support of this, findings from in vitro experiments and animal models of cancer
have consistently demonstrated that propranolol inhibits cancer progression and the devel-
opment of metastases [33,35,37,72–77]. Similarly, several retrospective clinical studies have
shown a reduction in cancer proliferation and metastatic markers, as well as the prolonged
survival of cancer patients, in those that were treated with propranolol for hypertension
or other non-cancer diseases [44,50,51,78–81]. However, not all studies confirmed this
beneficial effect of propranolol in cancer patients [60,82].

Importantly, a recent prospective study of propranolol as an off-label treatment has
shown that patients treated with this β blocker have an 80% reduction in risk for melanoma
recurrence [83]. Similarly, neoadjuvant propranolol treatment decreased the expression
of the pro-proliferative Ki-67 and pro-survival Bcl-2 markers and increased pro-apoptotic
p53 expression in a patient with stage III breast cancer [84]. Currently, several studies
are ongoing to investigate the feasibility of combining propranolol with chemotherapy in
cancer patients (e.g., [85]; for more, see ClinicalTrials.gov).

2.3. Propranolol and Efficiency of Conventional Anti-Cancer Treatment

Cancer diagnosis and treatment induces intensive and chronic stress, which is accom-
panied by increased adrenergic signaling in many patients [86,87]. Increased adrenergic
tone could then reduce the effectiveness of cancer treatment. Importantly, besides its sup-
pressive effect on cancer incidence and progression, propranolol might, via suppression
of stress’s effect on cancer tissue, also significantly improve the efficiency of conven-
tional oncological treatment modalities, such as surgery, chemotherapy, radiotherapy,
and immunotherapy.

Resection of primary cancer. Surgical removal of a tumor is one of the most com-
monly used therapeutic modalities in oncology. However, resection of the primary tumor
is often accompanied by alteration of many biological processes, including exaggerated
β-adrenergic signaling, which potentiates the development of metastases and therefore
worsens the clinical course of cancer [88,89]. Animal experiments have shown that periop-
erative treatment by propranolol and a COX-2 inhibitor significantly reduced lung tumor
retention in rats intravenously inoculated with MADB106 syngeneic MADB106 mammary
adenocarcinoma cells [90,91]. Similarly, perioperative treatment with propranolol reduced
the markers of metastasis and tumor burden in patients with breast, ovarian, and colorectal
cancer [92–97] (Figure 2). Importantly, these clinical studies also proved the safety of
propranolol use in cancer patients during the perioperative period.

ClinicalTrials.gov
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Figure 2. Dosage of propranolol used to prevent perioperative and postoperative metastases in a
clinical study by Hiller, et al. [96]. At the beginning (day −7), patients received 40 mg of propranolol
twice a day; from day −4, they received 80 mg twice a day, and after the operation, the dose was
gradually reduced. ext—day of tumor tissue extirpation.

Chemotherapy. In vitro experiments have demonstrated that propranolol increases
the efficacy of several chemotherapeutics used in oncology. For example, propranolol
potentiated the anti-angiogenic and anti-tumoral efficacy of 5-fluorouracil and paclitaxel
in a murine, orthotopic xenograft model of triple-negative breast cancer [98]. Propra-
nolol also increased the in vitro and in vivo efficacy of sunitinib on mouse melanoma
during increased adrenergic signaling [99]. Moreover, propranolol exerted a synergic effect
with doxorubicin in inhibiting the viability of liposarcoma and leiomyosarcoma cells and
increased the response to docetaxel in angiosarcoma and solitary fibrous tumor patient-
derived cells. This effect of propranolol was mediated by a reduction in the activity of the
multidrug resistance efflux pump P-gp, thereby increasing the intracellular doxorubicin
concentration and its anti-tumor activity [100].

Radiotherapy. Combined treatment with propranolol and dichloroacetate enhances
the effects of chemoradiation and sensitizes head and neck squamous cell carcinoma to
cisplatin and radiation during both in vitro and in vivo conditions [101]. Propranolol also
increased the anti-tumor efficacy of radiation in CT26 murine colon adenocarcinoma. This
effect was mediated by a reduction in tumor cell resistance to radiation-induced cell death
and by the exaggeration of anti-tumor immunity [22].

Immunotherapy. It has been shown that propranolol enhanced the efficacy of anti-
(α)PD-1 checkpoint blockade in a murine model of melanoma [102]. Propranolol also
increased the efficacy of tumor antigen lysate vaccine in mice with breast cancer induced
by implantation of breast tumor pieces [103].

Hematopoietic cell transplantation (HCT). Data indicate that propranolol might re-
duce the rate of tumor progression, not only in solid but also hematologic malignancies.
This effect might be of importance, especially during the peri-transplant period character-
ized by increased activity of adrenergic signaling induced by psychosocial stress. Therefore,
a proof-of-concept randomized pilot study assessed the feasibility of propranolol treatment
in patients receiving an autologous HCT for multiple myeloma. The study showed that
there was a good tolerance to propranolol, which was reflected by the high adherence rate
and study retention [104].

2.4. The Issues Related to Propranolol Usage in Oncology

There are several factors that determine the effects of propranolol on processes related
to cancer initiation, progression, and treatment. Published data indicate that propranolol’s
effect on carcinogenesis and cancer progression is a complex phenomenon that could
reflect its effects on normal cells and the tumor micro- and macroenvironment, as well as
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its vasodilatory effect (e.g., steal effect on tumor perfusion). However, these factors are
only characterized in some types of cancer. Therefore, further studies are necessary to
determine the efficacy of propranolol for the prevention and treatment of various types of
cancer. Mentioned below are some of the factors affecting propranolol’s efficacy in cancer
treatment and prevention.

Cancer type. Adrenergic signaling, which is reduced by propranolol, does not play
an equal role in all cancer types [105]. For example, available data indicate that, whereas
gastric cancer is influenced mainly by acetylcholine released from parasympathetic nerves
(cholinergic signaling) [106], prostate cancer is affected by both parasympathetic and sym-
pathetic nerves depending on the stage of cancer [7], and breast cancer is affected almost
exclusively by adrenergic signaling [107]. Therefore, propranolol might be preferentially
used for the prevention and treatment of those cancers in which adrenergic signaling plays
an important role, such as prostate and breast cancer.

Dosage. It has been shown that propranolol’s inhibitory effect on tumor growth in
a mouse model of melanoma depends on dosage and has a U shape [108]. In support of
this, a U-shaped effect was also found in a retrospective study investigating the effect of
antihypertensive treatment on breast cancer incidence in hypertensive women. In this
study, it was found that the hazard ratio was lowest in patients treated with 25 to 50 mg of
propranolol per day than in women treated with either higher or lower doses [109].

Route of administration. In both animal experiments and clinical trials, propranolol
is administered systemically, either by injection or orally. However, propranolol can also
be administered locally. Topical administration of propranolol could potentially reduce the
adverse effects accompanying systemic administration and also increase its concentration
in cancer tissue. For example, topical propranolol application might be of interest in the
treatment of melanoma, as several studies have shown its efficacy in the treatment of this
cancer type [83,110].

Combination with other drugs. The efficacy of propranolol might be increased by
being given in combination with drugs that affect other aspects of cancer pathogenesis.
For example, experimental data have shown that combining propranolol with 2-Deoxy-
D-glucose efficiently prevented prostate cancer cell proliferation, induced cell apoptosis,
altered mitochondrial morphology, inhibited mitochondrial bioenergetics, and aggravated
endoplasmic reticulum stress in vitro, while also suppressing tumor growth in vivo [111].
Another example of increased propranolol efficacy is related to its effect on the metabolism
of glucose in cancer cells. It was shown that propranolol, via inhibition of mitochondrial
metabolism, exerts potent anti-cancer effects in head and neck squamous cell carcinoma,
but also increases glycolytic activity of these cancer cells, which may limit its effectiveness.
However dichloroacetate, a clinically available glycolytic inhibitor, enhanced this propra-
nolol induced anti-cancer effect [101]. Another study demonstrated that combined treat-
ment with propranolol and another six repurposed drugs might represent a new approach
for treating metastatic breast cancer. Furthermore, it was found that this combination
inhibited epithelial-to-mesenchymal transition and augmented capecitabine efficacy [112].

Physical and psychosocial characteristics of patients. The effect of propranolol on
cancer might be also determined by the health status of the patient. For example, in older
patients with several comorbidities, propranolol can exert various side effects that might af-
fect its effect on cancer as well as reduce compliance. Moreover, psychosocial factors might
play a significant role as data from studies investigating the effect of psychotherapy, which
also reduces adrenergic signaling, have shown that this approach is effective, especially in
some subgroups of cancer patients [113]. Analogously, it can be expected that propranolol
will be especially effective in individuals exposed to intensive and chronic stress, including
newly diagnosed or socially isolated cancer patients.

Metronomic chemotherapy. If the anti-cancer activity of propranolol is confirmed in
clinical trials, the introduction of propranolol into conventional cancer treatment may allow
oncologists to reduce the dosage of chemotherapy and also possibly radiotherapy and
other treatments, thus reducing their adverse effects on the patient’s body.
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3. Drugs Reducing Density or Activity of Nerves Innervating Cancer Tissue

It has been suggested that the innervation of cancer tissue is a new hallmark of
cancer [114]. In support of this, it has been demonstrated that increased nerve size and
density represents a negative prognostic marker of cancer disease [7,115–118].

There are several sources of nerves in cancer tissue, including nerves already present
in tissue before the transformation of normal tissue cells into cancer, phenotypically
transformed neurons that innervate the tissue of tumor origin [119], new branches of
nerves growing to the tumor tissue from nerves localized around the tumor tissue, and
axons of new neurons migrating from a distant part of the central or peripheral nervous
system into the tumor tissue or its vicinity [120]. The main stimuli for the ingrowth of
new nerves into cancer tissue are nerve growth factors released by cells in the tumor
microenvironment [121].

Neurotransmitters released from nerves innervating cancer exert complex effects
on cancer progression and the development of metastases [122]. These effects depend
on the type of nerves [105] and their density in cancer tissue [7,115–118]. For example,
norepinephrine released from sympathetic nerves plays an important role in the initial
phases of prostate cancer development, while acetylcholine released from parasympathetic
nerves potentiates the progression of prostate cancer and development of metastases [7].
Importantly, neurotransmitters such as norepinephrine, released from nerve endings in
tumor tissue, increase cancer cell proliferation. Because cancer cells release nerve growth
factors that potentiate the growth of new axons into cancer tissue, positive feedback is
established. This vicious cycle might represent a new target in cancer treatment (Figure 3).
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3.1. Drugs Reducing Nerve Growth Factor-Related Signaling

The effect of reducing cancer innervation by the administration of drugs that suppress
neoaxonogenesis in tumor tissue has been investigated in both animal and human cancers.
It has been shown that nerve growth factor (NGF) potentiates neoaxonogenesis and that
systemic or local administration of NGF receptor inhibitors or antibodies against NGF
reduces the density of nerves in cancer tissues, including breast and pancreas [23,124,125].

It has been suggested that antibodies to nerve growth factors (e.g., tanezumab) [126],
or drugs blocking the release of exosomes (such as those containing the axonal guidance
molecule, EphrinB1) [127] into cancer tissue, might be used for the treatment of cancer
in humans.

3.2. Botulotoxin

Botulotoxin inhibits the release of acetylcholine from the nerve endings of motor and
parasympathetic nerves. As it has been demonstrated that parasympathetic nerves exert a
stimulating effect on the development and progression of some cancers [7,106], the effect of
botulinum toxin on cancer was investigated in animal models, as well as in cancer patients.
Botulotoxin treatment reduced tumor size and increased the apoptotic rate of pancreatic
cancer in athymic nude mice [128], while, in humans, botulotoxin treatment resulted in
increased apoptosis of cancer cells in the side of the prostate injected with botulotoxin [129].

3.3. Electroceuticals

In 2013, Famm, et al. [130] introduced the term “electroceuticals” into the scientific
literature for devices that might treat diseases or reduce their symptoms by modulation
of neural activity. These devices can be surgically implanted or attached to the skin
and affect the transmission of action potentials in certain nerves via the generation of
electrical impulses with programable intensity, frequency, and shape. Electroceuticals
are now approved for the treatment of epilepsy and depression [131]. However, clinical
studies indicate that electroceuticals might be effective in the treatment of a much wider
spectrum of diseases, including pain, sepsis, lung injury, rheumatoid arthritis, diabetes,
gastrointestinal diseases, and many others [131–133].

Electroceuticals are used also in cancer patients for the reduction of chemotherapy-
induced nausea and vomiting [134]. Recently, its use in more directed cancer treatment was
proposed [135,136]. It can be hypothesized that, in some circumstances (e.g., inoperable
cancer), it will be possible to modulate the transmission of signals from nerves to cancer
by electroceuticals, thereby reducing the stimulatory effect of the nervous system on
cancer growth.

It is necessary to note that the term electroceuticals in some papers is also used to
describe drugs that affect the electrical properties of cells, including drugs affecting ion
channels [137]. Therefore, electroceuticals, in general, might include also local anesthetics
and other drugs altering the transmission of action potentials. These drugs might be also
used for the treatment of cancer as they block the transmission of signals from the nervous
system to effector cells in the tumor microenvironment.

3.4. Local Anesthetics

Signals, in the form of action potentials transmitted along the axons of autonomic
and sensory neurons, participate in the modulation of cancer growth, as well as in the
modulation of nervous system function by cancer. Besides electrical signals transmitted
along axons, it has been shown that cancer cells may develop neurite-like protrusions that
form contact with nerve endings [121], and that voltage-gated sodium channels play a
role in cancer cell invasion and metastasis [138,139]. Therefore, it might be hypothesized
that modulation of the electrical properties of cancer tissue and its vicinity might affect
its progression.

The transmission of signals between the nervous system and cancer tissue, along with
the electrical activity of cancer tissue, might be reduced by application of local anesthetics.
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Local anesthetics in the form of gels might be useful for interrupting signals conducted by
superficial nerves innervating cancer localized in the skin. Therefore, these drugs might
potentially reduce the stimulatory effect of nerves innervating melanoma. However, even
though several papers have shown that local anesthetics might exert direct anti-cancer
effects [140–142], there are no data in the available literature showing that local anesthetics
can be used to suppress cancer via the attenuation of signal transmission between the
nervous system and cancer tissue. Therefore, further research is necessary to assess whether
blocking the transmission of action potentials via local anesthetic in axons innervating
cancer tissue might affect cancer progression. The most plausible use of local anesthetics
would be in the treatment of superficial cancers, such as melanoma.

4. Drugs Interfering with Cancer Effects on the Brain

Cancer might affect several brain functions, including homeostatic regulation of
energy balance, cognition, mood, and sleep. Importantly, alterations of brain functions
might, at least partially, also affect the course of cancer disease and therefore the quality of
life and survival of cancer patients. Therefore, attenuation of cancer’s effect on the brain
might represent a new therapeutic target in oncology.

Anorexia and cachexia. Cancer-induced alteration of specific brain circuits might
significantly affect energy balance (Figure 4). In particular, signaling molecules released
from the tumor microenvironment (e.g., cytokines) might induce neuroinflammation in
the hypothalamus, the main brain center maintaining energy homeostasis [143]. This
hypothalamic neuroinflammation might subsequently disrupt the precise regulation of
metabolic processes in the body and thus contribute to the progression of anorexia and
cachexia in individuals with cancer [144]. Hypothalamic neuroinflammation is activated
by several factors, including pro-inflammatory molecules, and is maintained by activation
of NF-κB gene expression in hypothalamic neurons and glia cells [145].

Several approaches might be used to attenuate hypothalamic inflammation in cancer
patients with the goal of attenuating the development of anorexia and cachexia. These
might include the reduction of cytokine synthesis in the periphery, as well as in the brain,
by drugs already approved for the treatment of non-cancerous diseases, including aspirin
and metformin. In addition, hypothalamic inflammation might also be reduced by dietary
supplements such as polyunsaturated fatty acids [146] or by regular physical activity [147].
In addition, drugs interfering with brain signaling mediated by neuropeptides such as
neuropeptide Y or agouti-related protein might restore the functions of the neuronal circuits
regulating energy balance [148].

4.1. Aspirin

One of the main mechanisms of action of aspirin is mediated by the suppression
of cyclooxygenase activity, followed by the reduction of prostaglandin synthesis [150].
Importantly, it was shown that aspirin administration resulted in a partial recovery of body
weight and food intake in Walker 256 tumor-bearing rats [151]. Even if the mechanism
responsible for this effect was not investigated further, based on the known suppressive
effect of aspirin on prostaglandin synthesis in the hypothalamus [152], it can be hypothe-
sized that the potential anorexia- and cachexia-reducing effect of aspirin might be, at least
partially, mediated by the reduction of hypothalamic inflammation. This hypothesis is
further supported by data showing that aspirin modulates the activity of the adenosine
monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway that plays a
central role in the regulation of energy balance by the hypothalamus [153].
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Figure 4. Schematic depiction of the mechanisms involved in the development of cancer cachexia.
In addition to peripheral mechanisms, hypothalamic inflammation induced by cytokines and other
factors synthesized in the tumor microenvironment and peripheral tissues is involved in the devel-
opment of cachexia. Hypothalamic inflammation disrupts regulation of food intake and increases
energy expenditure. Therefore, drugs such as aspirin or metformin might directly or indirectly reduce
hypothalamic inflammation and could be useful in the treatment of cancer anorexia and cachexia.
Modified according to Argiles, et al. [149]. NEFA—non-essential fatty acids; TAGs—triacylglycerols.

4.2. Metformin

Metformin exerts complex molecular effects, including the activation of adenosine
monophosphate (AMP)-activated protein kinase (AMPK) signaling [154], and inhibits a
NF-κB pro-inflammatory pathway [155] in the periphery, as well as in the brain. Data
indicate that this drug might also be repurposed for cancer prevention and treatment [156].
Based on the anti-inflammatory and energy homeostasis-maintaining effects of metformin,
it can be hypothesized that this drug might also be used for suppressing hypothalamic
inflammation and therefore the reduction of anorexia and cachexia development in cancer
patients. In support of this, it was shown that metformin exerts an anti-cachexic effect in a
murine B16-F1 cell line induced cancer cachexia model [157].

5. Conclusions

The neurobiology of cancer has revealed new mechanisms and pathways participating
in cancer initiation and progression. These cancer-related mechanisms and pathways might
represent a target for new drugs, as well as for drugs already approved for the treatment of
non-cancer diseases. Currently, several clinical trials are ongoing to investigate the effect of
drugs such as propranolol or metformin in the treatment of human cancer. Importantly, the
repurposing of these approved drugs might significantly speed up their introduction into
the cancer treatment regimen. However, it is necessary to note that several questions need
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to be answered before introducing these drugs into conventional oncological treatment.
Therefore, further studies will be necessary to evaluate against which cancer types these
drugs are the most efficient, determine the optimal therapeutic dosage of these drugs, their
potential adverse effects depending on interaction with other drugs used by patients, and
other factors.
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